COMBINATORIAL ENUMERATION OF HOMO AND HETEROPOLYSUBTITUTED [4.2]-PARACYCLOPHANE DERIVATIVES ROBERT MARTIN NEMBA*, PATOUOSSAISSOFA and A. EMADAK

Faculty of Sciences, Laboratory of Physical and Theoretical Chemistry, Section of Combinatorial Chemistry and Molecular Topology University of Yaounde P.O.Box- 812, YaoundeI, CAMEROON
(Received : 23.06.2012; Accepted : 05.07.2012)

Abstract

A combinatorial enumeration using the unit-subduced-cycle index approach with symmetry chararacterisation is carried out for homo- and hetero-polysubstituted [4.2]-paracyclophane derivatives symbolized respectively by the empirical formulas $\varphi_{2} C_{6} H_{q 0} X_{q I}$ and $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$ where X and Y are a non-isomerisable ligands and where the greek symbol φ represents the hydrogen depleted benzene ring.

Key words: Homo and hetero-disubtutited [4.2] paracyclophane, Unit-subduced-cycle index, Coset representation, Subduction, Isomer count vector, Combinatorial enumeration.

INTRODUCTION

During the last four decades, some satisfactorily routes for the preparation of [m.n] paracyclophanes among which the [4.2] paracyclophane ([4.2] PCP) as well as several derivatives of these compound has been described ${ }^{1-8}$.

Hammond and Longone ${ }^{9}$ for instance reported that the direct synthesis of this hydrocarbon is achieved via the cross dimerization of vinyl-p-xylylene with other xylylene type intermediates. Another route for its preparation is the thermal cleavage of the benzyl-benzyl bond of the [2.2] paracyclophane, which at $200^{\circ} \mathrm{C}$ leads to a diradical. This latter species collapse to regenerate starting materials and undergoes a cycloaddition reaction which gives [4.2] paracyclophane derivatives. It is to be noticed that the [4.2] PCP belongs to the [m.n] paracyclophanes series, which two carbon bridges of unequal length. Such compounds undergo electrophylic aromatic substitution (halogenation or Friedel Crafts acylation) under very mild conditions as long as one bridge contains less than four carbon atoms.

The emphasis in this study is to present a combinatorial enumeration detailing the symmetries of stereo and position isomers of homo-polysubstituted-[4.2]-paracyclophane (Ho[4.2] PCP and hetero-polysubstituted-[4.2]-paracyclophane (He-[4.2] PCP) derivatives symbolized by the empirical formula $\varphi_{2} C_{6} H_{q 0} X_{q 1}$ and $\varphi_{2} C_{6} H_{q 0} X_{q I} Y_{q 2}$, where the subscripts $q_{0,} q_{1}$ and q_{2} are respectively the numbers of unsubstituted hydrogen atoms and the degrees of substitution with non isomerisable ligands of distinct types X and Y .

[^0]
Mathematical formulation and computational method

Let us now consider the parent [4.2]-PCP as a three dimensional object represented by the stereograph G having a $\mathrm{C}_{2 \mathrm{~V}}$ global symmetry as shown in Fig. 1.

Fig. 1: Stereograph of [4.2]-PCP
The four symmetry operations of this abelian group listed in Eq. 1 hereafter :

$$
\begin{equation*}
\mathrm{C}_{2 \mathrm{v}}=\left\{E, C_{2(z)}, \sigma_{(x z)}, \sigma_{(z z)}\right\} \tag{1}
\end{equation*}
$$

are partitioned into four equivalence classes given in eq. 2 as follows:

$$
\begin{equation*}
\{I\} ;\left\{C_{2(z)}\right\} ;\left\{\sigma_{(x z)}\right\} ;\left\{\sigma_{(z z)}\right\} \tag{2}
\end{equation*}
$$

These latter generate 5 subgroups comprising the 2 chiral subgroups C_{1} and C_{2} and the 3 achiral subgroups $\mathrm{C}_{\mathrm{s}}, \mathrm{C}^{\prime}$ and $\mathrm{C}_{2 \mathrm{~V}} \mathrm{D}_{2 \mathrm{~h}}$ reported in Table 1 with their respective symmetry operations.

Table 1: The subgroups of $\mathrm{C}_{2 \mathrm{v}}$

Subgroup	Symmetry operations	Chirality
C_{1}	$\{I\}$	Chiral
C_{2}	$\left\{I, C_{2(z)}\right\}$	Chiral
C_{s}	$\left\{I, \sigma_{(x z)}\right\}$	Achiral
$\mathrm{C}_{\mathrm{s}}^{\prime}$	$\left\{I, \sigma_{(y z)}\right\}$	Achiral
$\mathrm{C}_{2 v}$	$\left\{I, C_{2(z)}, \sigma_{(x z)}, \sigma_{(v z)}\right\}$	Achiral

These 5 subgroups construct a non redundant set of subgroups ${ }^{10}$ for $\mathrm{C}_{2 \mathrm{v}}$ denoted $\mathrm{SSG}_{\mathrm{D} 2 \mathrm{~h}} S S G_{C 2 v}$ given in Eq. 3:

$$
\begin{equation*}
S S G_{C 2 v}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{s}}^{\prime}, \mathrm{C}_{2 \mathrm{v}}\right\} \tag{3}
\end{equation*}
$$

The complete set of coset representations (CR) forC $\mathrm{C}_{2 \mathrm{v}}$ denoted $\mathrm{SCR}_{\mathrm{C}_{2 \mathrm{v}}}$ listed in Eq. 4 hereafter $\mathrm{SCR}_{\mathrm{D} 2 \mathrm{~h}}$:

$$
\begin{equation*}
S C R_{C 2 v}=\left\{C_{2 v}\left(/ \mathrm{C}_{1}\right), C_{2 v}\left(/ \mathrm{C}_{2}\right), C_{2 v}\left(/ \mathrm{C}_{\mathrm{s}}\right), C_{2 v}\left(/ \mathrm{C}_{\mathrm{s}}^{\prime}\right), C_{2 v}\left(/ C_{2 v}\right)\right\} \tag{4}
\end{equation*}
$$

is in a univoque correspondence with the $S S G_{C 2 v}$. The term designating each coset representation (CR) includes the global symmetry $\mathrm{C}_{2 \mathrm{v}}$ followed by a subgroup $\mathrm{G}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}} \in S S G_{C 2 v}$. The explicit forms of these CRs are given in Eqs. 5-9 as follows:

$$
\begin{gather*}
C_{2 v}\left(/ \mathrm{C}_{1}\right)=\mathrm{C}_{1} I+\mathrm{C}_{1} C_{2(z)}+\mathrm{C}_{1} \sigma_{\mathrm{n}}+\mathrm{C}_{1} \sigma_{(x z)}+\mathrm{C}_{1} \sigma_{(\mathrm{yz})} \tag{5}\\
C_{2 v}\left(/ \mathrm{C}_{2}\right)=\mathrm{C}_{2} I+\mathrm{C}_{2} \sigma_{(x z)} \tag{6}\\
C_{2 v}\left(/ \mathrm{C}_{\mathrm{s}}\right)=\mathrm{C}_{\mathrm{s}} I+\mathrm{C}_{\mathrm{s}} \mathrm{C}_{2(z)} \tag{7}\\
C_{2 v}\left(/ \mathrm{C}_{\mathrm{s}}^{\prime}\right)=\mathrm{C}_{\mathrm{s}}^{\prime} I+\mathrm{C}_{\mathrm{s}}^{\prime} C_{2(z)} \tag{8}\\
C_{2 v}\left(/ \mathrm{C}_{2 \mathrm{v}}\right)=\mathrm{C}_{2 \mathrm{v}} I \tag{9}\\
\mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}^{\prime}{ }_{2 \mathrm{v}}\right)=\mathrm{C}^{\prime}{ }_{2 \mathrm{v}} \mathrm{I}+\mathrm{C}^{\prime}{ }_{2 \mathrm{v}} \mathrm{C}_{2(\mathrm{z})}
\end{gather*}
$$

$\mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{D}_{2 \mathrm{~h}}\right)=\mathrm{D}_{2 \mathrm{~h}}$ I By multiplying the right hand side terms of Eqs. $5-9$ by each symmetry operation of $\mathrm{C}_{2 \mathrm{v}}$, we permute the elements of each CR. Then we obtain a row vector of marks assign to each CR by counting invariant elements related to each subgroup. The five row vectors of marks generated by these operations form the Table of mark for $\mathrm{C}_{2 \mathrm{v}}$ denoted $\mathrm{M}_{\mathrm{C} 2 \mathrm{v}} \mathrm{M}_{\mathrm{D} 2 \mathrm{~h}}$ which is given hereafter:

$$
\begin{aligned}
& \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}^{\prime} \mathrm{C}_{2 \mathrm{v}} \\
& \left.M_{C_{2 v}}=\begin{array}{c}
\mathbf{C}_{2 v}\left(/ \mathbf{C}_{1}\right) \\
\mathbf{C}_{2 v}\left(/ \mathbf{C}_{2}\right) \\
\mathbf{C}_{2 v}\left(/ \mathbf{C}_{s}\right) \\
\mathbf{C}_{2 v}\left(/ \mathbf{C}_{\mathrm{s}}^{\prime}\right) \\
\mathbf{C}_{2 v}\left(/ \mathbf{C}_{2 v}\right)
\end{array}\right)\left(\begin{array}{lllll}
4 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 \\
2 & 0 & 0 & 2 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

The corresponding inverse of this mark table denoted $\mathrm{M}_{\mathrm{C}_{2}}^{-1}$ is obtained from Eq. 10:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{C}_{2 v}} \mathrm{M}_{\mathrm{C}_{2 v}}^{-1}=\mathrm{I} \tag{10}
\end{equation*}
$$

where I represents the 5×5 identity matrix.

$$
M_{c_{2 v}}^{-1}=\left(\begin{array}{rrrrr}
\frac{1}{4} & 0 & 0 & 0 & 0 \\
-\frac{1}{4} & \frac{1}{2} & 0 & 0 & 0 \\
-\frac{1}{4} & 0 & \frac{1}{2} & 0 & 0 \\
-\frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right)
$$

The 20 hydrogen atoms of the parent [4.2]-PCP depicted in Fig. 1 by alphabetical and numerical labels constitute 5 distinct sets of equivalent atoms or orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, and Δ_{5} given hereafter:

$$
\Delta_{1}=\left\{1,4,1^{\prime}, 4^{\prime}\right\}, \Delta_{2}=\left\{2,3,2^{\prime}, 3^{\prime}\right\}, \Delta_{3}=\left\{5,6,5^{\prime}, 6^{\prime}\right\}, \Delta_{4}=\left\{a, d, a^{\prime}, d^{\prime}\right\} \text { and } \Delta_{5}=\left\{b, c, b^{\prime}, c^{\prime}\right\}
$$

To assign an appropriate CR to each orbit, we find the largest subgroup that keeps each orbit invariant. The subgroup C_{1} keeps all the elements of $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, and Δ_{5} unchanged. Therefore the coset representation governing the 20 substitution sites located on the two benzene rings and the eight others located on the two carbon bridges isdenoted $\mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{1}\right)$.

RESULTS AND DISCUSSION

The Fujita mathematical procedure of subduction ${ }^{11-13}$ of the coset representation $\mathrm{C}_{2 \mathrm{v}}$ $\left(/ D_{2 h}\left(/ C_{s}\right), D_{2 h}\left(/ D_{2}\right), D_{2 h}\left(/ C_{2 v}\right), D_{2 h}\left(C_{2 v}^{\prime v}\right), D_{2 h}\left(/ C_{2 v}\right)\right)$ by all subgroups of $\mathrm{C}_{2 \mathrm{v}}$ has been derived from Eq. 11 hereafter :

$$
\begin{equation*}
\mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{1}\right) \downarrow G_{i} \mathrm{G}_{\mathrm{i}}=\beta_{i} \beta_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}\left(/ \mathrm{C}_{1} \mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{1}\right)\right. \tag{11}
\end{equation*}
$$

Where $G_{i} \mathrm{G}_{\mathrm{i}} \in S S G_{D_{2 h}} S S G_{C_{2 v}}$ and $\beta_{\mathrm{i}} \beta_{i}$ is a positive integer number. The results obtained are given in column 2 of Table 2.

Table 2: Subductions of the coset representation $\mathbf{D}_{2 \mathrm{~h}}\left(/ \mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{\mathrm{s}}\right), \mathbf{D}_{2 \mathrm{~h}}\left(/ \mathrm{D}_{2}\right), \mathbf{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{2 \mathrm{v}}\right), \mathbf{D}_{2 \mathrm{~h}}\left(/ C_{2 v}^{\prime}\right)\right.$, $\mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{2 \mathrm{v}}\right)$) and resulting USCIs

	Subduction	$\boldsymbol{\Delta}_{\mathbf{1}}$	$\boldsymbol{\Delta}_{\mathbf{2}}$	$\boldsymbol{\Delta}_{\mathbf{3}}$	$\boldsymbol{\Delta}_{4}$	$\boldsymbol{\Delta}_{\mathbf{5}}$	ICR Total
$\mathrm{C}_{2 \mathrm{v}}\left(/ \mathrm{C}_{1}\right) \downarrow \mathrm{C}_{1}$	$4\left(\mathrm{C}_{1} / \mathrm{C}_{1}\right)$	S_{1}^{4}	$\mathrm{~S}_{1}^{4}$	$\mathrm{~S}_{1}^{4}$	$\mathrm{~S}_{1}^{4}$	$\mathrm{~S}_{1}^{4}$	$\mathrm{~S}_{1}^{20}$
$\mathrm{C}_{2 \mathrm{v}}\left(/ \mathrm{C}_{1}\right) \downarrow \mathrm{C}_{2}$	$2\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$	S_{2}^{2}	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{10}$
$\mathrm{C}_{2 \mathrm{v}}\left(/ \mathrm{C}_{1}\right) \downarrow \mathrm{C}_{\mathrm{s}}$	$2\left(\mathrm{C}_{\mathrm{s}} / \mathrm{C}_{1}\right)$	S_{2}^{2}	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{10}$
$\mathrm{C}_{2 \mathrm{v}}\left(/ \mathrm{C}_{1}\right) \downarrow \mathrm{C}_{\mathrm{s}}^{\prime}$	$2\left(\mathrm{C}_{\mathrm{s}}^{\prime} / \mathrm{C}_{1}\right)$	S_{2}^{2}	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{2}$	$\mathrm{~S}_{2}^{10}$
$\mathrm{C}_{2 \mathrm{v}}\left(/ \mathrm{C}_{1}\right) \downarrow \mathrm{C}_{2 v}$	$\left(\mathrm{C}_{2 v} / \mathrm{C}_{1}\right)$	S_{4}	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4}^{5}$

Then the right hand side term of Eq. 11 is transformed as given in Eq. 12, into aunit-subduced-cycleindex (USCI) ${ }^{14}$ noted $s_{d_{i}}^{\beta_{i}}$ and where $d_{i}=\frac{\left|G_{i}\right|}{\left|C_{1}\right|}$.

$$
\begin{equation*}
\beta_{i} \beta_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}\left(/ \mathrm{C}_{1} \mathrm{D}_{2 \mathrm{~h}}\left(/ \mathrm{C}_{1}\right) \rightarrow \mathrm{s}_{\mathrm{d}_{\mathrm{i}}}^{\beta_{\mathrm{i}}} s_{d_{i}}^{\beta_{i}}\right. \tag{12}
\end{equation*}
$$

These USCIs are reported in column $3,4,5,6$ and 7 of Table 2 for the orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, and Δ_{5}, respectively. In each row the product of unit subduced cycle indices for the orbits $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$, and Δ_{5} gives rise to $s_{d_{i}}^{5 \beta_{i}}$ which is the global USCI for the subgroup considered. For example the global USCI for the sub symmetry C_{1} results from the $\left(s_{1}^{4 \times 5}\right)=s_{1}^{20}$. Each global USCI $s_{d_{i}}^{5 \beta_{i}}$ belonging to the sub symmetry $\mathrm{G}_{i} \in S S G_{C_{2 v}}$ is transformed into a generating function $F(x)=\sum_{j} a_{j} x^{j}$ as given in Eqs. 13 and 14 for homoand hetero-polysubstitution, respectively.

$$
\begin{equation*}
G_{i} \rightarrow s_{d_{i}}^{5 \beta_{i}} \rightarrow F(x)=\left(1+x^{d_{i}}\right)^{5 \beta_{i}}=\sum_{q_{1}} A_{q_{1}} x^{q_{1}} \text { where } 0 \leq q_{1} \leq 5 \beta_{i} d_{i} \text { and } \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
G_{i} \rightarrow s_{d_{i}}^{5 \beta_{i}} \rightarrow F(x, y)=\left(1+x^{d_{i}}+y^{d_{i}}\right)^{5 \beta_{i}}=\sum_{q_{1}, q_{2}} A_{q_{1}, q_{2}} x^{q_{1}} y^{q_{2}} \text { where } 0 \leq q_{1}+q_{2} \leq 5 \beta_{i} d_{i} \tag{14}
\end{equation*}
$$

and in both Eqs. $5 \beta_{i} d_{i}=20$.

- Case of homopolysubstitution $\mathrm{C}_{1} \rightarrow \mathrm{~S}^{\mathbf{2 0}} \rightarrow(1+\mathbf{x})^{20}=$

The application of Eq. 13 to the different subsymmetries for the series of homopoly substituted [4.2] PCPs yields the following polynomials:

$$
\begin{aligned}
\mathrm{C}_{1} \rightarrow \mathrm{~S}^{20} \rightarrow(1+x)^{20}= & x^{20}+20 x^{19}+190 x^{18}+1140 x^{17}+4845 x^{16}+15504 x^{15} \\
& +38760 x^{14}+77520 x^{13}+125970 x^{12}+167960 x^{11}+184756 x^{10} \\
& +38760 x^{14}+77520 x^{13}+125970 x^{12}+167960 x^{11}+184756 x^{10} \\
& +167960 x^{9}+125970 x^{8}+77520 x^{7}+38760 x^{6}+15504 x^{5}+4845 x^{4} \\
& +1140 x^{3}+190 x^{2}+1
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\mathrm{S}_{2}^{10} \rightarrow\left(1+x^{2}\right)^{10} & +x^{20}+10 x^{18}+45 x^{16}+120 x^{14}+210 x^{12}+252 x^{10}+210 x^{8}+120 x^{6} \\
& +45 x^{4}+10 x^{2}+1
\end{aligned}
$$

for the sub symmetries $\mathrm{C}_{2}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{s}}^{\prime}$
and $\mathrm{S}_{2}^{5} \rightarrow\left(1+x^{4}\right)^{5}=x^{20}+5 x^{16}+10 x^{12}+10 x^{8}+5 x^{4}+1$ for $\mathrm{C}_{2 \mathrm{v}}$

- Case of heteropolysubstitution

Similarly, the application of Eq. 14 to the different subsymmetries for the series of heteropolysubstituted [4.2] PCPs yields the following polynomials:

$$
\begin{aligned}
\mathrm{C}_{1} \rightarrow \mathrm{~S}_{1}^{20} \rightarrow(1+x+y)^{20} \rightarrow & 380 \mathrm{xy}+3420 \mathrm{x}^{2} \mathrm{y}+19380 \mathrm{x}^{3} \mathrm{y}+29070 \mathrm{x}^{2} y^{2}+77520 \mathrm{x}^{4} \mathrm{y} \\
& +155040 \mathrm{x}^{3} \mathrm{y}^{2}+232560 \mathrm{x}^{5} \mathrm{y}+581400 \mathrm{x}^{4} \mathrm{y}^{2}+775200 \mathrm{x}^{4} y^{3} \\
& +542640 \mathrm{x}^{6} \mathrm{y}+1627920 \mathrm{x}^{5} \mathrm{y}^{2}+2713200 \mathrm{x}^{4} y^{3}+1007760 \mathrm{x}^{7} \mathrm{y} \\
& +3527160 \mathrm{x}^{6} \mathrm{y}^{2}+7054320 \mathrm{x}^{5} \mathrm{x}^{3}+8817900 \mathrm{x}^{4} \mathrm{x}^{4}+1511640 \mathrm{x}^{8} \mathrm{y} \\
& +60446560 \mathrm{x}^{7} y^{2}+14108640 x^{6} y^{3}+21162960 x^{5} y^{4} \ldots
\end{aligned}
$$

Similarly
$C_{2}, C_{s}, C_{s}^{\prime} \rightarrow S_{2}^{20} \rightarrow\left(1+x^{2}+y^{2}\right)^{10} \rightarrow 1+\ldots+90 x^{2} y^{2}+360 x^{4} y^{2}+1260 x^{4} y+840 x^{6} y^{2}+\ldots$,
and

$$
\mathrm{C}_{2 \mathrm{v}} \rightarrow \mathrm{~S}_{4}^{5} \rightarrow\left(1+\mathrm{x}^{4}+\mathrm{y}^{4}\right)^{5} \rightarrow 1+\ldots+20 \mathrm{x}^{4} \mathrm{y} 4+\ldots \mathrm{x}^{20} \mathrm{y}^{20}
$$

The different coefficients x^{2} in the above mentioned polynomials are collected together to form the fixed point matrices $\operatorname{FPM}\left(x^{q}\right)$ and $F P M\left(x^{q 1} y^{q^{2}}\right)$ given below:

	C_{1}	C_{2}	$\mathrm{C}_{\text {s }}$	$\mathrm{C}_{\text {s }}$	$\mathrm{C}_{2 \mathrm{v}}$		C_{1}	C_{2}	Cs	$\mathrm{C}_{\text {s }}$	$\mathrm{C}_{2 \mathrm{v}}$
		1	1	1		xy	380	0	0	0	0
x	20	0	0	0	0	$x^{2} \mathrm{y}$	3420	0	0	0	0
x^{2}	190	10	10	10	0	$x^{3} \mathrm{y}$	19380	0	0	0	0
x^{3}	1140	0	0	0	0	$x^{2} y^{2}$	29070	90	90	90	0
x^{4}	4845	45	45	45	5	$x^{4} \mathrm{y}$	77520	0	0	0	0
x^{5}	15504	0	0	0	0	$x^{3} y^{2}$	155040	0	0	0	0
x^{6}	38760	120	120	120	0	$x^{5} \mathrm{y}$	232560	0	0	0	0
x^{7}	77520	0	0	0	0	$x^{4} y^{2}$	581400	360	360	360	0
x^{8}	125970	210	210	210	10	$x^{3} y^{3}$	775200	0	0	0	0
x^{9}	167960	0	0	0	0	$x^{6} \mathrm{y}$	542640	0	0	0	0
$\operatorname{FPM}\left(\mathrm{x}^{q}\right)=\mathrm{x}^{10}$	184756	252	252	252	0	$\operatorname{FPM}\left(x^{q_{1}} y^{q_{2}}\right)=x^{5} y^{2}$	1627920	0	0	0	0
x^{11}	167960	0	0	0	0	$x^{4} y^{3}$	2713200	0	0	0	0
x^{12}	125970	210	210	210	10	$x^{7} \mathrm{y}$	1007760	0	0	0	0
x^{13}	77520	0	0	0	0	$x^{6} y^{2}$	3527160	840	840	840	0
X^{14}	38760	120	120	120	0	$x^{5} y^{3}$	7054320	0	0	0	0
X^{15}	15504	0	0	0	0	$x^{4} y^{4}$	8817900	1260	1260	1260	20
x^{16}	4845	45	45	45	5	$\mathrm{x}^{8} \mathrm{y}$	1511640	0	0	0	0
x^{17}	1140	0	0	0	0	$x^{7} y^{2}$	60446560	0	0	0	0
x^{18}	190	10	10	10	0	$x^{6} y^{3}$	14108640	0	0	0	0
X^{19}	20	0	0	0	0	$x^{5} y^{4}$	211662960	0	0	0	0
X^{20}					$1)$						

The corresponding isomer count matrices $\operatorname{ICM}\left(x^{q}\right)$ and $\operatorname{ICM}\left(x^{q 1} y^{q^{2}}\right)$ are derived from Eq. 15

$$
\begin{equation*}
I C M=F P M \cdot M_{C_{2 v}}^{-1} \tag{15}
\end{equation*}
$$

where $M_{C_{2 v}}^{-1}$ represents the inverse of the mark table aforementioned. The result obtained are the two rectangular matrices of isomers numbers given hereafter with respect to each sub symmetry of $\mathrm{C}_{2 \mathrm{v}}$ for different values of q_{1} in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1}$ and of $\left(q_{1}, q_{2}\right)$ in the series $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$.

	C_{1}	C_{2}	Cs	$\mathrm{C}_{\text {' }}$	$\mathrm{C}_{2 v}$		C_{1}	C_{2}	$\mathrm{C}_{\text {s }}$	$\mathrm{C}_{\text {s }}$	C_{2}
	0	0	0	0			95	0	0	0	0
x	5	0	0	0	0	$x^{2} \mathrm{y}$	855	0	0	0	0
x^{2}	40	5	5	5	0	$x^{3} \mathrm{y}$	4845	0	0	0	0
x^{3}	285	0	0	0	0	$x^{2} y^{2}$	7200	45	45	45	0
x^{4}	1180	20	20	20	5	$x^{4} y$	19380	0	0	0	0
x^{5}	3876	0	0	0	0	$x^{3} y^{2}$	38760	0	0	0	0
x^{6}	9600	60	60	60	0	$x^{5} y$	58140	0	0	0	0
x^{7}	19380	0	0	0	0	$x^{4} y^{2}$	145080	180	180	180	0
x^{8}	31340	100	100	100	10	$x^{3} y^{3}$	193800	0	0	0	0
x^{9}	41990	0	0	0	0	$x^{6} y$	135660	0	0	0	0
$\operatorname{ICM}\left(x^{9}\right)=x^{10}$	46000	126	126	126	0	$\operatorname{ICM}\left(x^{91} y^{q_{2}}\right)=x^{5} y^{2}$	406980	0	0	0	0
x^{11}	41990	0	0	0	0	$x^{4} y^{3}$	678300	0	0	0	0
x^{12}	31340	1001	100	100	10	$x^{\top} y$	251940	0	0	0	0
x^{13}	19380	0	0	0	0	$x^{6} y^{2}$	881160	420	420	420	0
x^{14}	9600	60	60	60	0	$x^{5} y^{3}$	1763580	0	0	0	0
x^{15}	3876	0	0	0	0	$x^{4} y^{4}$	2203540	620	620	620	20
x^{16}	1180	20	20	20	5	$x^{8} \mathrm{y}$	377910	0	0	0	0
x^{17}	285	0	0	0	0	$x^{7} y^{2}$	15111640	0	0	0	0
x^{18}	40	5	5	5	0	$x^{6} y^{3}$	3527160	0	0	0	0
x^{19}	5	0	0	0	0	$x^{5} y^{4}$	52915740	0	0	0	0
x^{20}	0				1						

Symmetry characterization of enumerated $\mathrm{Ho}(\mathbf{4 . 2}) \mathrm{PCPs}$ and $\mathrm{He}(4,2) \mathrm{PCPs}$

The chirality fittingness of $\varphi_{2} C_{6} H_{q 0} X_{q 1}$ and $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$ is governed by the parity of their respective degrees of homopoly substitution q_{1} and of heteropoly substitution q_{1} and q_{2} according to the following rules :
(a) The formation of chiral isomers with C_{1} symmetry only is allowed if the degree of homopoly substitution q_{1} is odd in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1}$, or if the degrees of heteropoly substitution q_{1} and q_{2} are simultaneously odd or both odd and even in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$.

This assumption is verified by the results given in the rows of the $\operatorname{ICM}\left(x^{q 1}\right)$ and $\operatorname{ICM}\left(x^{q 1} y^{q 2}\right)$ where one can see that for any value q_{1} odd in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1} A_{q 1} \neq 0$ only for the C_{l} chiral symmetry and $A_{\mathrm{q} 1}=0$ for the symmetries $\mathrm{C}_{2}, \mathrm{C}_{\mathrm{s}}, C_{s}^{\prime}$ and $\mathrm{C}_{2 \mathrm{v}}$; for q_{1} and q_{2} simultaneously odd or both odd and even in the system $\varphi_{2} C_{6} H_{q_{0}} X_{q_{1}} Y_{q_{2}}, A_{q_{1} q_{2}} \neq 0$ only for the C_{1} chiral symmetry and $A_{q_{1} q_{2}}=0$ for the symmetries C_{2}, C_{s}, C_{s}^{\prime} and $C_{2 v}$.
(b) The simultaneous occurrence of chiral C_{1} and C_{2} isomers together with achiral C_{s} and $\mathrm{C}_{2 \mathrm{v}}$ isomersis allowed if the degree of homopoly substitution q_{1} is even in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1}$, or if the degrees of heteropoly substitution q_{1} and q_{2} are both even in the system $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$.

The inspection of the coefficients of x^{2} in the third row of the $I C M\left(x^{q 1}\right)$ for the system $\varphi_{2} C_{6} H_{18} X_{2}$ reveals that there are 55 homodisubstituted (4.2) paracyclophane derivatives and 40 of these belong to $C_{1}, 5$ to $C_{2}, 5$ to both C_{s} and C^{\prime}. The molecular graphs of these isomers are illustrated in Fig. 2 (a,b,c,d) where one can easily depict that inter annular substitutions yields 2 pseudo gem (48, 49), 2 pseudo meta (43,44), 1 pseudo para (37), 1 pseudo ortho (35) isomers. Similarly the coefficients of $x^{2} y^{2}$ at the fourth row of the $\operatorname{ICM}\left(x^{\mathrm{q}^{1}} y^{\mathrm{q} 2}\right)$ predictthat $A_{2,2}=7200 \mathrm{C}_{1}, 45 \mathrm{C}_{2}, 45 \mathrm{C}_{\mathrm{s}}$ and $45 \mathrm{C}_{\mathrm{s}}^{\prime}$ isomers for the system $C_{6} H_{16} X_{2} Y_{2}$.

Finally these results also indicates that:-1)-Any $\varphi_{2} C_{6} H_{q 0} X_{q 1}$ or $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$ series with even degrees of substitution $q_{i}(i=1,2)$ exhibit the same number of isomer having $\mathrm{C}_{2}, \mathrm{C}_{\mathrm{s}}$ and $\mathrm{C}^{\prime}{ }_{\mathrm{s}}$ symmetry, respectively. Hence:

$$
A_{\mathrm{q} 1}\left(C_{2}\right)=A_{\mathrm{q} 1}\left(C_{s}\right)=A_{\mathrm{q} 1}\left(C_{s}^{\prime}\right) \text { for } \varphi_{2} C_{6} H_{q 0} X_{q 1}
$$

and

$$
A_{\mathrm{q} 1^{1} \mathrm{q} 2}\left(C_{2}\right)=A_{\mathrm{q} 1, \mathrm{q} 2}\left(C_{s}\right)=A_{\mathrm{q} 1, \mathrm{q} 2}\left(C_{s}^{\prime}\right) \text { for } \varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}
$$

2) $C_{2 v}$-achiral isomers are formed in $\varphi_{2} C_{6} H_{q 0} X_{q 1}$ and $\varphi_{2} C_{6} H_{q 0} X_{q 1} Y_{q 2}$ series only if their respective degrees of substitution are even and satisfy the restriction: $q_{i} \cdot(i=1,2)=4 \mathrm{~N}$ modulo 0 .

Fig. 2a: $40 \mathrm{C}_{1}$ chiral molecular graphs

Fig. 2b: $5 \mathrm{C}_{2}$ chiral molecular graphs

Fig. 2c: $5 \mathrm{C}_{\mathrm{s}}$ achiral molecular graphs

Fig. 2d: 5 C's achiral molecular graphs

CONCLUSION

The enumeration with symmetry characterization of stereo and position isomers of $\mathrm{Ho}[4.2] \mathrm{PCPs}$ and $\mathrm{He}[4.2]$ PCPs derivatives have shown that the chirality of these series of polycyclic hydrocarbons having two benzene deck rings tethered at para position to two carbon chains, is controlled by the parity of the degrees of substitution as follows;
(i) Odd degrees of homo- or hetero - polysubstitution yield only C_{1}-chiral isomers,
(ii) Even degrees of homo- or hetero -polysubstitution yield a dominant class of C_{1}-chiral isomers together with three degenerate classes having respectively the $\mathrm{C}_{2}, \mathrm{C}_{\mathrm{s}}$ and $\mathrm{C}^{\prime}{ }_{\mathrm{s}}$ symmetries and the same isomer number.
(iii) $\mathrm{C}_{2 \mathrm{v}}$ achiral isomers resulting from higher degrees of homo or hetero poly substitution satisfying the restriction $q_{i}=4 N$ modulo 0 .

REFERENCES

1. Z. Pechlivanidis, H. Hopf and E. Ludger, Paracyclophanes, Extending the Bridges, European J. Org. Chem., 2, 223-237 (2009).
2. R. Gleiter and H. Hopf, Eds. Modern Cyclophane Chemistry, Wiley-VCH : Weinheim, Germany, (2004).
3. F. Vögtle, Cyclophane Chemistry, Wiley: Chichester, U.K. (1993).
4. R. Filler and E. W. Choe, Tetrafluoro and Octafluoro-[4.2] Paracyclophanes, Can. J. Chem., 53, 14911495 (1975).
5. S. Amthor and C. Lambert, Dications of Bis-triarylamino-[2.2] Paracyclophanes, Evaluation of Excited State Couplings by GMH Analysis, J. Phys. Chem. A, 110, 3495-350 (2006).
6. D. Yu Antonov, E. V. Sergeeva, E. V. Vorontsov and V. I. Rozenberg, Synthesis of- [2.2] Paracyclophane-Pseudo-Ortho-Dicarboxylic Acid, Russian Chemical Bulletin, 1997, 46, 11, (20012004).
7. P. G. Jones, H. Hopf, Z. Pechlivanidis and R. Boese, Structure of [4.4] Paracyclophane and Three [m.n] Paracyclophane Derivatives, ZeitschrifffürKristallographie, 209(8), 673-676 (1994).
8. V. Rozenberg, E. Sergeeva and H. Hopf, Cyclophanes as Templates in Stereoselective Synthesis, in Modern Cyclophane Chemistry, Eds. Wiley-HCH; Weinheim, Germany, 435-462 (2004).
9. Philip S. Hammond and Daniel T. Longone, Synthesis of [4.2]-Paracyclophane, Tetrahedron Letters, 5, 415-418 (1978).
10. Mary H. Dalton and D. J. Cram, Macro Ring and Rearrangement of Cycloaddition Reaction, J. Am. Chem. Soc., 89, 509 (1966).
11. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag, BerlinHeidelberg (1991) pp. 13-48.
12. S. El-Basil, Combinatorial Organic Chemistry, An Education Approach, Nova Science Publishers, Inc, Huntington, New-York (2000) p. 50.
13. S. Fujita, Subduction of Coset Representations, Theor. Chim. Acta, 76, 247-268 (1989).
14. S. Fujita, Subduction of Dominant Representations, Theor. Chim. Acta, 91, 315-332 (1995).

[^0]: Available online at www.sadgurupublications.com
 *Author for correspondence; E-mail: robertmartinnemba@yahoo.com

