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ABSTRACT 

A combinatorial enumeration using the unit-subduced-cycle index approach with symmetry chararacterisation is 
carried out for homo- and hetero-polysubstituted [4.2]-paracyclophane derivatives symbolized respectively by the empirical 
formulas ϕ2 C6 Hq0 Xq1 and ϕ2 C6 Hq0 Xq1 Y q2 where X and Y are a non-isomerisable ligands and where the greek symbol ϕ 
represents the hydrogen depleted benzene ring.  

Key words: Homo and hetero-disubtutited [4.2] paracyclophane, Unit-subduced-cycle index, Coset representation, 
Subduction, Isomer count vector, Combinatorial enumeration.  

INTRODUCTION 

During the last four decades, some satisfactorily routes for the preparation of [m.n] paracyclophanes 
among which the [4.2] paracyclophane ([4.2] PCP) as well as several derivatives of these compound has 
been described1-8. 

Hammond and Longone9 for instance reported that the direct synthesis of this hydrocarbon is 
achieved via the cross dimerization of vinyl-p-xylylene with other xylylene type intermediates. Another 
route for its preparation is the thermal cleavage of the benzyl-benzyl bond of the [2.2] paracyclophane, 
which at 200oC leads to a diradical. This latter species collapse to regenerate starting materials and 
undergoes a cycloaddition reaction which gives [4.2] paracyclophane derivatives. It is to be noticed that the 
[4.2] PCP belongs to the [m.n] paracyclophanes series, which two carbon bridges of unequal length. Such 
compounds undergo electrophylic aromatic substitution (halogenation or Friedel Crafts acylation) under 
very mild conditions as long as one bridge contains less than four carbon atoms.  

The emphasis in this study is to present a combinatorial enumeration detailing the symmetries of 
stereo and position isomers of homo-polysubstituted-[4.2]-paracyclophane (Ho[4.2] PCP and hetero-
polysubstituted-[4.2]-paracyclophane (He-[4.2] PCP) derivatives symbolized by the empirical formula           
ϕ2 C6 Hq0 Xq1  and ϕ2 C6 Hq0 Xq1 Y q2, where the subscripts q0, q1 and q2 are respectively the numbers of 
unsubstituted hydrogen atoms and the degrees of substitution  with non isomerisable ligands of distinct types  
X and Y. 
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Mathematical formulation and computational method 

Let us now consider the parent [4.2]-PCP as a three dimensional object represented by the 
stereograph G having a C2V global symmetry as shown in Fig. 1. 
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Fig. 1: Stereograph of [4.2]-PCP 

The four symmetry operations of this abelian group listed in Eq. 1 hereafter : 

 C2v = {E, C2(z),σ (xz), σ(yz)} ...(1) 

are partitioned into four equivalence classes given in eq. 2 as follows: 

 {I} ;{C2(z)}; {σ (xz)}; {σ(yz)} …(2)  

These latter generate 5 subgroups comprising the 2 chiral subgroups C1 and C2 and the 3 achiral 
subgroups Cs, C′s and C2V D2h  reported in Table 1 with their respective symmetry operations. 

Table 1: The subgroups of C2v 

Subgroup Symmetry operations Chirality 

C1 {I}   Chiral 

C2 {I,C2(z) } Chiral 

Cs {I,σ(xz)} Achiral 

C′s {I,σ(yz)} Achiral 

C2v {I, C2(z), σ (xz), σ(yz)} Achiral 

These 5 subgroups construct a non redundant set of subgroups10 for C2v denoted SSGD2h SSGC2v 
given in Eq. 3: 

 SSGC2v = {C1, C2, Cs, C′s, C2V} ...(3) 

The complete set of coset representations (CR) forC2v denoted SCRC2v listed in Eq. 4 hereafter 
SCRD2h: 
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 SCRC2v = {C2v(/C1), C2v(/C2), C2v(/Cs), C2v(/C′s), C2v(/C2v)} ...(4) 

is in a univoque correspondence with the SSGC2v.  The term designating each coset representation (CR) 
includes the global symmetry C2v followed by a subgroup Gi Gi ∈ SSGC2v.  The explicit forms of these CRs 
are given in Eqs. 5-9 as follows: 

 C2v (/C1) = C1 I + C1 C2(z) + C1 σn + C1 σ(xz) + C1 σ(yz) ...(5) 

 C2v (/C2) = C2 I + C2 σ(xz) ...(6) 

 C2v (/Cs) = Cs I + CS C2(z) ...(7) 

 C2v (/C′s) = C′s I + C′s C2(z) ...(8) 

 C2v (/C2v) = C2v I ...(9) 

D2h (/C′2v) = C′2v I + C′2v C2(z) 

D2h (/D2h) = D2h I By multiplying the right hand side terms of Eqs. 5-9 by each symmetry operation 
of C2v, we permute the elements of each CR. Then we obtain a row vector of marks assign to each CR by 
counting invariant elements related to each subgroup. The five row vectors of marks generated by these 
operations form the Table of mark for C2v denoted MC2v MD2h which is given hereafter: 
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The corresponding inverse of this mark table denoted 1
2CM−

v is obtained from Eq. 10: 

 v2CM 1
2CM−

v = I …(10) 

where I represents  the 5 x 5 identity matrix. 
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The 20 hydrogen atoms of the parent [4.2]-PCP depicted in Fig. 1 by alphabetical and numerical 
labels constitute 5 distinct sets of equivalent atoms or orbits Δ1, Δ2, Δ3, Δ4, and Δ5 given hereafter: 

Δ1 = {1,4, 1′,4′}, Δ2 = {2,3, 2′,3′}, Δ3 = {5,6, 5′,6′}, Δ4 = {a,d, a′,d′} and Δ5 = {b,c, b′,c′} 
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To assign an appropriate CR to each orbit, we find the largest subgroup that keeps each orbit 
invariant. The subgroup C1 keeps all the elements of Δ1, Δ2, Δ3, Δ4, and Δ5 unchanged. Therefore the coset 
representation governing the 20 substitution sites located on the two benzene rings and the eight others 
located on the two carbon bridges isdenoted D2h (/C1). 

RESULTS AND DISCUSSION 

The Fujita mathematical procedure of subduction11-13 of the coset representation C2v                       

(/D2h (/Cs), D2h (/D2), D2h (/C2v), D2h (C'2v), D2h (/C2v)) by all subgroups of C2v has been derived from Eq. 11 
hereafter : 

 D2h(/C1) ↓ Gi  Gi = βi  βi  Gi (/C1 D2h (/C1) …(11) 

Where Gi Gi ∈ SSGD2h SSGC2v and βi βi is a positive integer number. The results obtained are given in 
column 2 of Table 2.  

Table 2: Subductions of the coset representation D2h (/D2h (/Cs), D2h (/D2), D2h (/C2v), D2h (/ vC2′ ),               
D2h (/C2v)) and resulting USCIs 

 Subduction Δ1 Δ2 Δ3 Δ4 Δ5 ICR Total 

C2v (/C1) ↓ C1 4 (C1/C1) 4
1S  4

1S  4
1S  4

1S  4
1S  20

1S  

C2v (/C1) ↓ C2 2 (C2/C1) 2
2S  2

2S  2
2S  2

2S  2
2S  10

2S  

C2v (/C1) ↓ Cs 2 (Cs/C1) 2
2S  2

2S  2
2S  2

2S  2
2S  10

2S  

C2v (/C1) ↓ C's 2 (C's/C1) 2
2S  2

2S  2
2S  2

2S  2
2S  10

2S  

C2v (/C1) ↓ C2v (C2v/C1) S4 S4 S4 S4 S4 5
4S  

Then the right hand side term of Eq. 11 is transformed as given in Eq. 12, into aunit-subduced-cycle-

index (USCI)14 noted β i

ids and where 
1C

G
d i

i = .  

  )(/C D (/CGβ 12h1ii    βi → β
ds i

i

β i

ids
 

…(12) 

These USCIs are reported in column 3, 4, 5, 6 and 7 of Table 2 for the orbits Δ1, Δ2, Δ3, Δ4, and Δ5, 
respectively. In each row the product of unit subduced cycle indices for the orbits Δ1, Δ2, Δ3, Δ4, and Δ5 gives 

rise to β
ds i

i

5  which is the global USCI for the subgroup considered.  For example the global USCI for the 

sub symmetry C1 results from the ( )4 5 20
1 1s s× = . Each global USCI β

ds i
i

5 belonging to the sub symmetry 

vCi SSG
2

G ∈  is transformed into a generating function ( ) ∑=
j

j
j xaxF as given in Eqs. 13 and 14 for homo- 

and hetero-polysubstitution, respectively. 
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ββ→ → = + =∑ where 10 5 i iq dβ≤ ≤  and ...(13)  
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( ) ( ) 1 2

1 2

1 2

55
,

,
, 1 i

i i i

i

d d q q
i d q q

q q
G s F x y x y A x y

ββ→ → = + + = ∑ where 1 20 5 i iq q dβ≤ + ≤  ...(14) 

and in both Eqs. 205 =iidβ . 

• Case of homopolysubstitution C1 → S20 → (1 + x)20 = 

The application of Eq. 13 to the different subsymmetries for the series of homopoly substituted [4.2] 
PCPs yields the following polynomials: 

C1 → S20 → (1 + x)20 = x20 + 20x19 + 190x18 + 1140x17 + 4845x16 + 15504x15  

+ 38760x14 + 77520x13 + 125970x12 + 167960x11 + 184756x10  

+ 38760x14 + 77520x13 + 125970x12 + 167960x11 + 184756x10  

+ 167960x9 + 125970x8 + 77520x7 + 38760x6 + 15504x5+ 4845x4  

+ 1140x3 + 190x2 + 1 

Similarly  
10
2S → (1 + x2)10 + x 20 + 10 x 18 + 45 x 16 + 120 x 14 + 210 x 12 + 252 x 10 + 210 x 8 + 120 x 6  

+ 45 x 4 + 10 x 2 + 1 

for the sub symmetries  '
2 s sC ,C ,C  

and 5
2S → (1 + x4)5 = x20 + 5 x16 + 10 x12 + 10 x8 + 5x4 + 1 for C2v 

• Case of heteropolysubstitution 

Similarly, the application of Eq. 14 to the different subsymmetries for the series of 
heteropolysubstituted [4.2] PCPs yields the following polynomials: 

C1 → 20
1S  → (1 + x + y)20 → 380xy + 3420x2y + 19380x3y + 29070x2y2 + 77520x4y 

+ 155040x3y2 + 232560x5y + 581400x4y2 + 775200x4y3 

+ 542640x6y + 1627920x5y2 + 2713200x4y3 + 1007760x7y 

+ 3527160x6y2 + 7054320x5x3 + 8817900x4x4 + 1511640x8y 

+ 60446560x7y2 + 14108640x6y3 + 21162960x5y4…, 

 Similarly 

C2, Cs, C's → 20
2S → (1 + x2 + y2)10 → 1 + …+ 90x2y2 + 360x4y2 + 1260x4y + 840x6y2 + …., 

and  C2v → 5
4S → (1 + x4 + y4)5 → 1 + …+ 20x4y4 + …x20y20 

The different coefficients x2 in the above mentioned polynomials are collected together to form the 
fixed point matrices FPM (xq) and FPM (xq1 yq2) given below: 
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The corresponding isomer count matrices ICM (xq) and ICM (xq1 yq2) are derived from Eq.  15 

 ICM = FPM.
2

1
vCM −  ...(15) 

where
2

1
vCM −  represents the inverse of  the mark table aforementioned. The result obtained are the two 

rectangular matrices of isomers numbers given hereafter with respect to each sub symmetry of C2v for 
different values of q1 in the system ϕ2 C6 Hq0 Xq1  and of (q1, q2) in the series ϕ2 C6 Hq0 Xq1 Y q2.  
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Symmetry characterization of enumerated Ho(4.2)PCPs and He(4,2)PCPs 

The chirality fittingness of ϕ2 C6 Hq0 Xq1 and ϕ2 C6 Hq0 Xq1 Y q2 is governed by the parity of their 
respective degrees of homopoly substitution q1 and of heteropoly substitution q1 and q2 according to the 
following rules : 

(a) The formation of chiral isomers with C1 symmetry only is allowed if the degree of homopoly 
substitution q1 is odd in the system ϕ2 C6 Hq0 Xq1 , or if the degrees of heteropoly substitution q1 and q2 are 
simultaneously odd or both odd and even in the system ϕ2 C6 Hq0 Xq1 Y q2. 

This assumption is verified by the results given in the rows of the ICM (xq1) and ICM (xq1 yq2) where 
one can see that for any value q1 odd in the system ϕ2 C6 Hq0 Xq1  Aq1 ≠ 0 only for the C1 chiral symmetry 
and  Aq1 = 0 for the symmetries C2 , Cs , sC′ and  C2v; for q1 and q2 simultaneously odd or both odd and even 

in the system 
0 1 262 q q qC H X Yϕ , 

1' 2
0q qA ≠ only for the C1 chiral symmetry and

1' 2
0q qA = for the symmetries C2 , 

Cs , sC′ andC2v. 

(b) The simultaneous occurrence of chiral C1 and C2 isomers together with achiral Cs and C2v 

isomersis allowed if the degree of homopoly substitution q1 is even in the system ϕ2 C6 Hq0 Xq1 ,or if the 
degrees of  heteropoly substitution q1 and q2 are both even  in the system ϕ2 C6 Hq0 Xq1 Y q2 . 

The inspection of the coefficients of x2 in the third row of the ICM (xq1) for the system ϕ2 C6 H18 X2 
reveals that there are 55 homodisubstituted (4.2) paracyclophane derivatives and 40 of these belong to C1, 5 
to C2, 5 to both Cs and C′s. The molecular graphs of these isomers are illustrated in Fig. 2 (a,b,c,d) where one 
can easily depict that inter annular substitutions yields 2 pseudo gem (48, 49), 2 pseudo meta (43,44), 1 
pseudo para (37), 1 pseudo ortho (35) isomers. Similarly the coefficients of x2y2 at the fourth row of the  
ICM (xq1 yq2) predictthat A2,2 = 7200C1, 45C2, 45Cs and 45C′s  isomers for the system C6 H16 X2 Y2. 

Finally these results also indicates that:-1)-Any ϕ2 C6 Hq0 Xq1 or ϕ2 C6 Hq0 Xq1 Y q2 series with even 
degrees of substitution qi.(i=1,2) exhibit the same number of isomer having C2, Cs and C′s symmetry, 
respectively. Hence: 

Aq1 (C2) = Aq1 (Cs) = Aq1 (C′s) for ϕ2 C6 Hq0 Xq1  

and 

Aq1, q2 (C2) = Aq1,q2 (Cs) = Aq1, q2 (C′s) for ϕ2 C6 Hq0 Xq1 Y q2   

2) C2v-achiral isomers are formed in ϕ2 C6 Hq0 Xq1 and ϕ2 C6 Hq0 Xq1 Y q2 series only if their 
respective degrees of substitution are even and satisfy the restriction: qi.(i=1,2)= 4N modulo 0. 
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Fig. 2a: 40 C1 chiral molecular graphs 
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Fig. 2b: 5 C2 chiral molecular graphs 
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Fig. 2c: 5 Cs achiral molecular graphs 
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Fig. 2d: 5 C’s achiral molecular graphs 

CONCLUSION 

The enumeration with symmetry characterization of stereo and position isomers of Ho[4.2]PCPs and 
He[4.2]PCPs derivatives have shown that the chirality of these series of polycyclic hydrocarbons having two 
benzene deck rings tethered at para position to two carbon chains, is controlled by the parity of the degrees 
of substitution as follows; 

(i) Odd degrees of homo- or hetero –polysubstitution yield  only C1-chiral isomers, 

(ii) Even degrees of homo- or hetero –polysubstitution yield  a dominant class of C1-chiral isomers 
together with three degenerate classes having respectively the C2, Cs and C′s symmetries and the 
same isomer number. 

(iii) C2v achiral isomers resulting from higher degrees of homo or hetero poly substitution satisfying 
the restriction qi = 4N modulo 0.  
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