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Center of mass acceleration of an isolated sys-
tem of two particles with time variable masses
interacting with each other via Newton’s third
law internal forces: Mach effect thrust 1

L\bstract

Utilizing Newton’s second law of motion, it is shown that an isolated system consisting of
two particles with time variable masses interacting with each other via Newton’s third law
forces and no net external force can produce a DC (unidirectional) acceleration of the center
of mass of the system, without any net loss or gain of mass in a cyclic process. There is no
rocket type thrust in the usual sense of ejecting propellant, since it is supposed that there is
no relative velocity along the direction of motion associated with the mass changes. A
surprising result is that it is necessary to rederive the expression for the acceleration of the
center of mass of a system when the masses are time variable, the usual expression produc-
ing zero acceleration of the center of mass under very general conditions of time variable
masses and any Newton’s third law forces of interaction between them. There is no viola-
tion of momentum conservation, since the total mechanical momentum of the two particle
system is not conserved, a result which is independent of the exact mechanism for producing
the time variable masses. Explicit expressions are obtained for the acceleration of the center
of mass and time rate of change of the total momentum for a simple model of forces and
mass fluctuations with harmonic time variation. Implications of these results are discussed,
including their application to propellantless Mach Effect Thruster’s (METs).
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cesstl,
Numerous different proposals for space drives have ap-

Space drive is a general term used to encompass the am-
bition of propulsion without propellant!™l. As defined
by Millis (1997), it is an idealized form of propulsion
where the fundamental properties of matter and space-
time are used to create propulsive forces anywhere in space
without having to carry and expel a reaction mass. Such
an achievement would revolutionize space travel as it
would eliminate the limiting factor of requiring an ex-
tremely large mass of propellant. Without such a discov-
ery, human interstellar exploration may not be possible.
The two largest issues facing this ambition according to
Millis are: first, to find a way for a vehicle to induce exter-
nal net forces on itself (or the equivalent thereof); and
second, to satisfy conservation of momentum in the pro-

peared. Millis® introduced seven hypothetical proposals,
three of which were collision sails of various types, and
the other four involved hypothetical field drives. Four
hypothetical field drives, the diametric drive, pitch drive,
bias drive, and disjunction drive, were presented and dis-
cussed. These involved such concepts as negative mass!®”!
for the diametric drive. A pitch drive where somehow an
unspecified mechanism could produce an asymmetric
gravitational potential along the direction of motion of
the vehicle. The bias drive, which would also produce an
asymmetric potential or force using modifications to space,
such as the Alcubierre proposal®, which uses large quan-
tities of positive and negative energy density to do much
the same as the positive mass, negative mass proposals.
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The disjunction drive assumes that it is somehow pos-
sible to separate the so called source mass from the reac-
tant mass. The source mass is defined to have the prop-
erty that it only causes a field, but does not react to one.
The reactant mass is defined to react to the presence of a
field, but not to cause one. Existing evidence strongly in-
dicates that the source mass, reactant mass, and inertial
mass properties are not separable. None of the four Millis
field drives have been implemented and is not known if
the conditions necessary for them are even possible.

In addition to the above, several individuals have made
claims of propellantless propulsion methods. Millis™ lists
and briefly reviews 24 of them. Of the 20 proposals that
are not misinterpretations, only 4 have experiments asso-
ciated with them.

One proposed method of propellantless propulsion not
reviewed by Millis is the so called Em drive developed
by British engineer Roger Shawyer®. Thrust is claimed to
be produced by the amplification of differential radia-
tion pressure force on the flat ends of a high Q factor
tapered microwave cavity. Despite reports of experimen-
tal results showing thrust, these appear in a series of
unreviewed conference papers published on Shawyer’s
website. In response to a controversial 2006 article on the
Em drive in New Scientist!!%, a reviewer of Shawyer’s
work stated that “both theory and experiment were fa-
tally flawed”"). In addition, John Costella wrote a pa-
per in which he explains why Shawyer’s theory is wrong.
Namely, Shawyer’s analysis neglected the normal compo-
nent of momentum transferred by reflections from the
tapered walls, which result in additional axial forces which
preserve Newton’s second law (conservation of momen-
tum) and results in zero net thrust. In addition, Shawyer
neglected to explicitly account for the reduced axial com-
ponents of momentum incident on the small end cap
due to the increased angle of incidence caused by reflec-
tions from the tapered section. Finally, the claimed thrust
levels exceed the maximum radiation pressure force avail-
able for a given electromagnetic power by several orders
of magnitude.

Despite its highly questionable status, Chinese researchers
recently reported1 that they have performed theoreti-
cal calculations and experiments on microwave thruster
devices which have validated the Em drive technology
and shown it to work. In contrast to the elementary cal-
culations of Shawyer, Yang e/ al have done finite element
electromagnetic theory calculations using the Maxwell stress
tensor integrated over the waveguide surface (including
the side walls) to find the net force, and published their
theoretical and experimental results in a peer reviewed
journall*13], It remains to be seen if the calculations are
correct and if these results will stand up to careful scien-
tific scrutiny. In approaching the topic of propellantless

propulsion, one must be very skeptical, since many of the
schemes, such as the Em drive, violate (or appear to vio-
late) momentum conservation.

The longest surviving and most experimentally tested
propellantless propulsion method is that of Woodward!,
who has reported on the development of a Mach Effect
Thruster (MET) that produces thrust without propellant
by inducing small cyclic fluctuations in mass in a system
oscillating back and forth. He has published several peer
reviewed articles on the experimental and theoretical as-
pects of this over a period of more than two decades!”),
and recently written a book on the subject!".. According
to Woodward, the mass fluctuations are induced by time
changing energy density in a body undergoing accelera-
tion. He has derived formulas for the mass fluctuations
using a theory based on a version of Mach’s principle.
Several investigators trying to measure these effects have
reported positive or inconclusive experimental results. The
experiments are difficult to replicate due to a number of
challenging experimental problems associated with the
properties of the materials used and the extreme demands
put on them, as well as the experimental sensitivity required
to reliably detect and characterize the small unidirectional
force and rule out spurious signals from other effects.
Mach’s principle has not been incorporated into main-
stream physics, most often it has been thought of as a
philosophical principle with little quantitative content. As
it has not often been used for calculations, one is naturally
skeptical and cautious of accepting quantitative claims
based on it. In fact there are several versions of Mach’s
principle, one article lists ten different versions!", books
devoted to it have been published®?2. One conference
book lists twenty one different versions®, and there are
several recent calculations which incorporate various ver-
sions of Mach’s principle®..

In this light, the present work was motivated by a desire
to better understand and either prove or disprove the
unidirectional thrust reported by Woodward. In the pro-
cess of so doing, the author encountered some simple
surprises in re-examining commonly held notions of
Newton’s second law and its application to variable mass
systems, a subject that is not covered in detail in standard
courses on classical mechanics, other than some simple
examples of rocket thrust or transferring mass to and
from moving objects®?!. To the best of our knowledge,
we have not found any works on time variable masses
that treat cases relevant to Woodward’s proposals, in par-
ticular, cyclic variation of the masses and the required re-
evaluation of the center of mass acceleration and result-
ing notions of an isolated system. Woodward has de-
rived an expression for the unidirectional thrust force that
an accelerated mass undergoing time dependent, cyclic
mass fluctuations exerts on a much heavier (effectively
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infinite) reaction mass®!. However, he has not shown from
Newton’s 2*d and 3" laws that the center of mass of an
isolated system subject to zero net external force can have
aunidirectional acceleration without any net loss or gain
of mass in a cyclic process, regardless of the exact mecha-
nism for the origin of the variable masses.

MODEL FOR ISOLATED VARIABLE MASS
SYSTEM

The purpose of the present work is to explicitly demon-
strate a mechanism for propellantless propulsion by show-
ing that an isolated system using time variable masses in a
cyclic variation, with cyclic internal forces having no net
external force, and that explicitly satisfies Newton’s 2%
and 3" laws of motion, can produce a unidirectional ac-
celeration. To that end, consider a system of two masses
coupled by a spring and also a driving force acting on
each mass, as shown in Figure 1. It is assumed that there
are no external forces acting on either particle since we
are considering an isolated system. Although our model
is extremely simple, it is easily extended and applied to
more complicated systems of interacting particles, but
the essence of the effects is captured with just two vari-
able mass particles interacting with a time dependent force
obeying Newton’s third law of motion. In fact a single
variable mass particle interacting with a fixed mass par-
ticle is sufficient to demonstrate the primary Mach Effect
thrust, but this is obtained as a limiting case of the two
variable mass particles problem.

In order to study the effects on the center of mass mo-
tion and a possible acceleration of the center of mass, we
take the motion to be in one dimension along the x axis.
Then for each of the oscillator masses we write (includ-
ing for the case of time dependent masses with no rela-
tive velocity of the convective momentum entering or
leaving the masses)

m, ji1=_k(x1_xz_10)"'1::12 (1)

m, ji2 =—k(X2 =X +lo)+F21 (2)

F> k

%) |

xl ,

0,

Figure 1 : Two mass system under consideration. Time vari-
able masses m, and m, interact via a Hooke’s law spring with
force constant k and forces F,, and F,, obeying Newton’s third
law, F, = -F,. x, and x, are the coordinates of the masses
relative to the origin O. There are no external forces acting

on the system.

Here k is the spring constant for the harmonic interaction
between the particles, /, the equilibrium or relaxed length
of the spring, F,, is the (possibly time dependent) force
acting on particle 1 due to particle 2 and F,, the force on
particle 2 due to particle 1. Adding equations 1 and 2
yields

m, X1+nlz X2=—k(X1—X2—10)

-k Xz—x1+l°)+Fu+F21 G)
Simplifying slightly
m1 Xi +m2 XZ =F12 + F21 (4)

Now F, and F, are internal forces and form an action -
reaction pair which obeys Newton’s third law so that

F, =-F )

21 12
Substituting eqn. 5 into eqn. 4 we obtain

m, X +m,X,=0 (6)
Using the usual result that the acceleration of the center
of mass is given by

_m X, +m,X,

e @)
and substituting eqn. 6 into eqn. 7 shows that
a_ =0 (8)
Equation 8 was derived under very general circumstances,
and seems to show that the acceleration of the center of
mass of an isolated system with no net external force
must be zero, even with time dependent masses, and time
dependent interactions within the system, as long as they
obey Newton’s third law, which is not being questioned.
Frictional damping can be easily added to the equations
of motion, eqns. 3 and 4, but it is an unnecessary compli-
cation at this point.
Such considerations bode very poorly for a Mach Effect
thruster (MET) producing any center of mass accelera-
tion for an isolated system, at least using the ordinary
Newton’s 2°¢ law with time dependent masses, and inter-
action forces between the particles which obey Newton’s
third law. How then can it be possible to get a net thrust,
as consistently reported by Woodward!'18, since the cen-
ter of mass of the isolated system does not accelerate?

FORM OF NEWTON’S SECOND LAW FOR
VARIABLE MASS SYSTEMS

There are two major possible answers to the question
posed above. The first possibility that immediately comes
to mind is that one should modify the form used for
Newton’s second law, eqns. 1 and 2, to read something
like dp/dt on the left hand side. One must be very careful
when trying to use Newton’s 2 law in this form for time
dependent masses, as it can often produce wrong results
if not properly understood and applied. As noted by
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Sommerfeld? and others, dp/dt = d(mv)/dt = F only
applies to the total system and not a single body with
time variable mass due to mass entering or leaving the
body. There is a significant amount of literature?** on
variable mass dynamics which discusses this point and the
fallacies that result from using d(mv)/dt = Fin naive appli-
cation.

Despite the fact that variable mass dynamics has been an
active research field for many years?*%, several misappli-
cations of Newton’s second law for variable mass sys-
tems continue to appear in the literature?#4], The fact
that experienced and well known physicists make such
elementary errors shows how widespread the misunder-
standing of Newton’s second law applied to variable mass
systems is. Because of its relevance to the evaluation of
the work of Woodward and the present work, we take
this opportunity to point out these errors in the work of
Cramert*d and Whealton!®!. Both authors have misap-
plied Newton’s second law in the form d(mwv)/dt = Ffor
variable mass systems, which does not properly take ac-
count of the momentum flux entering or leaving the body.
Both authors attempt to analyze Mach effects, and as a
result of their same error, wrongly conclude that there is
no time average force associated with an oscillating time
variable mass. Woodward has written a responset*! to the
work of Whealton wherein he performed a simple me-
chanics experiment on a time varying mass having zero
net relative velocity between the ejected mass flux and the
body undergoing acceleration, and explicitly showed the
form of the second law appropriate to such situations,
refuting the erroneous claims of Whealton2.

There are also other investigators who have undertaken
similar, variable mass experiments**! who get the form
of Newton’s second law right, especially when the ejected
mass flux has zero relative velocity to the body undergo-
ing acceleration.

Sommerfeld?¥ has a careful and explicit discussion of
how Newton’s second law is to be applied in cases of
variable masses and the form it takes in different circum-
stances. For a body gaining or losing mass, the second
law takes the form

mv=F+mv 9)
Where Fis the net force acting on the body and v_, is the
relative velocity of the convective momentum being added
to or lost from the body, measured with respect to the
center of mass of the moving body and positive in the
same sense as v. In order to use the form of Newton’s
second law given in eqns. 1 and 2 for time variable masses,
it is necessary that the mass increase or decrease does not
have any relative velocity to the body in question, thus it
does not impart any acceleration or ordinary “rocket
thrust” to the body. In order to have a truly propellantless

propulsion method, we can not have any net ejection of
mass in a cyclic process, so this condition is satisfied if, we
assume that the mass fluctuations are of this type, i.e. that
v, = 0. Thus Newton’s second law for this type of time
variable mass is of the usual form, but with the possibil-
ity that /7 is time variable.

my =F (10)
One example of this type of variable mass corresponds
to isotropic mass loss and gain, in the rest frame of the
accelerating body™1. This fact was recognized long ago
by Meshcherskiil*), whose work laid the foundation for
the development of variable mass dynamics as a special
discipline of mechanics®!. An example of isotropic mass
loss is a droplet evaporating isotropically into a vacuum!*.
However the angular distribution of mass loss and/or
gain need not be restricted to spherical symmetry only,
the variable mass only need be such that the net flux of
variable mass or convective momentum flux have no net
relative velocity to the body in question. This can be ac-
complished by angular distributions of momentum fluxes
that are symmetric perpendicular to the axis of motion
and also symmetric in both the forward and backward
directions so as to impart no relative velocity term (1.e.
produce no conventional “rocket thrust” and attendant
mass loss). A simple example of a non isotropic mass
variation with no net relative velocity is ejection or ab-
sorption of equal and opposite momentum fluxes in di-
rections perpendicular to the direction of motion of the
object. This type of momentum flux was employed in
the variable mass experiment of Woodward*!, which
quantitatively showed the validity of eqn. 10 for cases
with no relative velocity between the body and the mo-
mentum flux leaving or being added to the accelerating
body.

Inaletter to P. G. Tait, written from the Cavendish Labo-
ratory on 15 February 1878, J. C. Maxwell makes the fol-
lowing comment, apparently replying to a question in a
previous letter from Tait: “I don’t know how to apply
laws of motion to bodies of variable mass, for there are
no experiments on such bodies any more than on bodies
of negative mass. All such questions should be labeled
“Cambridge, Mass.” and sent to U.S.” Thus, it is clear that
Maxwell did not regard the Newtonian laws as settling the
question of variable massi®*!. It is also interesting that Max-
well mentions the concept of negative mass in this letter.

CENTER OF MASS ACCELERATION

The second and more straightforward thing to investi-
gate is to notice the fact that the usual expression for the
center of mass acceleration, eqn. 7, is not simply defined
by eqn. 7, but rather derived from the definition of the
center of mass,
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x_ = m x +m,X, )
m, +m,
and taking two time derivatives, assuming the time derivatives
of the masses are zero",
To get the correct result for the acceleration of the center
of mass when there are variable mass effects, we begin
with eqn. 11 as the proper definition of the instantaneous
position of the center of mass of the two mass system,
but we allow for time dependent mass effects when we
take the time derivatives. Taking the first derivative of
eqn. 11 we obtain the modified result for the velocity of
the center of mass

m, X +m,X, +Ian1+IllZX2

dx_, : m, +m, m, +m,

v, =% =-—o

- - dt (m1X1+szz) . .

- (m, +m,)
(m, +m,)

(12)

The first term is the usual result for the velocity of the
center of mass. Note how there are now two additional
terms associated with the time derivatives of the masses.
Differentiating eqn. 12 yields the new result for the accel-
eration of the center of mass

(21, %, + 21, X, + 1, X, +10,X,) ]

-m,kl +m, X, +
m, +m, m, +m,
JmiX M) ) -
(m, +m,)

2(mlx,+m2x2+ri1,xl+ri12xz)

(mh, +1m,) (13)

(m] + mZ )z

(mlxl +m2 X2)

+2 (m, +m,)’

(m, +m,)’

The first term is the usual expression, eqn. 7, for the ac-
celeration of the center of mass. However, note the pres-
ence of several additional terms that depend on both the
first and second time derivatives of both of the masses.
However, due to the exact relation eqn. 6, which holds
for an isolated system with time variable masses and any
Newton’s third law forces between the particles, eqn 13
can be exactly simplified to

(2m, %, + 2, X, + M, X, + M, X,)

m, +m,

(m,x,+m, x,) .
BRI R) (i, +10,) -

(m, +m,)’

(m, %, +m, X, +m, x, +m, X

2 ) (1, + 1)

(m, +m,)’

(m, x,+m,x,), . )

2 (1;11+m2)32 (ml+m2)2
1 2

Notethat eqn. 14nowexhibitsthe interesting property that it does
not explicitly depend on the accelerations of either of the particles,
but only on products of velocities and positions with first
or second order time derivatives of the masses. The sec-
ond derivatives of the positions have been eliminated by

Newton’s third law, which is more general than just mo-
mentum conservation. Note also that the center of mass
acceleration is symmetric or even under interchange of
particle mass and coordinate labels 1 and 2, as it must be
since neither particle is preferred over the other.

MOMENTUM CONSERVATION

Even as the ordinary expression for the center of mass
acceleration was shown to be incorrect for the variable
mass system under consideration, the total momentum
of the system in the usual sense is not conserved for the
variable mass system under consideration, despite the fact
that there is no external force. This surprising conclusion
follows from very simple considerations.

The normal concept of conservation of the total mo-
mentum of an isolated system follows from assuming
the mass of the individual particles remain constant with
time, so that the mass of the individual particles can be
brought inside the m dv/dt terms and they can be writ-
ten as m dv/dt = d(mv)/dt = dp/dt. The terms for the

individual particles are all summed leading to an equation
for the system of the form dP,_ /dt=F& ) which as
noted earlier, is incorrect for the time variable mass sys-
tem under consideration. Assuming F2*™ =0, asin the

case of an isolated system, then dP__ /dt = 0, so that P
= constant, and thus the total momentum of the system
is conserved, a conclusion that is valid when the masses
of the system themselves are not time dependent.

For the variable mass two particle system under consid-
eration the total (mechanical) momentum is given by
P,=myv +m,v,=mXx, +m,%, (15)
so that the time derivative is

dp

tot

o,
=m X, +m,X, + m X, +1,%,

Utilizing eqn. 6 for the variable mass system, eqn. 16 sim-

plifies to

dr

ot

dqt (17)
Equation 17 shows that in general, the time derivative of
the total momentum of the isolated two particle system
is not zero as in the case of constant masses, and thus the
total momentum of thetwo particlesystem need not be conservedfor
the class of variable mass systems under consideration. Thus unids-
rectional acceleration of the center of mass of such systems does not
violatemomentum conservation, sincethemomentumof thesystem s
not conserved! In addition, using eqns. 12 and 15, one can show
that the total mechanical momentum of thesystem is nolonger equal
to the center of mass momentum for the variable mass system, as it
is for systems of constant mass objects.

=m,v,+m,v, =mX, +myXx,
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Though this seems strange at first sight, a similar situation
exists for the rocket equation, where the rocket, consid-
ered as a system by itself, does not conserve momentum,
it accelerates without external forces and loses mass in the
process. However the total momentum of the rocket plus
exhaust gases is conserved. In the case of the two body
variable mass system under consideration, there is no ex-
haust gas, but the time dependent mass implies some kind
of interaction with an outside agent in order to make the
mass variable so that there is no net mass change in a
single cycle. The mechanism producing the acceleration is
not the same as rocket thrust however, since the mass is
changed with zero relative velocity to the system, thus
giving no direct acceleration to the system as in the case
of rocket thrust. Also, for the cases we will consider, the
mass change is cyclic, meaning the time average mass of
the body does not change, and thus there is no propellant
necessary to produce the acceleration, as in the case of
ejecting matter with a velocity relative to the body.

By focusing on the isolated system, as is often done in rocket
thrust problems, we can talk about the equations govern-
ing the body of interest without discussing what happens
to the momentum carried off by the rocket exhaust. Such
an equation would apparently violate momentum conser-
vation if the rocket is considered an isolated system and
one does not account for the momentum of the rocket
exhaust. Here too, by focusing on the two particle system,
we find an equation for the system that produces an accel-
eration of the center of mass of the isolated system. In
both cases, we are dealing with open systems, where mass
or momentum can flow into or out of a control volume.
If we wish to retain our concepts of momentum conser-
vation, the time variable mass that has been hypothesized
clearly transfers momentum to and from the system due to
some kind of external agent. Thus the additional momen-
tum and associated acceleration, thrust force and resulting
increase in kinetic energy of the system is supplied by some
kind of coupling to an outside agent which allows the mass
to be time variable, despite the fact that there is no net
external force applied to the isolated system. For the pur-
poses of the present work, it is not necessary to specify the
origin of the outside agent, only that its net effect is to
allow production of a time variable mass without produc-
ing any explicit thrusting type force on the system.

UNIDIRECTIONAL ACCELERATION

We now proceed to investigate if eqn. 14 can exhibit a
DC or unidirectional value of the acceleration of the cen-
ter of mass for the case of two particles interacting with
a Hooke’s law spring, time variable masses, and a time
dependent driving force. The solutions of the equations
of motion are complicated somewhat by the presence

Full Paper
of time variable masses.
Defining a new variable # as
u=(x-x,-1) (18)

substituting eqn. 18 into eqns. 1 and 2, using the result eqn.
5, dividing by the mass of each particle and subtracting
the eqns. we obtain the result

i u+ it
=T uT—= 19
Lo op (19)
Where the reduced mass p is given by
1 1 1
E T (20)

u ml mZ
In this form, eqn. 19 is recognized as that of a driven
harmonic oscillator, with one important difference, the
reduced mass is time dependent, making the spring con-
stant term parametrically modulated, and the driving force
also multiplied by a parametric term, or alternatively, the
acceleration term can be taken to have all the parametric
dependence. Note that eqns. 19 and 20 involve no ap-
proximation at this point and are valid for time variable
masses of the form already discussed.

To properly account for the motion, we should at least
have a solution that is complete thru the first order in the
mass fluctuations, since the mass fluctuations provide phase
information for the oscillator, and phasing is critical in
such applications.

Nevertheless, in order to see if there are first order in the
mass fluctuation, DC unidirectional effects in the accelera-
tion of the center of mass, we first investigate the possi-
bilities using the zero order solution to the oscillator equa-
tion for constant masses, then see what consequences that
has when properly used in eqn. 14, which is already first
order in the mass fluctuations. Note that zero order effects in
thesolutions for the position and velocity are sufficient to get all first
order effects in the acceleration of the center of mass using eqn. 14.
In order to clearly demonstrate the effects, a simple, time
harmonic model for the forces and masses is used in what
follows. Since there is a bit of algebra involved, some of
the mathematical details are skipped. Doing a systematic
expansion in powers of the mass fluctuation amplitude
over the non fluctuating mass of the solutions for x (t)
and x,(?) yields the following expression for the DC, unidi-
rectional acceleration of the center of mass of an isolated two
particle system interacting with each other using Newton’s
third law forces, using the proper, modified formula for
the center of mass acceleration, eqn. 14. To the best of our
knowledge, this isanewresult that has never appeared in the litera-
ture, previously.

(Sm, cosd, —%cosd)2 o’F,
m

01 02

a (21)

cm

DC

(mm +m,, X(oi -’ )

Where we have the following definitions and relation-
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ships.
The driving force for each particle (which obeys Newton’s
third law, eqn. 5) is taken as,

F (t) = -F,(t) = F, cos(wt) (22)
The time variable masses 72, () and 72, (¢)

m,(t) = m  + & m, cos(at + ¢,) (23a)
my(t) = m, + & m, cos(at + ¢,) (23b)

where ¢, and ¢, are the phases of the mass fluctuations
relative to the driving force F,, and o, and &, the am-
plitudes of the mass fluctuations. Note that in the Mach
Efect theory of Woodward'", the mass fluctuations depend on the
squares of theaccelerations themselves, so they never go negativeas in
themodel bere, but theessential vectification property of the products
of time variable masses with position and velocity is preserved for
cases of oscillatory or cyclic motion. The fact that the mass fluctua-
tionsarethemselves dependent on the state of motion, modifies the
equations of motion in terms of the second dertvatives of the posi-
tions. Here we assume that we can specify the time depen-
dence of the mass fluctuations, which take the simple form
of eqns. 23 for the purpose of demonstrating an explicit
formula for the center of mass acceleration of the iso-
lated system. This is correct to lowest order in the frac-
tional mass fluctuations, which are presumed very small
compared to one in the present work.

Finally, the oscillator resonant frequency o, is given by

k
@, = /—
K,

Where the reduced mass for the non-fluctuating masses
1, is given by (compare to eqn. 20)

1 1 1

l’lo m01 mOZ

(24)

m. (25)

A few remarks on eqn. 21 are in order. First note that the
dimensions of the right hand side of eqn. 21 are mani-
festly those of acceleration, so it is dimensionally correct.
Note that the direction of the thrust and its magnitude
are highly dependent on the relative phasing of the mass
fluctuations relative to the driving force. The maximum
acceleration is obtained when the mass fluctuations are
180° out of phase with each other, for then the mass
fluctuations add directly. One of the phases should also
have zero relative phase with the driving force to maxi-
mize the magnitude of the center of mass acceleration.

Although eqn. 21 appears to be antisymmetric under in-
terchange of particles 1 and 2, this is not the case, since
when the particle labels are interchanged, one must also
change sign in the forces, due to Newton’s third law, and
since F,, was taken with the positive sign of F,, when it
gets interchanged to £, , we must take F, to -F,, making
the center of mass acceleration even under interchange
of the particles 1 and 2, which it must be, as noted earlier,

since one particle is not preferred or distinguished over
the other in regards to the direction of the acceleration.

TIME RATE OF CHANGE OF TOTAL MO-
MENTUM

Performing similar operations on eqn. 17 as were applied
to eqn. 14 to obtain eqn. 21 for the acceleration of the
center of mass, we find the DC or unidirectional com-
ponent of the time rate of change of the total momen-
tum

(amlcosd)1 _5m, cos¢2)mz F,
ot my, m,,
de '™ 2(0} -w?)
Equation 26 explicitly demonstrates that the total mechani-
cal momentum of the system is not constant in time (un-
less the relative mass fluctuations are of equal amplitude
and 180° out of phase), despite the fact that there is no
external force applied to the system. Comparing eqns. 21
and 26 for the time harmonic force and variable mass
model of eqns. 22 and 23 yields,

dp 26

dp,, 1

de '°c =E(mo1 +m, )acm DC (27)
thus explicitly showing that
dPlOt

dt DC # (m01 +m02 )acm DC (28)

The fact that eqn. 28 is true was discussed earlier in the
section on the form of Newton’s second law for variable
mass systems and in the references cited??**". Equation
26 was calculated in a completely different manner than
eqn. 21, using eqn. 17, a formula with far fewer terms
than eqn. 14, so it is not too surprising that it should yield
asmaller result than the right hand side eqn. 28.

DISCUSSION OF RESULTS AND RELEVANCE
TO MACH EFFECT THRUSTERS

The simple and innocent looking expressions given by
eqns. 21 and 26 have profound consequences and appar-
ent contradictions that need further exploration beyond
the scope of the present work. The center of mass of the
two particle system has a unidirectional acceleration, which
implies that the kinetic energy of the system continually
increases, which increase in energy must come from some-
where if we believe in energy conservation. However,
the work-energy theorem is modified for variable mass
systems® ], leading to some subtleties.

If we consider a simple system of a frictionless cart con-
strained to move only in one dimension and equal size
masses lined up on each side of it and spaced at regular
intervals, we can see the essence of how the system moves
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forward in each cycle and yet does not violate momen-
tum conservation. A mechanism on board the cart at rest
grabs a mass from each side of the cart and draws them
in perpendicularly to the direction that the cart is con-
strained to move. The mechanism then moves the masses
to the back of the cart, stops relative to the cart, and then
off loads the added masses, again perpendicular to the
direction of the cart, and then the mechanism moves for-
ward back to its original position, with the cart at rest
again at the end of the cycle.

The center of mass of the cart (including the mechanism)
moved forward, while the two “external” masses moved
backward, keeping the overall mass of the cart constant,
and the center of mass of the cart plus external mass sys-
tem the same, thus conserving overall momentum, which
in this example started at zero and ended at zero. How-
ever, this was at the expense of moving the mass lined up
on each side of the track backwards. Note that there was
no rocket thrust at any time during the cycle, only conser-
vation of momentum at each of the four processes in the
cycle. In this mechanical example, the cart is at rest at the
beginning of the cycle and also at rest at the end of the
cycle. Clearly there had to have been some kind of accel-
eration of the cart forward during the process, the aver-
age acceleration in this case related to the rate at which the
mechanism took the masses, moved them to the back of
the cart, then returned back to its original position in the
front of the cart. The difference between this mechanical
example and the two body system that we used is that in
this example, the system starts at rest, speeds up, then comes
back to rest at the end of the cycle, moving forward in the
process without expelling any propellant. This example
makes it clear that there needs to be some kind of mass
exterior to the system with which one can temporarily
“borrow” in order to move forward, and then give it
back. In other words, our “isolated” system must really be
open if the mass is to vary in the proscribed manner.

In the case of an MET thruster, this reaction mass is the
coupling of the local system to the rest of the matter in
the universe that allows this back and forth variation in
the mass of the system. In essence, one pushes off a mass
when it is heavy, and pulls on it when it is light, leading to
an overall increase in the local systems momentum. This
momentum must be made up by the rest of the universe
allowing the isotropically ejected mass (in the rest frame
of the accelerating body) to return isotropically to the
body in its rest frame, that has in the mean time acceler-
ated forward. to keep pace with the MET device, thus
requiring the “spherical shell” of ejected mass to move
forward. Quantitative expressions for the mass variations
have been given by Woodward" when they are a result
of Machian effects.

As expected from a similar calculation applied to a single

fixed oscillator with variable mass and damping, the
“thrust” or center of mass acceleration reverses sign above
and below the resonance frequency, where the thrust is
maximized. Similarly, if one can adjust the relative phases
of the mass fluctuations compared to the driving force,
one should be able to maximize the thrust. In piezoelec-
tric and electrostrictive MET devices!"”) temperature de-
pendent material effects can shift the resonance frequency,
and drastically alter the thrust, causing it to vary wildly
when driving near resonance at high powers causing heat-
ing. One should compare the off resonance temperature
dependence of the thrust with the on or near resonance
cases to characterize how large these effects are for a
given device. It is probably best to operate on the side
of the resonance that will not cause a sign change in the
acceleration when the device heats up. For example, if
the heating causes the resonance frequency to shift down-
ward, then one should drive above the resonance fre-
quency so as not to pass thru the resonance peak due to
heating and subsequent cooling effects, causing tempera-
ture dependent sign changes in the thrust, one on heating,
and another on cooling!

One important modification to our main result eqn. 21
must be made for the current generation of MET thrust-
ers. In order to illustrate our point, we used the simplest
possible waveform for both the mass fluctuations and
the driving force, a single trigonometric function. How-
ever, according to Woodward, the expression for the
mass variations due to acceleration of a body in a time
varying energy density field is proportional to the time
derivative of the product of the force acting on the
particle times the velocity. If the force is only a pure sine
wave, then the resulting periodic component of velocity
in a linear system is also first harmonic, so the time de-
rivative of the product and thus the mass fluctuations
are proportional to the second harmonic, or even har-
monic in time. This then gets multiplied by another first
harmonic term from a coordinate or velocity and pos-
sibly other even harmonic terms from other products
of mass or mass time derivatives when computing the
center of mass acceleration from eqn. 14. The result is
to make the acceleration of the center of mass time
variation consist of only odd harmonics in time, result-
ing in no unidirectional, DC terms. Thus the lowest or-
der pure force signal that can be used for Mach effects
is quadratic in voltage. Using a cosine squared forcing
function so that one obtains the mass fluctuations as even
harmonics, which when multiplied by the second har-
monic velocity and displacement response when com-
puting the center of mass acceleration, will yielda DC
response term. Thus one needs a quadratic response force
or cosine squared driving function for the type of mass
fluctuations proposed by Woodward. This can be sup-
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plied by a pure electrostrictive material driven by a single
sine wave, which ideally produces a strain or stress that
is proportional to the square of the driving voltage. More
detailed calculations of the center of mass acceleration
and thrust force of realistic MET devices will be pre-
sented elsewhere.

CONCLUSION

It is emphasized that the main results of this paper,
demonstrating the possibility of a mechanism for
propellantless propulsion and obtaining an explicit ex-
pression for the unidirectional acceleration of the cen-
ter of mass of an isolated system having time variable
masses, Newton’s third law internal forces and no net
external force, is not a violation of Newton’s second
law of motion, but rather a consequence of it. The
combination of Newton’s second and third law, to-
gether with the required revisions of long held ideas
about the velocity and acceleration of the center of
mass based on experience with constant mass systems,
results in new concepts and the possibility of new de-
vices based on them. The unidirectional acceleration
found here is a consequence of our primary assump-
tion, the possibility of changing the mass of an isolated
system with zero relative velocity associated with the
net convective momentum flux which produces the
changing mass.

Although such a process can be demonstrated with me-
chanical examples, for a useful thruster for space ex-
ploration applications, a field mechanism is required to
provide some kind of coupling to an agent external to
the system which provides work to accelerate the time
variable part of the mass to keep up with the accelera-
tion of the center of mass. At present, Woodward’s
proposed Mach effect is the only mechanism known to
be able to provide the coupling to distant matter in the
universe. As was mentioned in the text, isotropic cou-
pling is not the only possibility. However, in order for
the time varying coupling to be isotropic, one should
have monopole gravitational coupling from the bodies
undergoing acceleration, a controversial notion in itself,
since gravitational radiation is normally thought to be
quadrupolar in lowest order. However, time varying
masses allow the possibility of monopole gravitational
radiation.

The present work demonstrated the possibility of unidi-
rectional center of mass acceleration with a two particle
system of time varying masses, Newton’s third law inter-
nal forces, and no net external force. Similar consider-
ations apply to extended bodies consisting of arbitrary
number of particles with time varying masses and third
law internal forces, having no net external force.
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