

Carbohydrate Metabolism: Pathways, Regulation, and Physiological Significance

Ahmed T. El-Masry*

Department of Biochemistry, Cairo Institute of Biomedical Sciences, Egypt.

*Corresponding author: Ahmed T. El-Masry, Department of Biochemistry, Cairo Institute of Biomedical Sciences, Egypt.

E-mail: ahmed.elmasry@cairobiomed.eg

Received: December 04, 2023; Accepted: December 18, 2023; Published: December 27, 2023

Abstract

Carbohydrate metabolism is a central aspect of cellular biochemistry, encompassing pathways that convert carbohydrates into energy and essential biomolecules. Key processes include glycolysis, gluconeogenesis, glycogen synthesis and breakdown, and the pentose phosphate pathway. These interconnected pathways provide energy in the form of ATP, generate reducing equivalents, and supply precursors for anabolic reactions. This article presents an overview of carbohydrate metabolism, highlighting pathway mechanisms, regulatory factors, and physiological significance in maintaining energy homeostasis and supporting cellular function.

Keywords: Carbohydrate metabolism; Glycolysis; Gluconeogenesis; Glycogenolysis; Glycogenesis; Pentose phosphate pathway; ATP production; Enzyme regulation; Glucose homeostasis; Metabolic integration..

Introduction

Carbohydrate metabolism refers to the biochemical processes through which cells obtain energy from carbohydrates and produce intermediates required for biosynthesis. Glucose is the primary carbohydrate used by most organisms, serving as a critical energy source for tissues such as the brain, red blood cells, and skeletal muscle. Metabolic pathways for carbohydrate utilization are highly regulated to ensure energy availability, maintain blood glucose levels, and meet tissue-specific demands. Glycolysis, the cytoplasmic breakdown of glucose to pyruvate, represents a key pathway for ATP generation. It consists of ten enzymatically catalyzed steps, producing two molecules of ATP and two molecules of NADH per glucose molecule under aerobic conditions. In anaerobic conditions, pyruvate is converted to lactate, regenerating NAD⁺ to maintain glycolytic flux. Pyruvate generated by glycolysis enters mitochondria for conversion to acetyl-CoA, which feeds into the Krebs cycle, ultimately leading to oxidative phosphorylation and additional ATP production. Gluconeogenesis is the synthesis of glucose from non-carbohydrate precursors such as lactate, glycerol, and amino acids. This pathway occurs primarily in the liver and kidney and is critical for maintaining blood glucose levels during fasting or intense exercise. Gluconeogenesis shares several enzymes with glycolysis but also employs unique enzymes to bypass irreversible steps, ensuring a unidirectional flow of metabolites. Glycogen metabolism provides short-term storage and rapid

Citation: Ahmed T. El-Masry. Carbohydrate Metabolism: Pathways, Regulation, and Physiological Significance. Biochem Ind J. 17(1):186.

mobilization of glucose. Glycogenesis is the process of glycogen synthesis, while glycogenolysis involves its breakdown to release glucose-1-phosphate for energy production or blood glucose maintenance. Regulation of glycogen metabolism is controlled by hormones such as insulin, which stimulates glycogen synthesis, and glucagon and epinephrine, which promote glycogen breakdown. The pentose phosphate pathway (PPP) serves dual purposes: producing NADPH for reductive biosynthetic reactions and generating ribose-5-phosphate for nucleotide synthesis. The PPP operates in the cytoplasm and integrates with glycolysis, enabling cells to balance energy production with anabolic needs. Enzymatic regulation and hormonal control are critical for maintaining carbohydrate metabolic homeostasis. Key enzymes such as hexokinase, phosphofructokinase, pyruvate kinase, glucose-6-phosphatase, and glycogen synthase are tightly regulated by allosteric effectors, covalent modification, and transcriptional mechanisms. Hormones coordinate systemic glucose levels, allowing organs to adapt to energy demands during feeding, fasting, and stress. Carbohydrate metabolism is central to physiological functions such as energy supply, thermogenesis, and redox balance. Dysregulation of these pathways is associated with metabolic disorders including diabetes mellitus, hypoglycemia, obesity, and inborn errors of metabolism. Advances in molecular biology, metabolomics, and clinical research have enabled precise characterization of carbohydrate metabolism, providing insights for therapeutic strategies, nutritional interventions, and metabolic disease management.

Conclusion

Carbohydrate metabolism encompasses essential pathways that generate energy, maintain glucose homeostasis, and provide precursors for biosynthetic reactions. Glycolysis, gluconeogenesis, glycogen metabolism, and the pentose phosphate pathway work in concert to ensure efficient energy utilization and metabolic balance. Regulation by enzymes, allosteric effectors, and hormones allows organisms to adapt to nutritional and physiological changes. Understanding carbohydrate metabolism is fundamental for elucidating energy dynamics, physiological function, and the pathogenesis of metabolic diseases.

REFERENCES

1. Chandel NS. Carbohydrate metabolism. *Cold Spring Harbor perspectives in biology*. 2021 Jan 1;13(1):a040568.
2. Maughan R. Carbohydrate metabolism. *Surgery (Oxford)*. 2009 Jan 1;27(1):6-10.
3. Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. *Biochimica et biophysica acta (bba)-general subjects*. 2013 May 1;1830(5):3267-88.
4. Scanes CG. Carbohydrate metabolism. In *Sturkie's avian physiology* 2022 Jan 1 (pp. 613-645). Academic Press.
5. HOUSSAY BA. Carbohydrate metabolism. *New England Journal of Medicine*. 1936 May 14;214(20):971-86.