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ABSTRACT 

Polymer adsorption from solution to solid surface plays an important role in bridging 
flocculation. It is desirable to understand the dynamics of adsorption for a number of reasons. For 
example, the balance between flocculation and stabilization of a colloidal suspension can be affected by 
the dynamics of adsorption. Although a number of experimental studies on kinetics of polymer adsorption 
have been reported in the literature, there is a need for a comprehensive model for diffusion in the 
interfacial region. 

Such a model is proposed in this paper. The connectivity of the homopolymer segments is 
assumed to be described by a random flight model within the framework of mean field theory while the 
dynamics of the probability of the connected segment is given by the Smoluchowski equation. The model 
yields the profiles for evolution of surface excess with time. This is then compared with surface excess 
obtained from equilibrium calculations. It is found that the surface excess predicted by the dynamical 
model at long times is the same as that predicted by equilibrium calculations. The dynamical adsorption 
behavior of homopolymers of different chain lengths is also studied. It is found, as expected, that longer 
chains adsorb more than the smaller chains and tend to equilibrate slower than smaller chains. 

Key words: Polymer adsorption, Mean field theory, Bridging flocculation.  

INTRODUCTION 

Polymer adsorption from solution to solid surface plays an important role in a 
variety of industrial applications including flocculation, stabilization of colloidal 
suspensions, biocompatibility, adhesion, lubrication, anti-redeposition and soil release in 
detergent formulation1. It is desirable to understand the dynamics of adsorption for a number 
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of reasons. For example, the balance between flocculation and stabilization of a colloidal 
suspension can be affected by the dynamics of adsorption2. A slowly adsorbing polymer 
may favor flocculation by attaching to a large number of colloidal particles, while a rapidly 
adsorbing polymer may bring about stabilization by adsorbing as a dense layer on individual 
particles. Although a number of experimental studies on kinetics of polymer adsorption have 
been reported in the literature, there is a need for a comprehensive model for diffusion in the 
interfacial region. The objective of the present work is to formulate such a model within the 
framework of mean field theory. 

EXPERIMENTAL 

Model development 

Consider an infinitely large volume of agitated solution consisting of monodisperse, 
straight chain and uncharged homopolymer and a monomeric solvent species. The polymeric 
species is assumed to be made of r correlation segments, each having length l . The solution 
is assumed to be dilute with respect to the polymeric species. It is assumed that at time t ≤ 0 
the concentrations are uniform throughout the solution. At time t = 0, a plane, adsorbing 
surface of infinite length and width is introduced into the solution. The surface is situated at 
z = 0 with the z-axis normal to the surface (Fig. 1). 

The kinetics of polymer adsorption can be described as a four phenomena process 
(note that these phenomena are not necessarily sequential but can occur simultaneously): 

1. Diffusion controlled regime with negligible interaction between chains. 

2. Formation of a complete monolayer with a distribution of loops, trains and tails. 

3. Further adsorption of chains requires penetration of the layer and conformational 
rearrangement of the adsorbed chains. 

4. Desorption of chains.  

We consider steps 1 and 2 alone in this work. Step 3 has been considered in using 
repetition dynamics.3 As for step 4, we consider the special case that the adsorption-
desorption dynamics takes place much faster than the diffusion dynamics. 

The concentrations of species are expressed in terms of volume fractions. Thus the 
following equality holds at any location in the system: 
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 1t)(z,t)(z, sp =φ+φ  …(1) 

where φp and φs refer to the volume fractions of polymer and solvent, respectively. 
We divide the solution into two subregions. The region between z = 0 and z = δ is the region 
where the concentration of the polymer is in the semidilute/concentrated regime. Here the 
mean-field approximation is valid. The region between z = δ and z → ∞ is the bulk region 
where the concentration of a species is independent of z. The bulk concentrations are 
denoted by superscript b. Thus, 

 1b
s

b
p =φ+φ  …(2) 

 

z = δ
b
pφ

z = 0 

Fig. 1: Schematic of the interfacial region. The region between z = 0 and z = δ is the 
adsorbed layer region 

It is assumed that the bulk concentration of the polymer does not vary with time. 
This assumption is reasonable when the quantity of the polymer adsorbed is small compared 
to that present in the solution at t = 0. 

Using an elementary material balance, it can be shown that – 

 ( ) ( ) 0tz,Jtz,J sspp =ν+ν  …(3)  

where Jp and Js are the diffusive fluxes for the polymer segment and the solvent 
molecule, respectively. νp and νs are the volumes of the polymer segment and solvent 
molecule, respectively. The diffusive fluxes can be written in the form of the following 
equations – 

 ( ) ( ) ( ) ( )⎥
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⎢
⎣
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∂
∂
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⎢
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 ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ φ+

∂
∂⎟

⎠
⎞

⎜
⎝
⎛ φ

−= tzT
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s
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,u,D,J s
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Here Dps is the binary diffusion coefficient for polymer segment-solvent. It is 
dependent on the composition of the solution and hence it is a function of z. It is, however, 
expected to be independent of the contour coordinate of the segment. The terms, up(z,q,t) 
and us(z,t) represent the mean-field potentials acting on the segment and solvent, 
respectively. 

Equation (4) can be integrated with respect to q to yield. 

 ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

φ∂
+

∂
∂

φ−= ∫ z
tz

dq
tqz

tqzTvtz
r

p

,
z

,,u
,,k

1D
,J p

0

p
p

B

ps
p

l

l
 …(6) 

Multiplying (6) by νp and νs adding them and making use of (1) and (3), we obtain 

 ( ) ( ) ( )( ) ( ) 0z
,u,1z

,,u
,,1

0

sp
p =

∂
∂

φ−+
∂

∂
φ∫

l

l

r

p
tztzdq

tqz
tqz  …(7)  

Equation (7) relates the potential acting on a polymer segment with that on the 
solvent molecule. 

Consider the region, encompassing the adsorbed layer (i.e. the region between z = 0 
and z = δ), the governing equations are:                                

 
( ) ( )

z
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v
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φ∂ ,,,,1  …(8) 

where  ( ) ( ) ( ) ( )⎥
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⎤
⎢
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Combining (8) and (9), we obtain the Smoluchowski equation in the following form – 

 ( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

φ∂
+

∂
∂φ

∂
∂=

∂
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k
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 …(10) 

The initial and the boundary conditions associated with the above equation are: 
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 ( ) rqz
b
p

p
φ

=φ 0,,  …(11) 

 ( ) ( )
r

tδ,
tq,δ, p

p
φ

=φ  …(12) 

The boundary condition at z = 0 is a composite boundary condition and is obtained 
as follows – 
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 …(13) 

where  ( ) ( ) ( ) ( )⎥
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Combining (13) and (14), we obtain – 
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⎡
∂
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We assume that at any instant the surface phase is in equilibrium with the solution at 
z = 0. This allows us to write the following relation between ( )tq,p

∗ϕ and ( )q,0z,pφ . 

 ( )
( )

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

φ
ϕ ∗∗

Tk
tq,0,utq,u

exptq,0,
tq,

B

pp

p

p  …(16) 

Equation (15), in conjunction with (16) constitutes the boundary condition at z = 0 
for (10). 

The potential acting on a polymer segment, up(z,q,t) consists of two parts. 

 ( ) ( ) ( )tq,z,utz,utq,z,u nl
p

l
pp +=  …(17) 

The local part ( )tz,ul
p  arises out of the interactions of the segment with the local 

surrounding. It depends on z and t but not on the location of the segment in the chain. The 
non-local part ( )tq,z,unl

p  arises due to the connectivity of the segment with the chain. It 



 A. V. P. Gurumoorthy and V. A. Juvekar: Bridging Flocculation…. 320

reflects the potential gradient in the interfacial region. If there were no potential gradient in 
the interfacial region, ( )tq,z,unl

p  would be zero. When the potential gradient exists, different 

segments, located at different z experience different local potentials. They transmit this 
potential to the other segments through connectivity. Thus a segment in a chain experiences 
a net pull arising out of all the segments transmitting their pulls on it. The non-local 
potential, therefore depends on z, t and q. For a monomeric species, such as solvent species, 
the local potential is the sole contributor to the total potential. We can write the local 
potential of the polymer segment as – 

 ( ) ( ) ( ) ( )( )[ ]tδ,tz,Tχktz,uv
v

tz,u ppB
0

s

pl
p φ−φ−=   …(18) 

Note that the reference state chosen here is the solution at z = δ. The potential u0(z,t) 
is the excluded volume potential. It should be chosen in such a way that (1) is satisfied. This 
needs the simultaneous solution of the Smoluchowski equation for the solvent. We avoid 
this by make use of (7) to obtain u0(z,t).  

 ( ) ( ) ( )( ) ( ) 0z
tz,utz,1dqz

tq,z,u
tq,z,1

r

0

s
p

p
p =

∂
∂

φ−+
∂

∂
φ∫

l

l
 …(19) 

The boundary condition for the above equation is up(δ,q,t) = 0 and us(δ,t) = 0. Note 
that this equation is obtained by combining the Smoluchowski equations for both the 
segment and the solvent and hence contains all the information needed to obtain u0(z,t). Here 
us(z,t) is given by the following equation. 

 ( ) ( ) ( ) ( )( )tδ,tz,Tχktz,utz,u ppB
0

s φ−φ+=  …(20) 

Combining (19) and (20), we obtain - 

 ( ) ( ) ( )( ) ( ) ( ) 0z
tz,Tχkz

tz,utz,1dqz
tq,z,u

tq,z,1
r

0
B

0
p

p
p =⎟

⎠
⎞

⎜
⎝
⎛

∂
φ∂+

∂
∂

φ−+
∂

∂
φ∫

l

l
 …(21) 

Since up(z,q,t) itself involves u0(z,t), (21) needs to be solved iteratively. 

There is no direct way of computing up(z,q,t). We however use an indirect technique. 
Suppose at instant t, we freeze the composition of the interfacial region and allow a polymer 
chain to equilibrate with this solution. Then, gp(z,q,t), the probability of finding the 
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(connected) segment of this chain with contour coordinate q at location z, is obtained from 
the Boltzmann distribution as – 

 ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= Tk

tq,z,u
exptq,z,g

B

p
p  …(22) 

Note that since the segment is connected, up(z,q,t), in (22), contains both the local 
and the non-local contributions. Inverting (22), we obtain 

 ( ) ( )tq,z,Tlngktq,z,u pBp −=  …(23) 

Thus, if we can compute gp(z,q,t) corresponding to the instantaneous composition of 
the interfacial region, we can obtain up(z,q,t) through (23). We obtain gp(z,q,t) as follows. 
We first solve the connectivity equation for the fictitious chain in equilibrium with the 
instantaneous field. This is written as follows – 

 ( )
t)q,(z,GTk

tz,u
exp1

z
t)q,(z,G

6q
t)q,(z,G

p
B

l
p

2
p

22
p

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

∂

∂
=

∂
∂ ll  …(24) 

Here ( )tq,z,Gp  is the probability of finding the end segment of a subchain of 

contour length q at location z at time t. Note that potential used in this equation is the local 
contribution and is independent of q. It is computed from (19), in conjunction with (22). The 
polymer volume fractions used in these equations is the instantaneous values. 

The initial and the boundary conditions used for solving (24) are4: 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝
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B

l
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p  …(25) 

 ( ) 1tq,δ,Gp =  …(26) 
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⎦
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B
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The potential ( )tu 1
p
∗  is given by the following equation – 

 ( ) ( ) ( ) ( )( )[ ]Tkχtδ,tTkχtuv
v

tu BpppB
,0

s

pl
p

∗∗∗ +φ−ϕ−=  …(28) 

For the solvent, we have – 

 ( ) ( ) ( ) ( )( ) Tkχtδ,tTkχtutu BsppB
,0

s
∗∗∗∗ +φ−ϕ+=  …(29) 

From (16), we have – 
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( )
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⎟
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⎠
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⎜
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φ
ϕ ∗∗
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B
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p

p  …(30) 

Since the non-local potential of a segment in the surface phase is expected to be that 
same as that at z = 0, we can rewrite the above equation as – 

 ( )
( )
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( )
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⎟
⎟
⎠

⎞
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⎜
⎝
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⎠

⎞
⎜
⎜
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⎛
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⎜
⎜
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⎛
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 …(32) 

This is the relation, which is to be used in Eq. (27). 

Now   ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ⎥
⎥
⎦

⎤
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⎢
⎣

⎡
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 …(33) 

Combining Eq. (32) and (33), we obtain 

 ( )
( )
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 …(34) 
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Similarly for solvent species – 

 ( )
( )

( ) ( )
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⎞
⎜⎜
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⎠
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Combining Eq. (36) and (37), we obtain – 
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We multiply (38) by (vp/vs) and subtract (34) from it to get – 
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We define  
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Hence Eq. (38) can be rewritten as – 
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Equation (41) provides a relation between ∗ϕp  and ( )t0,pφ  

The probability gp(z,q,t) is obtained as – 
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 ( )
⎟
⎟
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⎞
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⎜
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 exp t)q,r(z,G t)q,(z,Gt)q,(z,g
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 It is more illuminating to express gp(z,q,t) as the ratio – 

 ( ) ( )
( )tδ,

tq,z,r
tq,z,g

p

e
p

p φ
φ

=  …(43) 

where ( )tq,z,e
pφ  represents the volume fraction of polymer segment, in equilibrium 

with the instantaneous field ( )tz,u1
p . We can rewrite Eq. (10) as – 

 ( ) ( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂

φφ∂
φ

∂
∂=

∂
φ∂

z
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tq,z,zDt
tq,z, e

pp
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p  …(44) 

Once the volume fraction profiles are obtained, the surface excess can be calculated 
using the equation: 

 ∫
∞

φ−φ=
0

b
pp

ex )dzt)(z,((t)Γ   …(45) 

Model simulation and results 

The model described in the previous section is first nondimensionalized. Then it is 
made amenable to simulations. We choose a finite element method to discretize the 
equations along z. This results in a set of ODEs in time, which have to be solved in 
conjunction with a set of nonlinear algebraic equations.  
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Fig. 2: Surface excess profiles for r = 1 (bottom-most curve),                                       
r = 2, r = 5 and r = 10 (top-most curve) 

In the set of ODEs the equilibrium profiles )t̂,q̂,ẑ( sj
e
pφ (where the hat denotes 

dimensionless variables) are to be supplied. This is done using the equilibrium equations4, 
which are solved for using the subroutine CONLES. The set of DAEs are then solved using 
DSPAK subroutine which is a DAE solver. The DSPAK package is chosen because we are 
dealing with a linearly implicit system of first order ODEs involving sparse Jacobian 
matrices and nonlinear algebraic equations. 
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Fig. 3: Surface excess profiles for r = 30 (bottom) and r = 40 (top) 

The model simulations were carried out for the following parameter values: 
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100.θ0.0;χ0.4;χ;10100;δ1; *5b
p ====φ== −l  

The evolution of surface excess with time are plotted in Figures 2 and 3 for the 
following cases: r = 1, r = 2, r = 5, r = 10, r = 30 and r = 40. It can be seen that in each case 
the surface excess tends towards equilibrium, which is indicated by the horizontal lines. The 
slope is steeper at initial times but then levels out as time proceeds. It is also seen that as 
chain length increases, the system reaches equilibrium more slowly. 

Thus, the model is seen to capture the qualitative features of the adsorption process 
while quantitative agreement needs to be studied.  
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