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Abstract 

The development of bacteriophage agents for a variety of uses in agriculture, biotechnology, and 

medicine has been motivated by increased antibiotic resistance. The host range of a bacteriophage, or 

the bacterial genera, species, and strains that a bacteriophage can infect, is an important consideration 

in the selection of agents for these applications. Although experimental host range studies are still the 

gold standard, they are naturally confined to a small number of viruses and bacteria that can be 

cultivated. We present a review of recently developed bioinformatic methods that provide a potential 

and high-throughput alternative by computationally predicting the possible host ranges of 

bacteriophages, even those that are difficult to culture in laboratory settings. 
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Introduction 

 
On Earth, there are roughly 10

31
 viruses, which is more than the number of stars in the visible universe. 

Bacteriophages, or viruses that infect and feast on bacteria, make up the great majority of this varied virosphere. 

Frederick William Twort and Félix d'Herelle independently discovered these abundant biological entities in the 

early 1900s, and they have since been routinely used for a variety of purposes, including diagnostics, drug 

design and discovery, vaccine development, agriculture, food preservation and safety, and wastewater treatment. 

To use bacteriophages' bactericidal effects in these applications, bacterial host ranges (i.e., collections of 

bacterial species and strains that sustain the bacteriophage's life cycle) must be established. The study of 

bacteriophage–host connections is possible because to a variety of experimental approaches (such as spot, 

plaque, and liquid assays, viral tagging, microfluidic PCR, phageFISH, and single-cell genomics). They are, 

however, frequently time and labour consuming, costly, and scientifically challenging (e.g., due to inconclusive 

or absent signs of infection). Due to both the bacterial cultures utilised in the experiments—a limited number of 

microbial hosts and viruses are amenable to cultivation—and the conditions under which they are done in the 

 

 



laboratory, these approaches are inherently limited in scope. Recent developments in sequencing technologies 

have made it possible to locate and identify bacteriophages and their hosts from environmental (rather than 

cultured) samples, opening up a new path for studying natural viral diversity. Many bioinformatic algorithms 

have been developed in tandem with these technological breakthroughs to computationally forecast possible 

virus host ranges on a wide scale, based on genetic characteristics shared by bacteriophages and their bacterial 

hosts during their co-evolution over time. Although predictive in nature, these approaches can help identify the 

most promising candidates for further testing to confirm the bacteriophage's capacity to recognise and adsorb to 

the host, as well as define infection cycles, bacteriophage–host interactions, and lysis efficacy. In this study, we 

address the similarities and variations in the design of many computational host prediction methods, as well as 

essential issues to keep in mind while choose between them. 

 

Computational Methods for Predicting Bacteriophage Host Ranges 

Bioinformatic approaches to computationally predict putative bacteriophage host ranges can be broadly 

classified into three categories: (i) alignment-based methods based on sequence homology and sequence 

similarity, (ii) alignment-free methods based on sequence composition and genomic features, and (iii) machine-

learning-based methods. 

 

Alignment-Based Methods 

The host specificity of bacteriophages is influenced by a variety of circumstances. As lysogenic prophages, 

temperate bacteriophages can integrate their own genomes into those of their bacterial hosts. This process 

frequently changes the host's phenotypic, which can result in higher fitness (for example, by providing antibiotic 

resistance, boosting virulence, creating toxins, or preventing additional (super) infections; see Touchon and 

colleagues' overview). At the same time, many bacterial hosts use a range of restriction-modification (RM) and 

clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas (CRISPR-associated protein) 

techniques to defend themselves against aggressive bacteriophages and other invaders. In the latter situation, 

following infection (adaptation), a stretch of nucleotides from the invasive genetic material is incorporated into 

a CRISPR spacer array, which is then used as a guide to construct site-specific cleavages, ultimately leading to 

the demise of the invading bacteriophage (immunity). In both instances, the invading bacteriophage alters or 

causes changes to the host genome. Sequence homology (i.e., the common evolutionary lineage between 

sequences) and sequence similarity are used in alignment-based approaches to predict host ranges from 

sequence homology and similarity. Many alignment-based methods are simple to use, such as the most well-

known example, the Basic Local Alignment Search Tool (BLAST), which compares a user-provided viral 

sequence with those of potential bacterial hosts publically available in well-maintained (reference) databases. As 

a result, the comprehensiveness and completeness of the employed datasets limit the inference of virus–host 

connections using alignment-based approaches. 

 

Databases of Bacteriophages and their Hosts 

When possible, experimental evidence obtained through bacteriophage isolation and cultivation is used to 

determine bacteriophage host ranges. Experimental validation, on the other hand, is often time and labour 

intensive. Between the initial prediction and clear experimental confirmation that crAssphage–a highly prevalent 



bacteriophage in the human gut microbiome–can infect bacteria of the species Bacteroides–nearly half a decade 

passed. As a result, data on bacteriophage–host relationships is scarce, with information in the well-known 

National Center for Biotechnology Information (NCBI) RefSeq and GenBank databases frequently restricted to 

the genus and/or species level or limited to a few of samples. The Viral Host Range database (VHRdb), a web-

based platform that incorporates host range data as an analysis tool and search engine, was recently launched 

with the goal of collecting more data by allowing researchers to directly share their experimental findings with 

the scientific community (at the time of writing, 16,715 interactions between 760 viruses and 1923 hosts have 

been recorded). Bacteriophage–host databases, such as VHRdb, are likely to play an important role in the 

development of future machine learning approaches, given the necessity for validated training datasets. 

 

Key considerations 

Prediction accuracy  

In addition to their underlying algorithms, bacteriophage–host prediction systems differ in their prediction 

accuracy, or the percentage of bacteriophages for whom the taxonomy of their predicted and known hosts agree. 

Prediction accuracy can be given at many taxonomic levels, including family, genus, and species, as well as 

phylum and domain levels. When choosing the best instrument for any investigation, it's crucial to think about 

which taxonomic levels were measured. Variables in prediction accuracy between tools can also be attributed to 

methodological differences (such as the type of data used in the benchmarking process).  

As a result, comparisons should ideally be made using a standardised benchmarking dataset. Zielezinski and 

colleagues compared a number of alignment-based, alignment-free, and ML-based host-range prediction 

techniques using such consistent benchmarking data, revealing that strategies based on sequence homology have 

a greater predictive accuracy than those based on sequence composition similarity. The non-uniform number of 

microbial species found in a metagenomic sample is a barrier for researchers dealing with environmental 

samples. Metagenomic samples often result in diverse read coverage profiles across various genomes since 

sequencing technologies are optimised for moderate- to high-coverage individual samples. Contigs (a gapless 

length of nucleotide sequence created by overlapping sequencing reads) derived from metagenomic samples are 

usually short as a result of these variations, resulting in fragmented and/or incomplete genome assemblies. Short 

viral contigs (less than 10 kb) have a considerable decline in prediction accuracy, which is a non-negligible 

factor in most tools' prediction accuracy. WIsH, a tool that matches VirHostMatcher's full-length genome 

prediction accuracy with only 3 kb of nucleotide sequence, has established itself as an alignment-free option for 

samples including small viral contigs. 

 

Usability  

Operating system limitations can play a big role in deciding which bacteriophage–host prediction method to use. 

The bulk of prediction programmes rely on the command line interface (CLI) embedded into UNIX-based 

operating systems to permit both automation and reproducibility (such as Linux and macOS). As a result, users 

of other operating systems (such as Windows and Chrome OS) will need to either buy a dedicated workstation 

or install the required operating system on an existing machine, such as via dual boot or virtualization. Users of 

Windows can also utilise the Windows Subsystem for Linux (WSL) to run native Linux programmes on their 

computers. Prediction tools on the web (such as HostPhinder and PHP) are a good option. Web-based tools, in 



addition to being user-friendly and straightforward, eliminate the hassle of installation and potential dependence 

concerns by requiring only a suitable browser. However, one of the biggest disadvantages of web-based tools is 

that they have a limit on the amount of data that can be entered. The web-based version of PHP, for example, is 

restricted to 100 viruses, whereas the standalone version can analyse datasets that are orders of magnitude 

larger. Multi-threading is an additional benefit of many phage–host prediction CLI programmes (including 

Phirbo, WIsH, and VirHostMatcher-Net), which speeds up the studies. 

 

Conclusion  

Bacteriophages are now frequently employed for a variety of biotechnological and therapeutic objectives, 

including individualised phage therapy to treat multi-drug resistant illnesses, thanks to their bactericidal powers. 

Although large-scale bacteriophage banks (such as the Phage Directory) provide a wide range of bacteriophages 

to the scientific community, knowing the host range that a bacteriophage can infect is necessary to successfully 

guide the use of bacteriophages in various disciplines. The gold standard for experimentally characterising host 

ranges is still phage isolation and cultivation. They are, however, time-consuming and consequently unsuitable 

for large-scale analysis. Recently developed computer prediction methods offer a promising alternative, 

allowing researchers to narrow down the vast number of prospective hosts to a small number that can be tested 

in a laboratory setting feasible (and more cost-effectively). Because different tools use different strategies to 

predict bacteriophage–host relationships, each with its own set of benefits and drawbacks, using multiple, 

complementary prediction tools can aid in the selection of the most promising candidates, especially for 

bacteriophages with broad host ranges. If time and computational resources allow, a three-way combination of 

alignment-based, alignment-free, and machine learning approaches could be used to select those that have been 

predicted by all three strategies for experimental validation and characterization of infection cycles and 

bacteriophage–host interactions. Although there is still a lot more to learn about bacteriophages and their hosts, 

developments in genomic databases, machine learning, and high-performance computing have started to pave 

the way for even more complex and accurate computational methods in the near future. 
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