

Research | Vol 9 Issue 2

Background Ionized Radiation Battery Energy Nuclear

Leo M Likar^{1, 2*}

¹Box Hill Institute, Australia

²Swinburne University, Australia

*Corresponding author: Leo M Likar, Swinburne University, Australia, E-Mail: thylocine369@yahoo.com

Received: October 29, 2018; Accepted: January 12, 2019; Published: January 22, 2019

Abstract

What is or was the tree of life? Was it a way of remembering the origins of a tribe of people. Was it a better way to live one's life? Was it an actual tree who's bark, roots, leaves, or fruit had amazing wound healing properties? I believe the religious perspective of the tree of life in the bible was not a tree, but the symbolic representation for the (Christ atonement), and the resurrection of the dead, to immortal bodies. Why rock the ark? When a believer anyway. Have the vagaries of religious symbolism been superseded by the steady principles of science? Qualitative analysis. A fairly accurate description of an event, of what's going on. Quantitative analysis, Being able to find a way to successfully measure what just happened, and repeatability being as predictable and repeatable as the sun rising in the east and setting in the west. So how can proven scientific principles be applied more correctly to the understanding of electricity in its current or future forms? Conventional manufacture of electricity uses the flow of the negative charged electrons that orbit an atoms nucleus; that are available in the metallic crystal structure.

As the atoms have a nucleus of positive charged protons and neutral charged neutrons, with matching number of negative charged orbiting electrons to nucleus protons. The electrons pushing out the previous electrons maintain an overall charge balance in the metal. A force in joules like water flowing down a pipe over a vertical cliff (gravity+pressure) is captured by a turbine blade, then is converted by an electrical dynamo into electrical pressure (voltage). The electrical pressure pushes those tiny sub atomic electrons all the way down the wire. More voltage pressure more pushy pushy on the electrons. Each replacing the next in line. Like factory workers. Until the electrons arrive at the end of the wire. To possibly an electric motor which can do as much work as the original joules of work created when the water flowed down the vertical pipe. So electrical pressure can push electrons along in a sea of electrons in a metallic crystal, a metal. Electrostatics is where opposite polarity, charged particles attract each other (Coulombs Law). Radioactive decay material can be opposite polarity, charged particles. Negative charged beta particles at the speed of light; where the charge and size is equivalent to a negative charged electron. Alpha particles consisting of the helium atom nucleus of two protons and two neutrons.

The Scientific Procedure_(1) Qualitative: To take a radioactive decay element producing negative charged material (beta/electron) as a one half of a battery cell. While also taking a radioactive decay element producing positive charged material (alpha/twin protons) as the second cell of other half of the battery. Sufficient quantity of radioactive decay material per second, as opposite charged particles, create the electrostatic attractive force, to draw the negative charged Beta particles as electrons, to the positive charged alpha particles.

(1) Quantitative: $2\beta^{+} \frac{4}{2}\alpha^{2+} \rightarrow \frac{4}{2}$ He (g)+Q/t {Q/t=I} from the process of creating the helium atom in the laboratory in an attempt to create useful current from the attractive electrostatic force of opposite charge decay particles.

The Scientific Procedure_(2) Qualitative: Using radioactive decay material that produces the dual positive charged alpha particle in the confined environment of the previous battery positive cell. A controlled quantity of electrons through a restricted current supply is introduced. To test the fundamental principle of a full outer electron shell as a duet and octet, versus ionic/electrostatic; balance charged force. Using the alpha particle as the basis of an atom or molecule, can a diatomic Helium molecule be forced into creation?

(2) Quantitative: $(e - \alpha^{2+} e - e - \alpha^{2+} e) = He_2$ diatomic Helium Molecule. Or $(e - \alpha^{2+}\alpha^{2+} e)^{2+} = (He_2)^{2+}$ Helium diatomic complex ion molecule.

Keywords: Radioactive elements; Electrode; Noble gas; Radioactive decaying

Introduction

Natural nuclear decay of radioactive elements forms the Earth's background radiation, which envelopes all living things. In some places, concentrated deposits of radioactive decay elements form what is called low-level radiation. This is the case when extracting and processing rare earth elements [1]. Of power sources of a high energy value for the creation of electrical power for the industrial economic benefit of ever-larger populations of people. Only the nuclear fission branch of nuclear energy has been achieved for levels of electrical power generation sufficient for those levels of human economic growth. Yet all this power generated for massive, ever-growing human wealth, has its origins in the natural properties of these tiny little, out of sight out of mind sub, atomic particles; (Qualitative) [2]. Electron mass being 9.1×10^{-31} kg [3] (Quantitative) [2].

The simplest low energy, nuclear battery, harness the products of the natural decay process of radioactive elements. Where these decay products are of opposite electrical charge, the manipulation of these opposite electrical charged subatomic particles allows a controlled electron flow sufficient to produce a working electrical current. With the electrical attractive force of the negatively charged beta (electron) particle $\{x2\}$, to the opposite dual positive charged alpha particle, causing the two subatomic particles to combine into the neutrally charged, stable, full outer, valance shell, noble gas Helium [4,5].

In nature, all the lighter atoms and molecules prefer a full stable, outer electron shell of eight electrons (octet). Even salts in solution with opposing attractive electrical charges (positive cations and negative anions) have full, stable, outer shells of eight electrons [6]. Tiny little atoms like the stable, inert, chemically unreactive helium atom; has a full, stable outer electron shell of two (duplet). This fundamental chemistry principle found in nature strongly suggests that the alpha particle which forms the helium nucleus (two protons+two neutrons) will accept two beta particles as two electrons to become a helium gas atom.

By the Formula: $2\beta^{-} + \frac{4}{2} \alpha^{2+} \rightarrow \frac{4}{2}$ He(g) + Q/t {Q/t=*I*} [7]. Nuclear fission and nuclear fusion research have provided humans with the tools of elemental transmutation [8]. Converting one elemental substance into another elemental substance. Just as cosmic rays convert some of the atmospheres of Carbon12 into radioactive Carbon14 [9]. In a two cell electrochemistry battery, excess electrons produced by the 'oxidation reaction cell' are attracted through an external wire to the positive ions produced by the positive ions produced at the 'reduction reaction cell' [10]. By creating short-lived, high energy radioactive isotopes (in a nuclear reactor environment) which produce decay material of opposing electrical charge [11].

A positive electrode and a negative electrode, for a two cell nuclear battery, may be created. Where β^- created in negative nuclear decay cell moves along negative electrode to an external wire, and is attracted to positive subatomic particles at the positive electrode, located in positive nuclear decay material [12]. With the Helium gas electro-chemically manufactured, created a product [12]. Similar to natural occurring Helium from natural radioactive processes in the earth [5].

But why stop there?

By regulating and restricting the proportion of electrons to alpha particles in a closed environment it can be postulated that diatomic helium can be formed. Either type of covalent bonded Helium can be theoretically predicted ($e^{-} \alpha^{2+} e^{-} e^{-} \alpha^{2+} e^{-})$ =He₂ diatomic Helium molecule or ($e^{-} \alpha^{2+} \alpha^{2+} e^{-})^{2+}$ =(He₂)²⁺ Helium diatomic complex ion-molecule [13].

But why stop there? Theoretically, as well as the electrical manipulation of the alpha particle to produce the helium atom; combined with nuclear transmutation techniques; various Helium isotopes are feasible. Helium isotopes are the forerunner to the science of economically viable nuclear fusion. Producing enough helium isotopes to provide commercially viable amounts is the next goal. From low energy nuclear batteries, nuclear transmutation of elements, use of radioactive waste products as source material for fusion reactors; is a pure scientific research goal [14]. With significant future commercial implications.

Theory

1. Will a positive charge be attracted to a negative charge? Yes, 'Coulomb's Law of Charge' [15]. Will a positive ion from a radioactive element, from that radioactive element's decay process be attracted to a negative ion from its radioactive element, from that radioactive element's decay process? Yes, so an alpha particle with 2 positive charges (2 protons) in its nucleus would be attracted to 2 negatively charged ions or 2 free electrons. Yes. 'Coulomb's Law of Charge' [15]. But an alpha particle with 2 protons in its nucleus and 2 neutrons in its nucleus is the Helium nucleus! Therefore adding 2 negatively charged electrons to an alpha particle with 2 positively charged protons should almost certainly create a Helium atom [5]

2. Helium is created in the sun [16]

3. Helium three deposits on the moon are a more suitable fuel for nuclear fusion

4. Quote "Our sun was created when a cloud of interstellar dust and gas collapsed due to the gravitational attraction between the different parts". When the core reached the temperature of 10,000,000 K, nuclear fusion of hydrogen into helium started" End Quote [17]

5. Quote "On Earth, the only source of Helium is through radioactive decay processes_ α (alpha) particles emitted during nuclear decay are eventually converted to helium atoms" end Quote [5]. What if a radioactive deposit rich in trapped alpha particle decay element material. Was exposed to salt solutions rich in positive and negative ions in solution. Electrostatic attraction [18]. Would the alpha subatomic particle (positively charged with 2 protons) be more electronegative than other elements, and therefore accept the outer shell valance electrons more readily the some of the positive ions in solution? [18] Checkpoint 5, quote, reference [5]

6. Therefore there is sufficient theoretical evidence to speculate on a nuclear battery based on at least two radioactive elements of opposing decay charges, such as one radioactive decay element yielding a positively charged alpha particle while the second radioactive element yielding the negative decay product, the beta particle, (single electron at the speed of light). With the obviously manufactured byproduct being the neutrally charged, inert gas, unreactive, Noble gas, Helium gas! [12]

7. Taking the above theory a step further. As Helium 3 is considered a fusion nuclear fuel, just as deuterium, tritium, and lithium

By the formulas: quote ${}^{''2/_1}H+{}^{2/_1}H\rightarrow {}^{3/_1}H+{}^{1/_1}H$ ${}^{2/_1}H+{}^{3/_1}H\rightarrow {}^{4/_2}He+{}^{1/_0}n$ ${}^{6/_3}Li+{}^{2/_1}H\rightarrow {}^{24/_2}He \{{}^{6/_3}Li+{}^{2/_1}H\rightarrow {}^{24/_2}\alpha^{2+}\}$ ${}^{1/_1}H+{}^{2/_1}H\rightarrow {}^{3/_2}He$ ${}^{3/_2}He + {}^{3/_2}He \rightarrow {}^{4/_2}He + {}^{21/_1}H''$ end quote [19]

Can a suitable form of Helium be manufactured on earth, (a) artificially from naturally radioactive decay products like the alpha particle, or (b) from alpha yielding radioactive byproducts from the commercial nuclear process, or (c) a new process additional and within a current commercial nuclear reactor?

Such as by the Formula, $2\beta^{+4/2}\alpha^{2^+} \rightarrow 4/2$ He (g) +Q/t {Q/t=*I*} [7] and (e⁻ α^{2^+} e⁻ e⁻ α^{2^+} e⁻)=He₂ diatomic Helium Molecule. Or (e⁻ $\alpha^{2^+} \alpha^{2^+} e^{-})^{2^+}$ =(He₂)²⁺ Helium diatomic complex ion molecule [13]. As on fusion method requires a magnetic containment system, the above elements are prepared as positive ions: $1/\alpha$ H⁺, 1/1H⁺,3/1H⁺, 6/3Li⁺, and proposed (e⁻ $\alpha^{2^+} \alpha^{2^+} e^{-})^{2^+}$ =(He₂)²⁺ [13].

Nuclear decay ionization battery %27Co NEGATIVE potential current calculation (TABLE 1).

See appendix for calculation and calculation method.

Time in years	Mass start cycle	Mass per second available radioactive decay material	NEGATIVE charged particles beta-electrons available per second	^{6%} ₂₇ Co negative current flow amps
Initial	1,000 g ⁶ ⁄ ₂₇ Co	6.0170 × 10 ⁻⁶ grams/sec of mass ⁶ %7Co material	6.017038×10^{16} beta particles per second	Negative charge 1.0028×10^{-2} amps=10.0 mA
2.6 years	710.42 g ⁶ %7Co	4.274624 × 10 ⁻⁶ grams/sec of mass ⁶ %7Co material	4.274624×10^{16} beta particles per second	Negative charge 7.1243739 ×10 ⁻³ amps=7.12 mA
5.2 years	504.69910 grams	3.0367938 × 10 ⁻⁶ grams/sec or mass ⁶ ‰7Co material	3.0367938×10^{16} beta particles per second	Negative charge 5.061323×10 ⁻³ amps=5.06

TABLE 1: Available negative charge (beta/electrons) in Amps and mA from the radioactive decay cycle of a

given mass of %27Co.

				mA
5.27 years	500 g %-Co	3.008796×10^{-6} grams/sec of	3.008796×10^{16} beta particles	Negative charge
(half-life ⁶ %7Co)	500 g 12/C0	mass ^{6%} 7Co material	per second	5.01466×10 ⁻³ amps=5.0 mA

Nuclear decay ionization battery ²⁵²/₉₈Cf POSITIVE potential current calculation (TABLE 2).

See appendix for calculation and calculation method.

TABLE 2: Available positive charge (alpha/proton pairs) in Amps and mA from the radioactive decay cycle of a given mass of 25% Cf.

		Mass per second available	POSITIVE charged particles alpha twin	15% COD 14
Time in	Mass start cycle	radioactive decay material	protons available per	²³ / ₉₈ CI Positive current flow
years			second	amps
Initial	1,000 g ²⁵ %Cf	1.219607×10^{-5} grams/sec	2.903827×10^{16} of alpha	Positive charge of 9.679423 \times
		Mass ²⁵ ‰Cf material	particles per second	10 ⁻³ amps=9.68 mA
2.6 years	500 g ²⁵ %Cf	$6.0980369 \times 10^{-6} \text{ grams/sec}$	1.451913×10^{16} alpha	Positive charge of 4.8397118 \times
(half-life)		Mass ²⁵ ‰Cf material	particles per second	10 ⁻³ amps=4.84 mA
5.2 years	250 g ²⁵ ‰Cf	3.049018×10^{-6} grams/sec	7.259567×10^{15} alpha	Positive charge of 4.8397118 \times
		Mass ²⁵ ‰Cf material	particles per second	10 ⁻³ amps=2.42 mA
5.27 years	201.708 g ²⁵ ‰Cf	2.4600456×10^{-6} grams/sec.	5.8572515×10^{15} alpha	Positive charge of 1.9524 x10 ⁻³
		Mass ²⁵ ‰Cf material	particles per second	amps=1.95 mA

Experiment to determine if the viable, long-lasting battery, with enough current from radioactive decay elements, producing opposing charged ions, with a helium atom byproduct/ Cobolt60-Californium 252-nuclear ionized radiation battery (**FIG. 1 and FIG. 2**).

FIG. 1. Compare +ve ion and electron currents available californium 252 to cobalt 60 over decay cycles.

1,000 g Cobolt60 Zero Years Probability Current -ve charge (e-)=10 mA

504.7 grams Cobolt60 At 5.2 Years Probability Current -ve charge (e-)=5.06 mA

FIG. 2. Experiment to determine if the viable, long-lasting battery, with enough current from radioactive decay elements.

There are many theoretical and practical varieties of engineering designs for this particular concept of a nuclear battery. However, the concept itself on which the engineering designs (theoretical and practical) is NOT engineered reversible. As a concept is the foundation principle on which any and all engineering designs are based. The concept, on which this nuclear battery is based, is opposite charged electrical subatomic particles are attracted to each other, 'Coulomb's Law of Charge' [15]. Therefore opposite charged electrical subatomic particles from radioactive decay material are attracted to each other; sufficient to produce a usable flow of electrons (current, I; ranging in amps to milli-amps to nano-amps etc.). By manipulating physical conditions (engineering), negatively charged beta particles emitted (from radioactive decay material) at near light speed can be utilized as a flow of electrons (negative current flow, I), when attracted to oppositely positively charged subatomic proton particles (twin protons combined with twin neutrons from alpha particles), from radioactive decay material, positive current flow, I).

By the Formula: $2\beta^- + \frac{4}{2} \alpha^{2+} \rightarrow \frac{4}{2}$ He (g) + Q/t {Q/t =*I*} [7] ⁶%₂₇Co \rightarrow ⁶%₈Ni + $\gamma_{\neg} \beta^- + \gamma$ [11] ²⁵‰Cf \rightarrow ²⁴‰Cm+ ½ $\alpha^{2+}+\gamma$ ²⁵‰Californium \rightarrow ²⁴‰Curium+ ½ $\alpha^{2+}+\gamma$, via the formulae: ^A/zP \rightarrow (^{A-4}/z₋₂) D + ⁴/₂He [14] or ^A/zX \rightarrow (^{A-4}/z₋₂) Y + ⁴/₂He [9] α^{2+} [8] β^{-} [8]

Don't consider these concepts as patentable, however, this document is original and this original document has been darclared as open copyright and open patent document anyway.

Construction diagram of the experiment of 'the creation of the Helium atom' (**FIG. 3**) by combining the radioactive, positively charged ion, an alpha particle (derived from radioactive decay element); with negatively charged electrons from an external source. The Helium atom is theoretically created.

FIG. 3. Construction diagram of the experiment of 'The Creation of the Helium Atom'.

Equations

Equation (2) (i) α²⁺ source [8]

 $\begin{aligned} &226\text{Ra} \rightarrow 222\text{Rn} + \frac{4}{2}\alpha^{2+} [20] \\ &\overset{241}{}_{95}\text{Am} \rightarrow \frac{237}{}_{93}\text{Np} + \frac{4}{2}\alpha^{2+} \text{ via the formulae: } ^{A}/\text{zP} \rightarrow (^{A-4}/\text{z}_{-2}) \text{ D} + \frac{4}{2}\text{He} [14] \text{ or } ^{A}/\text{zX} \rightarrow (^{A-4}/\text{z}_{-2}) \text{ Y} + \frac{4}{2}\text{He} [9] \\ &\overset{252}{}_{88}\text{Cf} \rightarrow \frac{248}{66}\text{Cm} + \frac{4}{2}\alpha^{2+} \text{ via the formulae: } ^{A}/\text{zP} \rightarrow (^{A-4}/\text{z}_{-2}) \text{ D} + \frac{4}{2}\text{He} [14] \text{ or } ^{A}/\text{zX} \rightarrow (^{A-4}/\text{z}_{-2}) \text{ Y} + \frac{4}{2}\text{He} [9] \\ &\text{Radioactive decay reactant isotope Radium 226} \\ &\text{Decay product Radon gas (radioactive itself)} \end{aligned}$

Equation (3) Opposing charged decay ions forming neutral gas product (e- + e- + α^{2+}) = $4/_2$ He (gas) $2\beta^{-} + 4/_2 \alpha^{2+} \rightarrow 4/_2$ He (g) + Q/t {Q/t =I} [7]

Equation (2) (ii) (Daughter 1) α^{2+} source 222/86 Rn \rightarrow 218/84 Po + $^{4}/_{2} \alpha$ [20] Equation (2) (iii) (Daughter 2) α^{2+} source 218/84 Po \rightarrow 214/82 Pb + $^{4}/_{2} \alpha^{2+}$ [20]

Background Ionized Radiation Battery Energy Nuclear

Theory

Quote "On Earth, the only source of Helium is through radioactive decay processes_ α (alpha) particles emitted during nuclear decay are eventually converted to helium atoms" end Quote [5]. As Helium 3 is considered a fusion nuclear fuel, just as deuterium, tritium, and lithium.

By the formulas: quote ${}^{''2/_1H+2/_1H \rightarrow 3/_1H+1/_1H}$ ${}^{2/_1H+3/_1H \rightarrow 4/_2He+1/_0n}$ ${}^{6/_3Li+2/_1H \rightarrow 24/_2He} \{{}^{6/_3Li+2/_1H \rightarrow 24/_2} \alpha^{2+} \}$ ${}^{1/_1H+2/_1H \rightarrow 3/_2He}$ ${}^{3/_2He} + {}^{3/_2He} \rightarrow {}^{4/_2He} + {}^{21/_1H"} \text{ end quote [19]}$

As it has already been determined that Helium gas can and is produced from an α (alpha) particles as products emitted during natural nuclear decay [5].

Can a suitable form of Helium be manufactured on earth? (a) Artificially from naturally radioactive decay products like the alpha particle, or (b) from alpha yielding radioactive byproducts from the commercial nuclear process, or (c) a new process additional and within a current commercial nuclear reactor? Such as by the Formula, $2\beta^{+} 4/_2\alpha^{2+} \rightarrow 4/_2$ He(g) + Q/t {Q/t =*I*} [7] and (e⁻ α^{2+} e⁻ e⁻ α^{2+} e⁻)=He₂ diatomic Helium Molecule. Or (e⁻ $\alpha^{2+} \alpha^{2+}$ e⁻)=(He₂)²⁺ Helium diatomic complex ion-molecule [13].

In the above experiment in "**FIG. 3**, construction diagram of the experiment of 'the creation of the helium atom' by combining the radioactive, positively charged ion, an alpha particle (derived from radioactive decay element); with negatively charged electrons from an external source. The helium atom is theoretically created."

An external electrical power source (A.C. or D.C.) provides the electrons needed for the alpha particles to form the end product, Helium gas. The alpha supply can be from any radioactive element that emits alpha particles as a radioactive decay product. Such as E.g. Radium226, Americium241, or Californium252 ($^{25}\%_8$ Cf). 226Ra \rightarrow 222Rn + $^{4}/_{2}\alpha^{2+}$ [20]

 $^{241}/_{95}Am \rightarrow ^{237}/_{93}Np + ^{4}/_{2}\alpha^{2+}$ [21]

 25 %Cf \rightarrow 24 %Cm+ 4 2 α^{2+} via the formulae, A /zP \rightarrow ($^{A-4}$ /z₋₂) D + 4 /2He [14] or A /zX \rightarrow ($^{A-4}$ /z₋₂) Y + 4 /2He [9]

Theoretical experiment for the creation of helium diatomic molecule. By combining the radioactive, positively charged ion, an alpha particle (derived from radioactive decay element), with a smaller number of negatively charged electrons from an external source. The ratio of electrons is restricted to alpha particles is restricted (**FIG. 4**).

The ratio of electrons is restricted by the equipment's adjustable current flow. The positively charged ion alpha particles compete for the restricted number of electrons from the reduced current levels into the closed system.

FIG. 4. Theoretical experiment for the creation of helium diatomic molecule.

 $\frac{4}{2\alpha^{2+}}$ or $\frac{4}{2\alpha}$ [8]

 β^{-} or ⁰ /-1 β [8]

²⁵‰Californium→²⁴‰Curium+ ½ α^{2+} + γ , via the formulae: ^A/zP → (^{A-4}/z₋₂)D + ⁴/₂He [14] or ^A/zX→ (^{A-4}/z₋₂) Y + ⁴/₂He [9]

 $(e^{-} \alpha^{2+} e^{-} e^{-} \alpha^{2+} e^{-}) =$ He₂ diatomic Helium Molecule. Or $(e^{-} \alpha^{2+} \alpha^{2+} e^{-}) =$ (He₂)²⁺ Helium diatomic complex ion molecule [13]

Method 1

(a) Restrict the number of electrons applied to a fluid containing the α^{2+} by controlling the number of amps per second from the power supply. To a number of electrons less than required to make a complete helium molecule from the alpha particles. If the α^{2+} (radioactive decay source material) is 1,000g Californium 252. At initial zero years the probability current +ve charge (α^{2+}) 9.68 mA. As per "**TABLE 2**: Available positive charge (alpha/proton pairs) in Amps and mAmps from the radioactive decay cycle of a given mass of ²⁵/₈Cf", The proton charge of 9.68 mA is for dual protons per alpha particle. Equivalent 4.84 mA of electron charge. However to complete a Helium atom two electrons per two protons on the single alpha particle are needed. Thus reducing the amps from the A.C./D.C. regulated power supply to 1 milli-amp. Results in 1 alpha particle per 9.7 electron particles. Thus the observation will be a ratio of 1:9.7 helium to alpha particles

Unless, based on known physics concepts, requiring a full, outer, electron shell; as a more fundamental force than electrostatics. Some alpha particles combine with another alpha particle to share the reduced electron supply. To yield a result of a single diatomic helium ion

(b) Restrict the quantity of alpha particles applied to the fluid in the fluid containing that captures the α^{2+} particles, by closing off the α^+ radioactive decay source material in a separate internal enclosure

(c) Reduce the ratio of electrons available for the number of alpha particles available each trial. And measure if any of the alpha particles have formed a covalently bonded Helium molecule

(d) What is the percentage of the alpha particles that have formed a covalently bonded Helium molecule; to normal Helium atoms? If any? Two types of covalent bonded Helium predicted. ($e^{-\alpha^{2+}} e^{-} e^{-\alpha^{2+}} e^{-}$)=He₂ diatomic Helium Molecule; Or ($e^{-\alpha^{2+}} \alpha^{2+} e^{-}$)=(He₂)²⁺ Helium diatomic complex ion-molecule [13]

(e) If either of the two new Helium molecules forms they may offer new chemical compounds and new types of nuclear fusion fuel

The first experiment was to determine if the alpha particle with two neutrons and two protons as its nucleus would accept two foreign sourced electrons and go from a dual positive charged ion to a neutral charged atom with a stable, first outer shell of two electrons.

In this second experiment, the volume or number of electrons is restricted so, only a percentage of alpha particles will form neutral charged atoms with a stable outer shell of two electrons. In a closed restricted electron environment will two alpha particles (both with dual charges) share two electrons to form a stable first shell of two; and exist as a positively charged diatomic ion? What is the probable percentage of remaining alpha particles, created helium atoms, and diatomic helium molecules?

Therefore which is the fundamental force? For an atom or molecule to create a stable, FULL outer electron shell, or the electromagnetic forces of attraction to be balanced. Remembering, that in chemistry, positive and negative charged ions (cations and anions respectively), exist in solution as common salts with stable FULL outer shells of eight (octet). So some alpha particles should become diatomic helium molecules with a FULL electron outer shell of two [18].

How much helium gas? Math calculations

Californium

 25 %8Cf \rightarrow 24 %6Cm+ $\frac{4}{2}\alpha^{2+}$ + γ 2.6 years half life 25 %8Cf \rightarrow $\frac{4}{2}\alpha$ 1:1 1,000kg 25 %8Cf breaks down to 500 kg in 2.6 years. mol 25 %8Cf=m/M=5.0 × 10⁵ grams/252=1.98 × 10³ mol mol ratio 1:1 grams $\frac{4}{2}\alpha$ =m × M=1.98 × 10³mol × 4=7.93 × 10³ grams Or 7.9 kilograms $\frac{4}{2}$ He gas from 500 kg 25 %8Cf over 2.6 years!

Radium

226Ra \rightarrow 222Rn+4/2 α With a half-life of 1,600 years 1:1:1 1,000 kg 226Ra breaks down to 500 kg in 1,600 years mol ratio 1:1 mol ²²%sRa=m/M=5.0 × 10⁵ grams/226=2.21 × 10³ mol Grams α =m × M=2.21 × 10³mol × 4=8.85 × 10³ grams Or 8.85 kilograms α He gas from 500 kg ²²%sRa but it takes 1,600 years It takes 1,600 years for 8.85 kilograms α He gas to accumulate from 500 kg ²²%sRa

Commercial Applications and Conclusions

1. There are NOT enough charged particles available per second to create enough current from either uranium 238 or uranium 235. Longer the half-lifeless radioactive particles released in a short time period. Fast radioactive decay elements release more ionizing radiation in a short period so are more dangerous to tissue, but release a greater number of ionized charged particles in a short time period. Such as 90 Strontium. There is barely enough charged particles available per second to create enough current from radium226, to create the bulky alpha half, of an opposing charge, ionization nuclear battery. One kilo of radium produces only enough alpha particles from radioactive decay to provide conservatively about 8 micro amps of positive charge. Therefore a country would need to have plentiful supplies of positive ion, alpha yielding radium, along with plentiful supplies of a radioactive decay

element yielding negative charged, beta particles, or a nuclear industry with available suitable radioactive waste elements with the ability to separate elements that release opposing ionized charged particles

2. As rooms of fridge size batteries would be required to supply the alpha component of the very slow forming and very low volume of helium gas manufacture. The amount of inert helium gas product from radium is too low, over too long a period of time, to be economic. Unless a more rapid decay alpha particles were extracted from a synthetically created element from a nuclear reactor

3. Uranium 235. Uranium 238. Thorium 232. Radium 226. Are all considered low-level radioactive materials? However, all of these radioactive elements will cause cancer over time and cause death and a reduced life expectancy from cancer caused by radiation exposure. These are NOT for residential or commercial use. A nuclear power company or a military installation could use medium level radioactive decay elements in a nuclear battery process, to produce a greater volume of the charged particle from a lesser volume of radioactive element material

Conclusion

Oppositely charged ions from radioactive decaying elements theoretically should provide enough current (charged particles per second), and an electrical potential difference, to perform electrical work. From micro-amps to milliamps. But common naturally occurring radioactive alpha isotopes, have too long a half-life to provide practical low amps of power. Unless a basketball court of fridge size nuclear batteries is considered more practical than say a small creek hydroelectric unit. Above or below ground.

Synthetically created elements from a nuclear process or nuclear reactor, such as Californium, ²⁵/₈Cf with a half-life of 2.6 years. Still looks like the only possible viable economic ancillary nuclear reactor process. As the alpha particle consists of 2 positive charged protons +2 neutrons, the alpha particle will attract negative ions in the air and water, as well as negative charged beta particles. The radioactive decay product alpha particle is also the exact equivalent of the Helium nucleus, 2 protons +2 neutrons. Not only should the positively charged alpha particle attract a negatively charged beta particle or electron, capturing that beta particle or electron, should see the alpha particle becoming a neutral charged Helium atom. By the Formula: $2\beta^{-} + 4/2\alpha^{2+} \rightarrow 4/2$ He (g) + Q/t {Q/t=I}. Only experimentation will reveal if this theory is correct.

If it does prove possible to create the Helium atom in the lab, or commercially from nuclear waste. There are other Helium isotopes or even molecules that can be constructed from the radioactive decay alpha positively charged particle. Could either or both types of covalent bonded Helium be theoretically predicted? (e- α^{2+} e- e- α^{2+} e-)=He₂ diatomic Helium Molecule. Or (e- $\alpha^{2+}\alpha^{2+}$ e-)²⁺=(He₂)²⁺ Helium diatomic complex ion-molecule.

Possible fusion reaction products,

%He₂+%He₂→1%O Terra forming possibilities

Only experimentation will reveal if this theory is correct.

(Author: Leo M Likar/5th and 13th 17th Aug 2018/1st Nov the Formula: $2\beta^{+} \frac{4}{2\alpha^{2+}} \frac{4}{2}He(g) + Q/t \{Q/t=I\}$ directly from hand written notes 4/July/2016, witnessed) OPEN copyright/OPEN patent.

Acknowledgment

I acknowledge this is all my original work and by publishing, I acknowledge my work now becomes an open patent, and anyone who wishes is free to do further theoretical and or practical work based on my presentation of work.

APPENDIX

For reference

Graph+table calculations

Nuclear Decay Ionization Battery 6%7 Co NEGATIVE Potential Current Calculation

6%27Co half-life 5.27 years

Initial1,000 g/5.27 years

 $^{6}\%_{7}Co \rightarrow ^{6}\%_{8}Ni + \gamma \beta^{-} + \gamma$

⁶%₂₇Co→%¬ β⁻

1:1

Nuclear Decay Ionization Battery ²⁵% Cf POSITIVE Potential Current Calculation

²⁵‰Cf half-life 2.6 years

Initial 1,000g/2.6 years

 25 %Cf \rightarrow 24 %Cm+ 4 α ²⁺+ γ 2.6 years half life

```
<sup>25</sup>‰Cf→<sup>4</sup>⁄<sub>2</sub>α
```

```
1:1
```

Alternate quick method calculation method available	Alternate quick method calculation methode available	
decay material	decay material	
Nuclear decay ionization battery ²⁵² / ₉₈ Cf POSITIVE	Nuclear decay ionization battery %27Co NEGATIVE	
potential current calculation	potential current calculation	
²⁵ %Cf half-life 2.6 years	^{6%} 7Co half-life 5.27 years	
1,000 g /2.6 years=3.846153 × 10 ² grams/year	1,000 g /5.27 years= 1.8975×10^2 grams/year	
3.846×10^2 g/365 days= 1.0537407 grams/day	$1.8975 \times 10^{2}/365 \text{ days} = 0.519872 \text{ grams/day}$	
$1.0537 \text{ g/}24 \text{ hours}=4.390586 \times 10^{-2} \text{ grams/hour}$	$0.519872/24$ hours= 2.16613×10^{-2} grams/hour	
4.390×10^{-2} g/60 min=7.317644 $\times 10^{-4}$ grams/min	$2.16613 \times 10^{-2}/60 \text{ min}=3.61022 \times 10^{-4} \text{ grams/min}$	
7.317×10^{-4} g/60 sec= 1.219607×10^{-5} grams/sec	$3.61022 \times 10^{-4}/60 \text{ sec} = 6.0170 \times 10^{-6} \text{ grams/sec}$	
Mass 25 % Cf material available per sec. 1.2196×10^{-5}	or mass ⁶ % ₇ Co material available per sec	
grams/sec	Grams to Moles Law via Atomic number	
Grams to Moles Law via Atomic number	Grams per second to Moles per second: mol ^{6%} /Co=m/M	
Grams per second to Moles per second:	$=6.0170 \times 10^{-6} \text{ grams}/60 = 1.0028397 \times 10^{-7} \text{ mol}$	
mol ²⁵ / ₂ %Cf=m/M=1.219607 \times 10 ⁻⁵ grams/252=4.8397118 \times	Avogadro's Number Law	
10 ⁻⁸ mol	Particles=Avogadro's number \times mol=6.0 \times 10 ²³ \times	
Particles=Avogadro's number \times mol=6.0 \times 10 ²³ \times	1.0028397 ×10 ⁻⁷ mol=6.017038 ×10 ¹⁶ particles/atoms	
$mol(4.8397118 \times 10^{-8})=2.903827 \times 10^{16} \text{ particles/atoms}$	6.017038 ×10 ¹⁶ particles/atoms ⁶ % ₇ Co per second	
$^{252}/_{8}Cf \rightarrow ^{248}/_{6}Cm + ^{4}/_{2}\alpha^{2+} + \gamma 2.6$ years half life	Mol Ratio Law	

²⁵ %sCf→½α 1:1 Therefore 6.1147938 ×10 ⁻⁶ grams ²⁵ %sCf yields 2.903827 × 10 ¹⁶ particles/atoms of ²⁵ %sCf. At a mol ratio of one to one 1:1) 2.903827 × 10 ¹⁶ particles/atoms of ²⁵ %sCf yields 2.903827 × 10 ¹⁶ of alpha particles. (Coulombs Law):1 amp is 6 × 10 ¹⁸ electrons per second 2.903827 × 10 ¹⁶ alpha particles. alpha particles available per second 2.903827 × 10 ¹⁶ /6 × 10 ¹⁸ (Coulombs Law)=4.8397118 × 10 ⁻³ amps 4.8397118 × 10 ⁻³ amps × 2 (2 protons double charge available per particle)=4.853011 × 10 ⁻³ amps 9.679423 × 10 ⁻³ amps=9.68 mA At 1 second decay of ²⁵ %sCf gives the amount of available ²⁵ %sCf mass=1.219607 × 10 ⁻⁵ grams, which yields 2.903827 × 10 ¹⁶ alpha particles Providing the positive charge of 9.679423 × 10 ⁻³ amps= 9.68 mA	Therefore at a mol ratio of <u>one to one</u> , (1:1); 1.0028397 × 10^{-7} mol ⁶ / ₂₇ Co=6.017038 ×10 ¹⁶ atoms ⁶ / ₂₇ Co, gives equal 6.017038 ×10 ¹⁶ Beta particles Therefore 6.0170 × 10^{-6} grams of ⁶ / ₂₇ Co yields 6.017038 × 10^{16} beta particles. Therefore 6.0170 × 10^{-6} grams of ⁶ / ₂₇ Co decay material per second, yields 6.017038 × 10^{16} beta particles per second (Coulombs Law): 1 amp is 6 × 10^{18} electrons per second 6.017038 × 10^{16} beta particles available per second 6.017038 × 10^{16} beta particles $/6 \times 10^{18}$ (Coulomb's Law)= 1.0028×10^{-2} amps= 10 mA
So ²⁵² %Cf with a half-life of 2.6 years (2x ⁺ ve charge per particle) and coupled to a %¬β ⁻ emitter half-life of 5 years (%27Co 5.27 years half-life; Nuclear Decay Ionization Battery %27Co NEGATIVE Potential Current Calculation	
Nuclear decay ionization battery ²⁵² / ₈ Cf POSITIVE Potential current calculation 2 nd cycle ²⁵ / ₈ Cf half-life 2.6 years 500 g/2.6 years=1.923077 × 10 ² grams/year 1.923077 × 10 ² g/365 days=0.526870 grams/day 0.526870/24 hours=2.195293 × 10 ⁻² g grams/hour 2.195293 × 10 ⁻² g/60 min=3.658822 × 10 ⁻⁴ g grams/min 3.658822 × 10 ⁻⁴ g/60 sec=6.0980369 × 10 ⁻⁶ grams/sec Mass ²⁵ / ₈ Cf material available per sec 6.0980369 × 10 ⁻⁶ grams/sec Grams to Moles Law via Atomic number Grams per second to Moles per second: mol ²⁵ / ₈ Cf =m/M=6.0980369 × 10 ⁻⁶ grams/252= 2.4198559 × 10 ⁻⁸ mol Avogadro's Number Law Particles=Avogadro's number × mol=6.0 × 10 ²³ × mol (2.4198559 × 10 ⁻⁸)=1.451913 × 10 ¹⁶ particles/atoms ²⁵ / ₈ Cf \rightarrow ²⁴⁸ / ₆ Cm+ ⁴ / ₂ a ²⁺ + γ 2.6 years half life ²⁵ / ₈ sCf \rightarrow ½ α 1 : 1 Therefore 6.0980369 × 10 ⁻⁶ grams ²⁵ / ₈ Cf yields 1.451913 × 10 ¹⁶ particles/atoms of ²⁵ / ₈ sCf At a mol ratio of one to one 1:1) 1.451913 × 10 ¹⁶ particles/atoms of ²⁵ / ₈ sCf. decay material × 10 ¹⁶ of alpha particles Therefore 6.0980369 × 10 ⁻⁶ grams of ²⁵ / ₈ sCf. decay material	Nuclear decay ionization battery ${}^{6}\!\!/_{7}$ Co NEGATIVE Potential current calculation 2^{nd} cycle ${}^{6}\!\!/_{7}$ Co 5.27 years half-life 5.27 years 500 g/5.27 years=94.876660 grams/year 94.876660/365 days=0.2599360 grams/day 0.2599360/24 hours=1.083066 × 10 ² grams/hour 1.083066 × 10 ⁻² /60 min=1.805277 × 10 ⁻⁴ grams/min 1.805277 × 10 ⁻⁴ /60 sec=3.008796 × 10 ⁻⁶ grams/sec or mass ${}^{6}\!\!/_{7}$ Co material available per sec Grams to Moles Law via ÷ Atomic number Grams per second to Moles per second: mol ${}^{6}\!\!/_{7}$ Co=m/M =3.008696 ×10 ⁻⁶ grams/60=5.014660 × 10 ⁻⁸ mol Avogadro's Number Law Particles=Avogadro's number × mol=6.0 × 10 ²³ × 5.014660 × 10 ⁻⁸ mol=3.008796 × 10 ¹⁶ particles/atoms 3.008796 × 10 ¹⁶ particles/atoms ${}^{6}\!\!/_{7}$ Co per second Mol Ratio Law Therefore at a mol ratio of <u>one to one</u> , (1:1); And 5.014660 ×10 ⁻⁸ mol ${}^{6}\!\!/_{7}$ Co=3.008796 × 10 ¹⁶ atoms ${}^{6}\!\!/_{7}$ Co, gives equal 3.008796 × 10 ¹⁶ Beta particles Therefore 3.008796 × 10 ⁻⁶ grams of ${}^{6}\!\!/_{7}$ Co yields 3.008796 × 10 ¹⁶ beta particles Therefore 3.008796 × 10 ⁻⁶ grams of ${}^{6}\!\!/_{7}$ Co decay material per second, yields 3.008796 × 10 ¹⁶ beta particles per second (Coulombs Law): 1 amp is 6 × 10 ¹⁸ electrons per second 3.008796 × 10 ¹⁶ beta particles available per second
second (Coulombs Law):1 amp is 6×10^{18} electrons per second 1.451913 $\times 10^{16}$ alpha particles.	$=5.01466 \times 10^{-3} \text{ amps}=5.0 \text{ mA}$

Nuclear Decay Ionization Battery "%-CC POSITIVE Potential Current Calculation 3 rd eycle (zero years -2.6 yrs. 2.6 yrs. 5.2 yrs=1,000 grams to 500 grams to 250 grams) ^{3%} CT half ife 2.6 years 250 g/2.6 years-96.15384d5 grams/year 96.15384d5 days=0.263435 grams/day 0.263435/24 hours=1.0976466 $\times 10^{-2}$ grams/hour 1.0976466 $\times 10^{-2}$ g/60 min=1.829411 $\times 10^{+2}$ grams/hour 1.097646 $\times 10^{-2}$ g/60 min=1.829411 $\times 10^{+2}$ grams/min 1.097646 $\times 10^{-2}$ g/60 min=1.829411 $\times 10^{+2}$ grams/min 1.097646 $\times 10^{-2}$ g/60 min=1.829411 $\times 10^{+2}$ grams/min 1.001 $\cong g/60$ sec=3.049018 $\times 10^{+2}$ grams/222=1.2099279 \times 10 ⁺² mol $\times 2.6$ years = 2 × 365+0.6 $\times 365=730+219=949$ days Starting with 1.000 grams %-Co, Amount of grams of %-Co remaining at 2.6 years 10 ⁻¹⁰ 1605 $\times 10^{-27}$ kg 10 ⁻¹⁰ 10 ⁻¹⁰ grams = 10 ⁻²⁰ (10 ⁻²⁰ kg 10 ⁻²⁰ (10 ⁻²⁰ kg) = 10 ⁻²⁰ (10 ⁻²⁰ kg 10 ⁻²⁰ (10 ⁻²⁰ kg) = 10 ⁻²⁰ (10 ⁻²⁰ kg 10 ⁻²⁰ material per second 1.299267 $\times 10^{+2}$ grams = 1 ²⁰ (27 yeids 7.259567 $\times 10^{+2}$ kg 1.209227 $\times 10^{+2}$ mas = 3.049018 $\times 10^{+5}$ grams of 23 (Cf years 1.209227 $\times 10^{+2}$ muclei $\times e^{-3.4027}$ $\times 10^{+2}$ kg 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+2}$ grams of 23 (Cf years 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+6}$ grams of 23 (Cf years 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+6}$ grams of 23 (Cf years 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+6}$ grams of 23 (Cf years 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+6}$ grams of 23 (Cf decay 1.209227 $\times 10^{+2}$ map is $6 \times 10^{+6}$ grams of 23 (C	alpha particles available per second 1.451913×10^{16} /6 × 10^{18} (Coulombs Law)= 2.4198559×10^{-3} amps 2.4198559×10^{-3} amps 2.4198559×10^{-3} amps $2.24198559 \times 10^{-3}$ amps $2.24198559 \times 10^{-3}$ amps $2.24198559 \times 10^{-3}$ amps 2.4198559×10^{-3} amps 2.4198559×10^{-3} amps 2.4198559×10^{-3} amps 4.8397118×10^{-3} amps= 4.84 mA At 1 second decay of $^{25}\%$ Cf gives the amount of available $^{25}\%$ Cf mass= 6.0980369×10^{-6} grams, which yields 1.451913×10^{16} alpha particles Providing the positive charge of 4.8397118×10^{-3} amps= 4.84 mA $^{25}\%$ Cf $\rightarrow 24\%$ Cm+ $\%\alpha^{2+}+\gamma 2.6$ years half life $^{25}\%$ Scf $\rightarrow \frac{1}{2}\alpha$ 1 : 1	
Potential (cero years -2, dyrs. 2.6, yres.52, yrs.52, yrs	Nuclear Decay Ionization Battery ²⁵ % Cf POSITIVE	Nuclear Decay Ionization Battery %27Co NEGATIVE
(zero years 2.26 yrs 5.2 yrs	Potential Current Calculation 3 rd cycle	Potential
grams to 250 grams) 250 gr2.6 years=96.153846 grams/year 96.153846/365 days=0.263435 grams/hour 1.0976466 × 10-2 grams/approx/ 1.0923.6 days 1.232.6	(zero years -2.6 yrs. 2.6 yrs-5.2 yrs=1,000 grams to 500	Current Calculation Above 1 st decay cycle Under the 2 st
t^{-m} CT nalf-life 2.0 yearsFor 2.6 years250 g2.6 years=96.153846 grams/year96.153846/365 days=-0.263435 grams/day96.153846/365 days=-0.263435 grams/day96.153846/365 days=-0.263435 grams/loar1.0976466 × 10 ⁻² gr60 min=1.829411 × 10 ⁴ grams/nin1.923.55 days1.829411 × 10 ⁴ gr60 sec=3.049018 × 10 ⁶ grams/sec1.923.55 days1.923.55 daysMass ²⁵ %Cf material available per sec 3.049018 × 10 ⁶ grams/sec1.923.65 days2.6 years=2 × 365+0.6 × 365=730+219=949 daysGrams per second to Moles per second:1.000 grams %2-C0. Amount of grams of1.923.6 days10 ^a mol2.6 years=2 × 365+0.6 × 10 ²⁵ kg1.0605 × 10 ²⁷ kgAvogadro's Number Law1.16605 × 10 ²⁷ kg1.16605 × 10 ²⁷ kgParticles=Avogadro's number × mol=6.0 × 10 ²³ × mol6.02228 × 10 ²⁹ Unuclei)=1 kg6.02228 × 10 ²⁹ Unuclei)=1 kg6.02228 × 10 ²⁹ Unuclei)=1 kg t^{29} wCf $\rightarrow ka$ 1.923.55 days $\lambda = 0.6937\lambda$ 2.6 years1.11.6605 × 10 ⁻²⁷ kg1.29375 × 10 ¹⁵ particles/atoms of ²³ %Cf yields 7.259567 × x^{105} particles/atoms of ²³ %Cf yields 7.259567 × x^{105} particles/atoms of ²³ %Cf yields 7.259567 × x^{105} apt of alpha particles x^{104} particles x^{105} particles/atoms of ²³ %Cf yields 7.259567 × x^{105} particles/atoms of ²³ %Cf yields 7.259567 × x^{105} apt	grams to 250 grams) 257 (Cf 1-16 116 - 2 C - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	decay cycle
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	259 a/2 Concerns 0.0 15284C anoma forcer	For 2.6 years
$1,0736465 \times 10^{-2} g/60 \text{ min} = 1,829411 \times 10^{4} \text{ grams/hour} \\ 1,0976465 \times 10^{-2} g/60 \text{ min} = 1,829411 \times 10^{4} \text{ grams/min} \\ 1,829411 \times 10^{4} g/60 \text{ sec} = 3.049018 \times 10^{6} \text{ grams/sec} \\ 3488^{-23} \times Cf \text{ material available per sec} : 3.049018 \times 10^{6} \text{ grams/sec} \\ 3488^{-23} \times Cf \text{ material available per sec} : 3.049018 \times 10^{6} \text{ grams/sec} \\ 3488^{-23} \times Cf \text{ material available per sec} : 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{-2} g/60 \text{ min} = 1,825 \times 10^{23} \text{ Sed} = 2 \times 355 \times 10^{-2} \text{ Sd} = 730 \times 129 = 949 \text{ days} \\ 354761 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{42} g/60 \text{ sec} = 3.049018 \times 10^{-6} \text{ grams/sec} \\ 349061 \times 10^{6} \text{ grams/sec} = 3^{23} \times Cf \text{ yields } 7.259567 \times 10^{15} \text{ particles/atoms of } 2^{23} \times Cf \text{ yields } 7.259567 \times 10^{15} \text{ particles/atoms of } 2^{23} \times Cf \text{ yields } 7.259567 \times 10^{15} \text{ particles/atoms of } 2^{23} \times Cf \text{ yields } 7.259567 \times 10^{15} \text{ particles/atoms of } 2^{23} \times Cf \text{ yields } 7.259567 \times 10^{15} \text{ particles/atoms of } 2^{23} \times Cf \text{ decay on stant } 2^{2} \times 10^{26} \text{ nuclei} \times e^{-3.41896} \times 10^{26} \text{ nuclei} \times e^{-3.41896} \times 10^{26} \text{ nuclei} \times 10^{27} \text{ kg} \times 10^{29} \text{ nuclei} \times 10^{29} \text{ nuclei} \times 10^{29} \text{ nuclei} \times 10^{29} \text{ nuclei} \times 10^{29} \text{ second} \times 10^{29} \text{ second } 7.259567 \times 10^{15} \text{ apha particles} \times 10^{19} \text{ electrons per second} \times 10^{29} \text{ nuclei} \times 10^{29} nuclei$	250 $g/2.0$ years=90.155840 grams/year 06.153846/365 days=0.263435 grams/day	Part A 60_{-} Co half life 5.27 years (5 × 365 + 0.27 × 365-1.825 ×
$10^{10} 10^{10} 10^{10} 10^{10} g/60 \ scc^{-3} .049018 \times 10^{6} grams/scc} = 1.923.56 \ days = 1.923.55 \ days = 1.92$	$0.263/35/24$ hours $-1.0976/66 \times 10^{-2}$ grams/hour	$103\pm 98.55\pm 1.825\pm 98.55\pm 1023.55$ days) 5.27 years
$1.829411 \times 10^4 g/60 sec=3.049018 \times 10^\circ grams/sec$ $1.829411 \times 10^4 g/60 sec=3.049018 \times 10^\circ grams/sec$ $1.923.6 days$ $1.000 grams %^2_{c}C_{c} Ams$ $1.000 grams %^2_{c}C_{$	$1.0976466 \times 10^{-2} \text{ g/60 min} = 1.829411 \times 10^{-4} \text{ grams/min}$	1 923 55 days
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.829411×10^{-4} g/60 sec= 3.049018×10^{-6} grams/sec	1.923.6 days
grams/sec Grams to Moles Law via Atomic number Grams per second to Moles per second: mol ^{25%} ACf=m/M=3.049018 × 10° grams/252=1.2099279 × 10 ¹² mol ^{26%} ACf=m/M=3.049018 × 10° grams/252=1.2099279 × 10 ¹² mol ^{27%} ACf=m/M=3.049018 × 10° grams/252=1.2099279 × 10 ¹² mol ^{27%} ACf=m/M=3.049018 × 10° grams/252=1.2099279 × 10 ¹³ mol ^{27%} ACf=m ⁴ %a ² + γ 2.6 years half life ^{27%} ACf \rightarrow ^{37%} ACf micles/atoms of ^{27%} ACf yields 7.259567 × 10 ¹⁵ particles/atoms of ^{27%} ACf \rightarrow ^{37%} ACf \rightarrow ^{37%} ACf \rightarrow ^{37%} ACf yields 7.259567 × 10 ¹⁵ particles/atoms of ^{22%} ACf \rightarrow ^{37%} ACf \rightarrow ^{37%} ACf yields 7.259567 × 10 ¹⁵ particles/atoms of ^{22%} ACf \rightarrow ^{37%} ACf yields 7.259567 × 10 ¹⁵ particles/atoms of ^{22%} ACf \rightarrow ^{37%}	Mass ²⁵ % Cf material available per sec 3.049018×10^{-6}	2.6 years= $2 \times 365 + 0.6 \times 365 = 730 + 219 = 949$ days
Grams to Moles Law via Atomic number Grams per second to Moles per second: mol"%-Co remaining at 2.6 years $1U=1.6605 \times 10^{-27} kg$ Moles Law via Atomic number Grams per second to Moles per second: 10^{-8} mol $1U=1.6605 \times 10^{-27} kg$ Moles Law via Atomic number 10^{-8} mol $1000g=1 kg$ Avogadro's Number Law Particles=Avogadro's number x mol= $6.0 \times 10^{23} \times mol$ $(1.2099279 \times 10^{-9}-7.259567 \times 10^{15} particles/atoms1^{-2}% Cf \rightarrow 4\%Cf \rightarrow 4\% Cm + \%a^{2*} + \gamma 2.6 years half life2^{26}% Cf \rightarrow 4\%Cf \rightarrow 4\%Cf \rightarrow 4\%Cf \rightarrow 4\% Cf10^{-27} kg-263/3 = 20^{-27} kg-3.6027 \times 10^{-4}-3.6027 \times 10^{-4}-3.602228 \times 10^{26} nuclei \times e^{-3.41896}-3.6027 \times 10^{-4}-3.602228 \times 10^{26} nuclei \times e^{-3.41896}-3.602228 \times 10^{26} nuclei \times 0.7104208-3.602228 \times 10^{26} nuclei \times 0.7104208-3.6027 \times 10^{-5} huge index is 2.729567 \times 10^{15} alpha particlesper second(Coulombs Law):1 amp is 6 \times 10^{16} electrons per second7.259567 \times 10^{15} alpha particles-10^{16} (coulombs Law):1 amp is 6 \times 10^{16} electrons per second7.259567 \times 10^{10} amps = 2.42 \text{ mA}-1.2099279 \times 10^{-3} amps = 2.42 \text{ mA}At 1 second decay of ^{25} kG f eiges the amount of available-3^{26} kg Cm + $	grams/sec	Starting with 1,000 grams %27Co, Amount of grams of
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Grams to Moles Law via Atomic number	^{6%} / ₂₇ Co remaining at 2.6 years
$ mol 2+/2 %c(T=m/M=3.049018 \times 10^{+} grams/252=1.2099279 \times 1$ $ lo^{+} mol $ $ lo^{-8} mol $ $ looded to the text of the text of the text of tex of tex of text of text of t$	Grams per second to Moles per second:	$1U=1.6605 \times 10^{-27} \text{ kg}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	mol 252 /sCf=m/M=3.049018 × 10 ⁻⁶ grams/252=1.2099279 ×	$1 \text{kg} = 1 \times 10^{-3} \text{ grams}$
Avogadro s Number Law $U = 1/1.600 \times 10^{2.3} \times mol$ Particles=Avogadro's number \times mol= $6.0 \times 10^{2.3} \times mol$ $U = 1/1.600 \times 10^{-5} V g$ Particles=Avogadro's number \times mol= $6.0 \times 10^{2.3} \times mol$ $G.02228 \times 10^{26}U(1uclei)=1 kg$ $1:209279 \times 10^{-5} = 7.259567 \times 10^{15} particles/atoms$ $G.02228 \times 10^{20}U(nuclei)=1 kg$ $2^{20}_{\infty}Cf \rightarrow 2^{40}_{\infty}Cm + \frac{4}{3}a^{2*} + \frac{1}{2}2.6 years half life$ Decay constant ${}^{60}_{\infty}Co$ $2^{20}_{\infty}Cf \rightarrow 2^{40}_{\infty}Cm + \frac{4}{3}a^{2*} + \frac{1}{2}2.6 years half life$ Decay constant ${}^{60}_{\infty}Co$ $2^{20}_{\infty}Cf \rightarrow 2^{40}_{\infty}Cm + \frac{4}{3}a^{2*} + \frac{1}{2}2.6 years half life$ Decay constant ${}^{60}_{\infty}Co$ $2^{20}_{\infty}Cf \rightarrow 2^{40}_{\infty}Cm + \frac{4}{3}a^{2*} + \frac{1}{2}2.6 years half life$ Decay constant ${}^{60}_{\infty}Co$ $2^{20}_{\infty}Cf \rightarrow 2^{40}_{\infty}Cm + \frac{1}{3}a^{2*} + \frac{1}{2}2.6 years half life$ Decay constant ${}^{60}_{\infty}Co$ 10^{15} of alpha particles 10^{16} or 10^{16} grams of ${}^{25}_{\infty}Cf$ decay $N=6.02228 \times 10^{26}$ nuclei $\times e^{-3.4896}$ 10^{15} of alpha particles 10^{16} s 10^{16} s 10^{16} grams of ${}^{25}_{\infty}Cf$ decay $N=6.02228 \times 10^{26}$ nuclei $\times 0.7104208$ Therefore $3.049018 \times 10^{16} \times 10^{16}$ grams of ${}^{25}_{\infty}Cf$ decay $N=6.02228 \times 10^{26}$ nuclei $\times 0.7104208$ $N=4.2783607 \times 10^{26}$ functei 1.6605×10^{-27} kg q second $(Coulombs Law):1$ amp is 6×10^{16} alpha particles 1.2099279×10^{-3} amps $\times 2$ (2 protons double charge 2.419855×10^{-3} amps $\times 2$ (2 protons double charge 2^{24} grams 25 mol 1^{25} grams, which yields 7.259567 10^{16} alpha particles 10^{16} amps $= 2.42$ mA <td>10^{-6} mol</td> <td>1,000g=1 kg</td>	10^{-6} mol	1,000g=1 kg
Particles -Avogator's function of the term of ter	Avogadro's Number Law Derticles - Avogadro's number y mol-6.0 y 1023 y mol	$U=1/1.0005 \times 10^{27} \text{ kg}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$(1.2099279 \times 10^{-8}) - 7.259567 \times 10^{15}$ particles/atoms	$6.02228 \times 10^{-1} \text{ Kg}$ $6.02228 \times 10^{26} \text{U(nuclei)} = 1 \text{ kg}$
$\frac{25\%}{8} C_{1}^{-5} \frac{4}{3} \alpha$ $\frac{1}{1:1}$ $\frac{1}{1:$	252 %Cf $\rightarrow ^{248}$ %Cm $+ \frac{4}{3}\alpha^{2+} + \gamma$ 2.6 years half life	Decay constant % ⁷ Co
1:1 $\lambda=0.693/1923.55$ daysTherefore 3.049018×10^6 grams $^{25}\%$ Cf yields 7.259567 $\lambda=3.6027 \times 10^{-4}$ $\times 10^{15}$ particles/atoms of $^{25}\%$ Cf yields 7.259567×10^{15} particles/atoms of $^{25}\%$ Cf yields 7.259567×10^{15} particles/atoms of $^{25}\%$ Cf yields 7.259567×10^{15} or 10^{16} grams of $^{25}\%$ Cf decayN= 6.02228×10^{26} nuclei $\times e^{-3.41896}$ 10^{15} of alpha particlesN= 6.02228×10^{26} nuclei $\times 0.7104208$ N= 6.02228×10^{26} nuclei $\times 0.7104208$ Therefore $3.049018 \times 10^6 \times 10^6$ grams of $^{25}\%$ Cf decayN= 6.02228×10^{26} nuclei $\times 0.7104208$ N= 4.2783607×10^{16} (nuclei)material per second, yields 7.259567×10^{15} alpha particlesN= 6.02228×10^{26} nuclei $\times 1.6605 \times 10^{-27}$ kgN= 0.2238×10^{26} (nuclei) $\times 1.6605 \times 10^{-27}$ kg= X kg(Coulombs Law):1 amp is 6×10^{18} electrons per second 10^{16} (nuclei) $\times 1.6605 \times 10^{-27}$ kg= X kg 0.71042 kg 1.2099279×10^{-3} amps $\times 2$ (2 protons double charge available per particle) $= 2.419855 \times 10^{-3}$ amps 7.10^{12} grams 40 for at 2.6 years (949 days) 2.419855×10^{-3} amps $= 2.42$ mA 10^{16} grams, which yields 7.259567×10^{15} decay $7.10.42$ grams 40 for at 2.6 years (949 days) 2.099279×10^{-3} amps $= 2.42$ mA 10^{16} and 10^{16} grams, which yields 7.259567×10^{15} decay $7.10.42$ grams 40 for at 2.6 years (949 days) 2.010^{16} for ans $= 3.049018 \times 10^{16}$ grams, which yields 7.259567×10^{15} decay $7.10.42$ grams 40 for at 2.6 years (949 days) 2.010^{16} for ans $= 3.049018 \times 10^{16}$ grams, which yields 7.259567×10^{15} decay $7.10.42$ grams 40 for 10^{16} for	252 / ₉₈ Cf \rightarrow ⁴ / ₂ α	t½=0.693/λ
Therefore 3.049018×10^{16} grams 25 %Cf yields 7.259567 $\times 10^{15}$ particles/atoms of 25 %Cf At a mol ratio of one to one 1:1 7.259567×10^{15} particles/atoms of 25 %Cf yields $7.259567 \times$ $N=6.02228 \times 10^{26}$ nuclei $\times e^{-3.6027 \times 10^{-4}} \times ^{949}$ $N=6.02228 \times 10^{26}$ nuclei $\times e^{-3.41896}$ $N=6.02228 \times 10^{26}$ nuclei $\times e^{-3.41896}$ $N=4.2783607 \times 10^{26}$ (nuclei) $10(nuclei)=1.6605 \times 10^{-27}$ kg 4.2783607×10^{26} (nuclei) $\times 1.6605 \times 10^{-27}$ kg= X kg 0.71042 kg 710.42 grams 1.209279×10^{-3} amps $\times 2$ (2 protons double charge available per particle)=2.419855 \times 10^{-3} amps 2.419855×10^{-3} amps= 2.42 mA At 1 second decay of 25 %Cf gives the amount of available 25 %Cf mass= 3.049018×10^{-6} grams, which yields 7.259567 $\times 10^{15}$ alpha particles Providing the positive charge of 4.8397118×10^{-3} amps=2.42 mA 25 %Cf m^{2} %cf m^{2} % r^{2} r^{2} r^{2} r^{2} % r^{2} r^{2} r^{2} % r^{2} r^{2} r^{2} % r^{2} r^{2} r^{2} r^{2} r^{2} % r^{2}	1:1	λ=0.693/1923.55 days
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Therefore 3.049018×10^{-6} grams ²⁵ % Cf yields 7.259567	$\lambda = 3.6027 \times 10^{-4}$
At a mol ratio of one to one 1:1 7.259567 × 10 ¹⁵ particles/atoms of ²⁵ %sCf yields 7.259567 × 10 ¹⁵ of alpha particles Therefore 3.049018 × 10 ⁻⁶ × 10 ⁻⁶ grams of ²⁵ %sCf decay material per second, yields 7.259567 × 10 ¹⁵ alpha particles per second (<u>Coulombs Law</u>):1 amp is 6×10^{18} electrons per second 7.259567 × 10 ¹⁵ alpha particles alpha particles available per second 7.259567 × 10 ¹⁵ /6 × 10 ¹⁸ (Coulombs Law)=1.2099279 × 10 ⁻³ amps 1.2099279 × 10 ⁻³ amps ≈ 2 (2 protons double charge available per particle)=2.419855 × 10 ⁻³ amps 2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ %sCf gives the amount of available ²⁵ %sCf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps=2.42 mA ²⁵ %sCf \rightarrow ²⁴ %sCm + $\frac{1}{2}a^{2++}y$ 2.6 years half life	$\times 10^{15}$ particles/atoms of 25 %Cf	$N=N_0e^{-\Lambda t}$
7.259567 × 10 ¹⁵ particles/atoms of 25 % Cf yields 7.259567 × N=6.02228 × 10 ²⁶ nuclei × e $^{0.341896}$ 10 ¹⁵ of alpha particles N=6.02228 × 10 ²⁶ nuclei × 0.7104208 Therefore 3.049018 × 10 ¹⁶ × 10 ¹⁶ grams of 25 % Cf decay N=4.2783607 × 10 ²⁶ (nuclei) material per second 1U(nuclei)=1.6605 × 10 ⁻²⁷ kg (Coulombs Law):1 amp is 6 × 10 ¹⁸ electrons per second 1U(nuclei)=1.6605 × 10 ⁻²⁷ kg 7.259567 × 10 ¹⁵ alpha particles 4.2783607 × 10 ²⁶ (nuclei) × 1.6605 × 10 ⁻²⁷ kg=X kg 0.71042 kg 710.42 grams alpha particles available per second 7.259567 × 10 ¹⁵ /6 × 710.42 grams 10 ¹⁸ (Coulombs Law)=1.2099279 × 10 ⁻³ amps 710.42 grams 1.2099279 × 10 ⁻³ amps × 2 (2 protons double charge 710.42 grams ⁶ / ₂₇ Co at 2.6 years (949 days) 2.419855 × 10 ⁻³ amps=2.42 mA 71.259567 × 10 ¹⁵ alpha particles 70 ⁵ grams, which yields 7.259567 × 10 ¹⁵ alpha particles 70 ⁵ grams, which yields 7.259567 × 10 ¹⁵ alpha particles 70 ⁵ grams, which yields 7.259567 × 10 ¹⁵ alpha particles 70 ³ grams, which yields 7.259567 × 10 ¹⁵ alpha particles 70 ³ grams, which yields 7.259567 × 10 ¹⁵ alpha particles 70 ³ grams, which yields 7.259567 × 10 ¹⁵ alpha particles <td>At a mol ratio of one to one 1:1</td> <td>$N=6.02228 \times 10^{26} \text{ nuclei} \times e^{\frac{3}{5}.6027 \chi^{10} \frac{4}{7} \chi^{949}}$</td>	At a mol ratio of one to one 1:1	$N=6.02228 \times 10^{26} \text{ nuclei} \times e^{\frac{3}{5}.6027 \chi^{10} \frac{4}{7} \chi^{949}}$
10^{15} of alpha particlesN=6.02228 × 10^{26} nuclei × 0.7104208Therefore 3.049018 × 10^{16} × 10^{16} grams of 252 %Cf decayN=4.2783607 × 10^{26} (nuclei)material per second1U(nuclei)=1.6605 × 10^{-27} kgger second $(200 mbs Law)$:1 amp is $6 × 10^{18}$ electrons per second $1U(nuclei)=1.6605 × 10^{-27} kg$ $7.259567 × 10^{15}$ alpha particles $4.2783607 × 10^{26}$ (nuclei) × $1.6605 × 10^{-27} kg=X kg$ $alpha particles available per second 7.259567 × 10^{15} /6 ×71042 kg10^{18} (Coulombs Law)=1.2099279 × 10^{-3} amps710.42 grams1.2099279 × 10^{-3} amps 2 (2 protons double charge710.42 grams^{60}, Co at 2.6 years (949 days)2419855 × 10^{-3} amps=2.42 mA41 1 second decay of ^{25}%cf gives the amount of available25^{20}%Cf mass=3.049018 × 10^{16} grams, which yields 7.259567 × 10^{15} amps=2.42 mA25^{20}%cf mass=2.42 mA25^{20}%cf \rightarrow 2^{24}%cf m + \chi a^{2^{+}} + \gamma 2.6 years half life$	7.259567×10^{15} particles/atoms of ²⁵ % Cf yields 7.259567×10^{15}	$N=6.02228 \times 10^{26}$ nuclei × e ^{0.341896}
Therefore 3.049018 × 10 ⁻⁶ grams of ²² %CC decay material per second, yields 7.259567 × 10 ¹⁵ alpha particles per second (<u>Coulombs Law</u>):1 amp is 6×10^{18} electrons per second 7.259567 × 10 ¹⁵ alpha particles alpha particles available per second 7.259567 × 10 ¹⁵ /6 × 10 ¹⁸ (Coulombs Law)=1.2099279 × 10 ⁻³ amps 1.2099279 × 10 ⁻³ amps × 2 (2 protons double charge available per particle)=2.419855 × 10 ⁻³ amps 2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ %sCf gives the amount of available ²⁵ %sCf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA ²⁵ %sCf \rightarrow ²⁴ %sCm + ⁴ / ₂ α ²⁺ + γ 2.6 years half life	10^{15} of alpha particles	$N=6.02228 \times 10^{26}$ nuclei $\times 0.7104208$
The error per second, yields 7.259507×10^{-3} applies particles per second (Coulombs Law):1 amp is 6×10^{18} electrons per second 7.259567×10^{15} alpha particles alpha particles available per second $7.259567 \times 10^{15} / 6 \times 10^{18}$ (Coulombs Law)=1.2099279 $\times 10^{-3}$ amps 1.2099279×10^{-3} amps $\times 2$ (2 protons double charge available per particle)=2.419855 $\times 10^{-3}$ amps 2.419855×10^{-3} amps=2.42 mA At 1 second decay of $^{25}\%_{8}$ Cf gives the amount of available $^{25}\%_{8}$ Cf mass=3.049018 $\times 10^{-6}$ grams, which yields 7.259567×10^{15} days Providing the positive charge of 4.8397118×10^{-3} amps=2.42 mA $^{25}\%_{8}$ Cf $\rightarrow ^{248}\%_{6}$ Cm $+\frac{4}{2}u^{2+}+y$ 2.6 years half life	Interefore 5.049018 \times 10 $^{\circ}$ \times 10 $^{\circ}$ grams of 26 /98Cl decay	$N=4.2/8300/ \times 10^{20}$ (nuclei)
per second $(Coulombs Law):1$ amp is 6×10^{18} electrons per second $(Litter) \times 10000 \times 10^{-1} \text{ Kg} = 4 \text{ Kg}$ $(Coulombs Law):1$ amp is 6×10^{18} electrons per second $(Litter) \times 10000 \times 10^{-1} \text{ Kg} = 4 \text{ Kg}$ $(259567 \times 10^{15} \text{ alpha particles}$ $(Litter) \times 10000 \times 10^{-1} \text{ Kg} = 4 \text{ Kg}$ $alpha particles available per second 7.259567 \times 10^{15} / 6 \times$ (10.42 grams) $1.2099279 \times 10^{-3} \text{ amps} \times 2 (2 \text{ protons double charge}$ 710.42 grams $2.419855 \times 10^{-3} \text{ amps} = 2.42 \text{ mA}$ $At 1 \text{ second decay of } 25\% \text{ cf gives the amount of available}$ $25\% \text{ cf mass}=3.049018 \times 10^{-6} \text{ grams, which yields } 7.259567 \times 10^{15} \text{ amps} = 2.42 \text{ mA}$ $25\% \text{ sCf } \rightarrow 24\% \text{ cm}^{4}/\text{ g} \alpha^{2+} + \text{ y} 2.6 \text{ years half life}$	naterial per second, yields 7.259507 × 10° alpha particles	4.2783607×10^{26} (nuclei) $\times 1.6605 \times 10^{-27}$ kg-X kg
Control Data 117.259567 $\times 10^{15}$ alpha particles710.42 gramsalpha particles available per second 7.259567 $\times 10^{15}$ /6 \times 710.42 grams10 ¹⁸ (Coulombs Law)=1.2099279 $\times 10^{-3}$ amps710.42 grams ^{6%} / ₂₇ Co at 2.6 years (949 days)1.2099279 $\times 10^{-3}$ amps $\times 2$ (2 protons double charge710.42 grams ^{6%} / ₂₇ Co at 2.6 years (949 days)2.419855 $\times 10^{-3}$ amps=2.42 mA710.42 grams ^{6%} / ₂₇ Co at 2.6 years (949 days)At 1 second decay of 25 / ₈ Cf gives the amount of available 25 / ₈ Cf mass=3.049018 $\times 10^{-6}$ grams, which yields 7.259567 $\times 10^{15}$ alpha particlesProviding the positive charge of 4.8397118 $\times 10^{-3}$ mps=2.42 mA 25 / ₈ Cf $\rightarrow ^{24}$ / ₈₆ Cm $+\frac{4}{2}$ / ₂ ²⁺ + γ 2.6 years half life	(Coulombs Law): 1 amp is 6×10^{18} electrons per second	$4.2765007 \times 10^{\circ}$ (nuclei) $\times 1.0005 \times 10^{\circ}$ kg -7 kg 0.71042 kg
alpha particles available per second 7.259567 × 10 ¹⁵ /6 × 10^{18} (Coulombs Law)=1.2099279 × 10 ⁻³ amps 1.2099279 × 10 ⁻³ amps × 2 (2 protons double charge available per particle)=2.419855 × 10 ⁻³ amps 2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ %sCf gives the amount of available ²⁵ %sCf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA ²⁵ %sCf \rightarrow ²⁴ %sCm+ ⁴ / ₂ a ²⁺ + γ 2.6 years half life	7.259567×10^{15} alpha particles	710.42 grams
10 ¹⁸ (Coulombs Law)=1.2099279 × 10 ⁻³ amps 1.2099279 × 10 ⁻³ amps × 2 (2 protons double charge available per particle)=2.419855 × 10 ⁻³ amps 2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ %sCf gives the amount of available ²⁵ %sCf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA ²⁵ %sCf \rightarrow ²⁴ %sCm+ ⁴ / ₂ a ²⁺ + γ 2.6 years half life	alpha particles available per second 7.259567 \times 10 ¹⁵ /6 \times	710.42 grams ^{6%} / ₂₇ Co at 2.6 years (949 days)
1.2099279 × 10 ⁻³ amps × 2 (2 protons double charge available per particle)=2.419855 × 10 ⁻³ amps 2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ % Cf gives the amount of available ²⁵ % Cf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA ²⁵ % Cf \rightarrow ²⁴ % Cm+ ⁴ / ₂ α ²⁺ + γ 2.6 years half life	10^{18} (Coulombs Law)= 1.2099279×10^{-3} amps	
available per particle)= 2.419855×10^{-3} amps 2.419855×10^{-3} amps= 2.42 mA At 1 second decay of 25 %Cf gives the amount of available 25 %Cf mass= 3.049018×10^{-6} grams, which yields 7.259567×10^{15} alpha particles Providing the positive charge of 4.8397118×10^{-3} amps= 2.42 mA 25 %Cf $\rightarrow {}^{24}$ %Cm+ ${}^{4}\chi a^{2+} + \gamma 2.6$ years half life	$1.2099279 \times 10^{3} \text{ amps} \times 2$ (2 protons double charge	
2.419855 × 10 ⁻³ amps=2.42 mA At 1 second decay of ²⁵ % Cf gives the amount of available ²⁵ % Cf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA ²⁵ % Cf \rightarrow ²⁴ % Cm+ ⁴ / ₂ a ²⁺ + γ 2.6 years half life	available per particle)= 2.419855×10^{-3} amps	
At 1 second decay of 25 %Cf gives the amount of available 25 %Cf mass=3.049018 × 10 ⁻⁶ grams, which yields 7.259567 × 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118 × 10 ⁻³ amps= 2.42 mA 25 %Cf $\rightarrow {}^{24}$ %Cm+ 4 α^{2+} + γ 2.6 years half life	$2.419855 \times 10^{-3} \text{ amps}=2.42 \text{ mA}$	
× 10 ¹⁵ alpha particles Providing the positive charge of 4.8397118×10^{-3} amps=2.42 mA ^{25%} sCf \rightarrow ^{24%} sCm+ ⁴ / ₂ a ²⁺ + γ 2.6 years half life	At 1 second decay of ²³ %Cf gives the amount of available	
Providing the positive charge of 4.8397118×10^{-3} amps=2.42 mA $^{25}\%_{8}Cf \rightarrow ^{24}\%_{6}Cm+\%\alpha^{2+}+\gamma 2.6$ years half life	$^{-798}$ UI mass=3.049018 × 10 ° grams, which yields 7.259567	
amps=2.42 mA $^{25}\%_8$ Cf $\rightarrow ^{24}\%_6$ Cm+ $\frac{4}{3}\alpha^{2+}+\gamma$ 2.6 years half life	\wedge 10 applie particles Providing the positive charge of 4.8307118 \times 10 ⁻³	
$^{25}\%_8$ Cf $\rightarrow ^{248}\%_6$ Cm+ $^{4}/_2\alpha^{2+}$ + γ 2.6 years half life	amps=2.42 mA	
	$^{252}\%_8Cf \rightarrow ^{248}\%_6Cm + ^{4}\!\!/_{2}\alpha^{2+} + \gamma 2.6$ years half life	

25 %Cf \rightarrow % α	
Nuclear decay ionization battery ²³ / ₉₈ Cf POSITIVE	(CONTINUED)Nuclear decay ionization battery [%] ₂₇ Co
potential current	NEGATIVE
Current Calculation 3 rd cycle Plus 0.7 years. Into 4 rd	Current Calculation Above 1 st decay cycle Under the 2 nd
decay cycle	decay cycle
(zero years-2.6 yrs. 2.6 yrs-5.2 yrs=1,000 grams to 500	For 2.6 years
grams to 250 grams)	Part B
Part A	⁶ %7Co half-life 5.27 years
25 %Cf half-life 2.6 years (2.6 × 2=5.2 years)	710.42 grams ^{6%} / ₇ Co at 2.6 years (949 days)
2.6 years = $(2 \times 365 + 0.2 \times 365 = 730 + 73 = 803 \text{ days})$	710.42 g/5.27 years=134.80455 grams/year
5.2 years= $(5 \times 365 + 0.2 \times 365 = 1.825 \times 10^{-5})$	134.80455/365 days=0.3693275 grams/day
$10^3+73=1$ 825+73=1923 55 days)=5 2 years= 1.898 days	0.3693275/24 hours=1.588647 × 10 ⁻² grams/hour
For 5 27 years	$1.588647 \times 10^{-2}/60 \text{ min}=2.564774 \times 10^{-4} \text{ grams/min}$
$(5 \times 365\pm 0.27 \times 365\pm 1.825 \times 10^3\pm 98.55\pm 1.825\pm$	$2.564774 \times 10^{-4}/60 \text{ sec} = 4.274624 \times 10^{-6} \text{ grams/sec}$
$(3 \times 303 \pm 0.27 \times 303 \pm 1.023 \times 10^{+}98.33 \pm 1.023^{+})$	2.304774×10^{-7} /00 sec=4.274024 × 10 grams/sec
90.55-1925.55 days)=5.27 years=1,925.55 days	Granes to Malao Loweria Atomia number
1,923.0 days	Grams to Moles Law Via - Atomic number
Starting with 1000 grams ²⁵ / ₉₈ CI, Amount of grams of	Grams per second to Moles per second: mol
²⁻⁷ / ₉₈ CI remaining at 5.27 years	$^{\circ}27C0=m/M=4.2/4624 \times 10^{-6} \text{ grams}/60=/.1243/39 \times 10^{-8}$
$10=1.6605 \times 10^{27} \text{ kg}$	mol
1 kg= 1×10^{-3} grams	<u>Avogadro's Number Law</u>
1,000g=1 kg	Particles=Avogadro's number \times mol=6.0 \times 10 ²³ \times
$U=1/1.6605 \times 10^{-27} \text{ kg}$	$7.1243739 \times 10^{-8} \text{ mol} = 4.274624 \times 10^{16} \text{ particles/atoms}$
$6.02228 \times 10^{26} \text{ U}=1 \text{ kg}$	4.274624×10^{16} particles/atoms ⁶ % ₇ Co per second
$6.02228 \times 10^{26} \text{ U} \text{ (nuclei)}=1 \text{ kg}$	Mol Ratio Law
Decay constant ²⁵² / ₉₈ Cf	Therefore at a mol ratio of <u>one to one</u> , (1:1);
t½=0.693/λ	With $5.014660 \times 10^{-8} \text{ mol } {}^{6}\text{\%}{}_{7}\text{Co}=4.274624 \times 10^{16} \text{ atoms}$
λ=0.693/ 803 days	6 % ₇ Co, gives equal 4.274624 × 10 ¹⁶ Beta particles
$\lambda = 8.63013698 \times 10^{-4}$	Therefore 4.274624×10^{-6} grams of 6% 7Co yields 4.274624
N=N ₀ e ^{-_At}	$\times 10^{16}$ beta particles
N=6.02228 × 10 ²⁶ nuclei × $e^{-8.63013698\chi 10-4}\chi$ 1923.6	Therefore 4.274624×10^{-6} grams of 6% Co decay material
N=6.02228 × 10 ²⁶ nuclei × $e^{1.60093149}$	per second, yields 4.274624×10^{16} beta particles per second
N=6.02228 × 10 ²⁶ nuclei × 0.2017085	(Coulombs Law): 1 amp is 6×10^{18} electrons per second
$N=3.0394405 \times 10^{26}$ (nuclei)	4.274624×10^{16} beta particles available per second
$1U(nuclei)=1.6605 \times 10^{-27} \text{ kg}$	4.274624×10^{16} beta particles/ 6×10^{18} (Coulombs Law)
1.214745×10^{26} (nuclei) $\times 1.6605 \times 10^{-27}$ kg-X kg	$-7.1243739 \times 10^{-3}$ amps
1.214745×10^{-1} (nuclei) × 1.0005×10^{-1} kg -1.0005×10^{-1} kg	$7.1243739 \times 10^{-3} \text{ amps}$
0.201708 kg	7.1245759 × 10° amps=7.12 mA
0.201708 Kg=201.708 granis	
0.90 granns 201 708 granns 25% of 5 27 magnet (1 022 (down))	
201.708 grams ~798 at 5.27 years (1,925.0 days)	
Nuclear Decay Ionization Battery ²⁵² / ₈ Cf POSITIVE	Nuclear Decay Ionization Battery %27Co NEGATIVE
Potential Current	Potential Current Calculation Above 1 st decay cycle
Current Calculation 3 ^{ru} cycle Plus 0.7 years	Under the 2 ^{^{uu}} decay cycle
Into 4 th decay cycle	For 5.2 years
(zero years-2.6 yrs 2.6 yrs-5.2 yrs-5.27 years=1,000	Part A
grams to 500 grams to 250 grams to 201.708 grams)	⁶ % ₇ Co half-life 5.27 years (5 × 365+0.27 × 365=1.825 ×
For Part B	10 ³ +98.55=1,825+98.55=1923.55 days)=5.27
²⁵ %Cf half-life 2.6 years	years=1,923.55 days
For 5.27 years	1,923.6 days
201.708 grams ²⁵² / ₈₈ at 5.27 years (1,923.6 days)	5.2 years= $(5 \times 365 + 0.2 \times 365 = 1.825 \times 365 + 0.2 \times 365 = 1.825 \times 365 + 0.2 \times 365 = 1.825 \times 365 \times 365 = 1.825 \times 365 \times$
201.708 g /2.6 years=77.580000 grams/year	10 ³ +73=1,825+73=1923.55 days)=5.2 years= 1,898 days
77.580000/365 days=0.2125479 grams/day	Starting with 1,000 grams ⁶ / ₂₇ Co. Amount of grams of
$0.2125479/24$ hours= 8.8561643×10^{-3} grams/hour	% ²⁷ Co remaining at 5.2 years

$8.8561643 \times 10^{-3}/60 \text{ min} = 1.47602739 \times 10^{-4} \text{ grams/min}$	$1U=1.6605 \times 10^{-27} \text{ kg}$
$1.47602739 \times 10^{-4}/60$ sec= 2.4600456×10^{-6} grams/sec.	$1 \text{ kg} = 1 \times 10^{-3} \text{ grams}$
Mass 25 % Cf material available per sec 2.4600456 $\times 10^{-6}$	1.000 g = 1 kg
grams/sec.	$U=1/1.6605 \times 10^{-27} \text{ kg}$
Grams to Moles Law via Atomic number	6.02228×10^{26} U=1 kg
Grams per second to Moles per second:	6.02228×10^{26} U(nuclei)=1 kg
mol^{25} / ₈ Cf=m/M=2.4600456 × 10 ⁻⁶ grams/252=9.7620859	Decay constant ⁶⁰ / ₂₇ Co
$\times 10^{-9}$ mol	t½=0.693/λ
Avogadro's Number Law	$\lambda = 0.693/1923.55$ days
Particles=Avogadro's number \times mol=6.0 \times 10 ²³ \times	$\lambda = 3.6027 \times 10^{-4}$
$mol(9.7620859 \times 10^{-9}) = 5.8572515 \times 10^{15}$ particles/atoms	$N = N_0 e^{-\Lambda t}$
252 Cf $\rightarrow ^{248}$ Cm+ 4 g^{2+} γ 2 6 years half life	N=6.02228 × 10 ²⁶ nuclei × $e^{3.6027} \chi^{10\overline{4}} \chi$ 1898
252 (s Cf \rightarrow 4) 252 (s Cf \rightarrow 4)	$N=6.02228 \times 10^{26}$ nuclei × e ^{-0.68379246}
1.1	$N=6.02228 \times 10^{26}$ nuclei $\times 0.5046993$
Therefore 2 4600456 $\times 10^{-6}$ grams ²⁵² %Cf yields 5 8572515	$N=3.0394405 \times 10^{26}$ (nuclei)
$\times 10^{15}$ particles/atoms of 252 Cf	$1 \text{U} = 3.039 \pm 10^{-1} \text{ (nuclei)}$
\wedge 10 particles/atoms of γ sect	$10 (\text{hucle}) = 1.0005 \times 10^{-10} \text{ Kg}$ $2.0204405 \times 10^{26} (\text{nuclei}) \times 1.6605 \times 10^{-27} \text{ kg} - \text{ V kg}$
At a filled field of one to one 1.1) 5 8572515 \times 1015 particles/stems of 252/. Cf yields	5.0594403×10^{-1} (luclel) $\times 1.0003 \times 10^{-1}$ kg $-\lambda$ kg
5.8572515×10^{15} particles/atoms of ~798C1 yields	5.04.60010 grome
5.8572515×10^{-6} of alpha particles	504.09910 grams
Ineretore 2.4000456 × 10° grams of 2798CI decay material	504.7 grams
per second, yields $5.85/2515 \times 10^{15}$ alpha particles per	504.7 grams %27C0 at 2.6 years (1898 days)
Second	
$\frac{(Coulombs Law):}{1}$ amp is 6×10^{10} electrons per second	
$5.85/2515 \times 10^{15}$ alpha particles.	
alpha particles available per second $5.8572515 \times 10^{13}/6 \times 10^{13}$	
10^{10} (Coulombs Law)=9.762086 × 10 ⁻⁴ amps	
9.762086 \times 10 ⁻⁴ amps \times 2 (2 protons double charge	
available per particle)= 1.9524×10^{-3} amps	
$1.9524 \times 10^{-3} \text{ amps}=1.95 \text{ mA}$	
At I second decay of ²³ % Cf gives the amount of available	
23 / ₉₈ Cf mass=2.4600456 × 10 ⁻⁶ grams, which yields	
5.8572515×10^{13} alpha particles	
Providing the positive charge of 1.9524×10^{-3} amps	
$1.9524 \times 10^{-3} \text{ amps} = 1.95 \text{ mA}$	
25 / ₉₈ Cf \rightarrow 248 / ₆ Cm+ $^{4}/_{2}\alpha^{2+}$ + γ 2.6 years half life	
25 %Cf \rightarrow $\frac{4}{2}\alpha$	
1:1	
	(CONTINUED)Nuclear Decay Ionization Battery ^{6%} ₂₇ Co
	NEGATIVE
	Current Calculation Above 1 st decay cycle Under the 2 nd
	decay cycle
	For 5.2 years
	Part B
	6%7Co half life 5.27 years
	504.69910 grams ⁶ [%] 7Co at 5.2 years (1898 days)
	504.69910 g/5.27 years=95.76833 grams/year
	95.76833/365 days=0.26237898 grams/day
	$0.26237898/24$ hours= 1.0932457×10^{-2} grams/hour
	$1.0932457 \times 10^{-2}/60 \text{ min} = 1.82207629 \times 10^{-4} \text{ grams/min}$
	$1.82207629 \times 10^{-4}/60 \text{ sec} = 3.0367938 \times 10^{-6} \text{ grams/sec}$
	or mass ^{6%} 7Co material available per sec
	Grams to Moles Law via ÷ Atomic number
	Grams per second to Moles per second: mol
	60 / ₂₇ Co=m/M=3.0367938 × 10 ⁻⁶ grams/60=5.0613230 × 10 ⁻⁸
	mol

		Avogadro's Number Law		
		Particles=Avogadro's number \times mol=6.0 \times 10 ²³ \times		
		5.0613230×10^{-8} mol= 3.0367938×10^{16} particles/atoms		
		3.0367938×10^{16} particles/atoms ⁶ % ₇ Co per second		
		Mol Ratio Law		
		Therefore at a mol ratio of <u>one to one</u> , (1:1);		
		With $5.0613230 \times 10^{-8} \text{ mol } {}^{60}\!\!\!/_{27}\text{Co} = 3.0367938 \times 10^{16} \text{ atoms}$		
		$^{60}/_{27}$ Co, gives equal 3.0367938 $\times 10^{16}$ Beta particles		
		Therefore 3.0367938 × 10	-9 grams of %27Co yields	
		3.0367938×10^{16} beta part	icles	
		Therefore $3.0367938 \times 10^{\circ}$	⁻⁹ grams of ⁶ %7Co decay material	
		per second, yields 3.03679	38×10^{16} beta particles per	
		second		
		(Coulombs Law): 1 amp is 6×10^{18} electrons per second		
		3.0367938×10^{16} beta particles available per second		
		3.0367938×10^{16} beta particles/ 6×10^{18} (Coulomb's		
		Law)= 5.061323×10^{-3} amps		
		5.061323×10^{-3} amps= 5.06 mA		
Years	Grams	²⁵² %8Cf	⁶⁰ / ₂₇ Co	
Initial 0 years	1,000	9.68 mA	10.0 mA	
2.6	710.42	4.84 mA	7.12 mA	
5.27	500	1.95 mA	5.0 mA	
5.2	250	2.42 mA	5.06 mA	

REFERENCES

- Storan A, Martine R. Physics VCE Units 1 and 2. Nelson, 3rd Edition Cenage Learning Australia Pty Ltd. 2008;Chapter 4:96-110.
- James M, Stokes R, Wan NG et al. Chemical connections 2, VCE chemistry units 3 and 4. Jacaranda 2nd Edition, John Wiley and Sons Australia. 2000:6.
- 3. Johnson K, Hewett S, Miller J, et al. Advanced physics for you. Oxford 2nd Edition, Oxford University Press. 2015;Chapter 23:320-36.
- James M, Derbogosian M, Bowan S, et al. Chemical Connection 1, VCE Chemistry 1 and 2. Jacaranda 3rd Edition, John Wiley and Sons Australia. 1996;Chapter 3:44-58.
- 5. Chang R, Goldsby KA. Chemistry. 12th edition, Mc Graw Hill Education. 2016;Chapter 7:325.
- James M, Derbogosian M, Bowan S, et al. Chemical Connection 1, VCE Chemistry 1 and 2. Jacaranda 3rd Edition, John Wiley and Sons Australia. 1996;Chapter 3:58-68.

- Leo M Likar. Background ionized radiation battery energy nuclear. Res Rev Electrochemistry. 2019; 9(1)(Article in press):2.
- Johnson K, Hewett S, Miller J. Advanced physics for you, Oxford 2nd Edition, Oxford University Press. 2015;Chapter 26:374-83.
- Johnson K, Hewett S, Miller J. Advanced physics for you, Oxford 2nd Edition, Oxford University Press. 2015;Chapter 25:354-74.
- James M, Stokes R, Wan NG et al. Chemical Connections 2, VCE Chemistry Units 3 and 4, Jacaranda 2nd Edition, John Wiley and Sons Australia. 2000;Chapters 14 and 15:274-314.
- 11. Smith R. Conquering chemistry. Mc Graw Hill HSC Course, 3rd Edition, Mc Graw Hill Australia. 2001;Chapter 3:67-91.
- Leo M. Likar. Background ionized radiation battery energy nuclear. Res Rev Electrochemistry. 2019; 9(1)(Article in press):3.
- Leo M. Likar. Background ionized radiation battery energy nuclear. Res Rev Electrochemistry. 2019; 9(1)(Article in press):4.
- Gautreau R, Savin W. Theory and problems of modern physics. Schaum's Outlines 2nd Edition Mc Graw Hill. 1999;Chapters 19 and 20:193-223.
- Johnson K, Hewett S, Miller J. Advanced physics for you, Oxford 2nd Edition, Oxford University Press. 2015;Chapter 21:288-99.
- James M, Stokes R, Wan NG, et al. Chemical connections 2, VCE chemistry units 3 and 4, Jacaranda 2nd Edition, John Wiley and Sons Australia. 2000;Chapters 22:442-7.
- Johnson K, Hewett S, Miller J. Advanced physics for you, Oxford 2nd Edition, Oxford University Press. 2015;Chapter 29:413.
- James M, Derbogosian M, Bowan S, et al. Chemical connection 1, VCE chemistry 1 and 2. Jacaranda 3rd Edition, John Wiley and Sons Australia. 1996;Chapter 3:59-64.
- 19. Chang R, Goldsby KA. Chemistry. 12th edition, Mc Graw Hill Education. 2016;Chapter 19:862-99 and 883-4.
- 20. Storan A, Martine R. Physics VCE Units 1 and 2. Nelson 3rd Edition Cenage Learning Australia Pty Ltd. 2008;Chapter 5:111-36.
- 21. http://large.stanford.edu/courses/2011/ph241/eason1/