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Abstract 

This paper presents a distinct approach to the analysis of Gravitational Wave (GW) data, integrating astrophysical theories and 

computational programming. The study focuses on the preprocessing, noise filtering, and visualization of GW signals, introducing 

advanced data analysis methods to extract meaningful information and features from the raw GW data. The methodology involves 

downloading GW data from the GW Open Science Center and processing GW data, handling missing values, applying noise filtration, 

normalizing data and employing various plotting techniques to inspect the GW data. Although Machine Learning (ML) is not applied 

in this paper, the data preprocessing methods discussed are crucial for future ML applications in GW astronomy. 
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Introduction 

GW astronomy has revolutionized our understanding of the universe, offering in-sights into cosmic events such as black hole 

mergers and neutron star collisions [1]. The implementation of ML techniques has further enhanced the capability to analyze and 

interpret GW data. This paper integrates astrophysical data analysis with data analysis methodologies to preprocess, filter and 

visualize GW signals, preparing the data for future ML applications [2]. 

Literature Review 

Environment setup 

Import libraries: We import essential libraries that are essential for data handling and visualization (Figure 1). 



www.tsijournals.com | January-2025 

2 

FIG. 1. General libraries imported. 

Data acquisition and setup 

Setting GPS time and detector: For this study, we focus on a specific GW event (GW150914, the first confirmed observation of 

GWs from colliding black holes) (Figure 2) [3]. 

FIG. 2. Locating GPS time for Binary Black Holes merger (BBH) event GW150914 and choosing the Hanford (H1) 

detector. 

Importing time series package 

We ensure that we can successfully import time series from GWPY by installing the other required packages necessary for this 

installation (Figure 3) [4]. 

FIG. 3. Importing time series from GWPY. 

http://www.tsijournals.com/
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Downloading and reading data 

The GW data is downloaded and read into a time series object (Figure 4). 

FIG. 4. Downloading and reading the GW data with the time series package imported in the last subsection. 

Data extraction and handling missing values 

Extracting data: The timestamps and strain values are extracted and stored in a panda’s data frame (Figure 5) [5]. 

FIG. 5. Extracting the time and strain features from the raw GW data file. 

Handling missing values 

Any missing values in the dataset are dropped to ensure clean data (Figure 6). 

FIG. 6. Dropping any Nan values from the dataset. 

http://www.tsijournals.com/
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Data noise filtering and normalization 

Band-pass filtering 

Noise filtering is crucial in GW data analysis due to the presence of various noise sources that can distract us from the true signal. 

One common method is band-pass filtering, which allows signals within a specific frequency range to pass through while 

reducing the significance of signals outside this range [6]. 

Purpose: The goal of band-pass filtering is to isolate the frequency range where GW signals are expected to be prominent, thus 

reducing the impact of noise outside the frequency ranges [7]. 

Application: The low cutoff frequency (20 Hz) and high cutoff frequency (500 Hz) are chosen based on the expected 

characteristics of a BBH event [8]. 

Importance: Applying a band-pass filter helps in enhancing the Signal-to-Noise Ratio (SNR) of the GW data, increasing the 

exposure of the actual signal (Figure 7). 

FIG. 7. Butter band pass function designs a band-pass filter with specified low and high cutoff frequencies, while band 

pass filter function applies the designed filter to the GW data, removing noise outside the specified frequency range. 

Data normalization 

Normalization is another crucial preprocessing step that adjusts the GW data to a common scale, making it easier to analyze and 

compare [9]. 

Purpose: Normalization ensures that the strain data have a mean of zero and a standard deviation of one. This is particularly 

important for the future application of ML algorithms that are sensitive to the scale of the data [10]. 

Importance: Standardizing the strain data is essential for ensuring that all features contribute equally to the analysis and for 

improving the performance of ML models (Figure 8). 

http://www.tsijournals.com/
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FIG.8. Standard Scaler function standardizes the features so that they’re easier for ML algorithms to analyze. 

Discussion 

Data inspection 

Initial data inspection: We briefly look at the data after it’s being preprocessed (Figure 9). 

FIG. 9. Characteristics and features of the preprocessed GW data. 

Data visualization 

Visualization is a key part of data analysis, providing intuitive insights into the structure and characteristics of the GW data. 

Below, we explain the purpose and significance of each plot used in this section [11]. 

Time series plot 

We visualize how the strain data changes over time (Figure 10). 

http://www.tsijournals.com/
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FIG. 10. Graph of time-series plot (strain data versus time). 

In the plot, peaks and troughs may correspond to significant events such as black hole mergers or neutron star collisions and it is 

useful for initial data inspection, allowing us to identify the presence of potential GW events [12]. 

Spectrogram 

We visualize how the frequency content of the strain data changes over time (Figure 11). 

FIG. 11. Graph of spectrograms (strain data’s frequency versus time). 

This plot helps identify transient events and their frequency components, which are crucial for distinguishing between noises and 

actual GW signals. Additionally, spectrograms provide a detailed view of how the signal’s frequency content evolves and 

spectrogram data can be used as 2D GW data for the implementation of certain ML models [13-17]. 

Histogram 

We visualize the distribution of strain values (Figure 12) [18]. 

http://www.tsijournals.com/
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FIG. 12. Graph of histogram (frequency distribution of strain data). 

This plot provides an overview of the data’s spread, central tendency and outliers. This is useful for identifying any anomalies or 

patterns in the data. Besides this, understanding the distribution of the strain values is crucial for subsequent statistical analysis 

and for ensuring that the GW data meets the expectations of various ML algorithms [19,20]. 

Conclusion 

In this paper, we have demonstrated the integration of astrophysical data analysis with programming techniques to preprocess, 

filter and visualize GW data. Band-pass filtering effectively reduces noise, enhancing the SNR.  Normalization ensures that the 

data is on a standard scale, improving statistical analysis and future ML model performance. The visualizations (time-series plot, 

spectrogram, and histogram) provide critical insights into the GW data, enabling the plain identification of GW events and the 

assessment of data quality. Al-though ML is not applied in this paper, the preprocessing methods discussed are essential for 

preparing the data for future ML applications in GW analysis. 
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