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Introduction

GW astronomy has revolutionized our understanding of the universe, offering in-sights into cosmic events such as black hole
mergers and neutron star collisions [1]. The implementation of ML techniques has further enhanced the capability to analyze and
interpret GW data. This paper integrates astrophysical data analysis with data analysis methodologies to preprocess, filter and
visualize GW signals, preparing the data for future ML applications [2].

Literature Review

Environment setup

Import libraries: We import essential libraries that are essential for data handling and visualization (Figure 1).
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rt numpy as np

pandas as pd
rt matplotlib.pyplot as plt
rt requests, os

om scipy.signal import butter, filtfilt, spectrogram
1 sklearn.preprocessing import StandardScaler

import warnings
warnings.filterwarnings('ignore’

FIG. 1. General libraries imported.
Data acquisition and setup

Setting GPS time and detector: For this study, we focus on a specific GW event (GW150914, the first confirmed observation of
GWs from colliding black holes) (Figure 2) [3].

t start = 11262504624
t end = 1126259462.4

detector = '

FIG. 2. Locating GPS time for Binary Black Holes merger (BBH) event GW150914 and choosing the Hanford (H1)
detector.

Importing time series package

We ensure that we can successfully import time series from GWPY by installing the other required packages necessary for this
installation (Figure 3) [4].

from gwpy.timeseries import TimeSeries

! pip install -q "gwp)
! pip install -q "matpl b==3.¢
! pip install -q "astropy==6.1.0"

1 gwpy.timeseries import TimeSeries

FIG. 3. Importing time series from GWPY.
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Downloading and reading data

The GW data is downloaded and read into a time series object (Figure 4).

from gwosc.locate import get_urls
url = get_urls(detector, t_start, t_end)[-1]

fn = os.path.basename(url)
open(fn,'wb"') as strainfile:
straindata = requests.get(url)
strainfile.write(straindata.content)

FIG. 4. Downloading and reading the GW data with the time series package imported in the last subsection.
Data extraction and handling missing values

Extracting data: The timestamps and strain values are extracted and stored in a panda’s data frame (Figure 5) [5].

timestamps = strain.times.value
strain_values = strain.value

data = pd.DataFrame({
‘time®: timestamps,
strain_values

FIG. 5. Extracting the time and strain features from the raw GW data file.

Handling missing values

Any missing values in the dataset are dropped to ensure clean data (Figure 6).

data = data.dropna()

print("\nMissing vals after

print(data.isnul -.Sum

FIG. 6. Dropping any Nan values from the dataset.


http://www.tsijournals.com/

www.tsijournals.com | January-2025

Data noise filtering and normalization
Band-pass filtering

Noise filtering is crucial in GW data analysis due to the presence of various noise sources that can distract us from the true signal.
One common method is band-pass filtering, which allows signals within a specific frequency range to pass through while
reducing the significance of signals outside this range [6].

Purpose: The goal of band-pass filtering is to isolate the frequency range where GW signals are expected to be prominent, thus
reducing the impact of noise outside the frequency ranges [7].

Application: The low cutoff frequency (20 Hz) and high cutoff frequency (500 Hz) are chosen based on the expected
characteristics of a BBH event [8].

Importance: Applying a band-pass filter helps in enhancing the Signal-to-Noise Ratio (SNR) of the GW data, increasing the
exposure of the actual signal (Figure 7).

butter_bandpass(lowcut, highcut, fs, order=5):

nyq = 0.5 * fs

low = lowcut / nyq

high = highcut / nyq

b, a = butter(order, [low, high], btype='band
n b, a

bandpass_filter(data, lowcut, highcut, fs, order=5):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)

y = filtfilt(b, a, data)
return y

lowcut = 20
highcut = 500

data[ ‘strain’'] = bandpass_filter(data[ 'strain’'], lowcut, highcut, 4096)

FIG. 7. Butter band pass function designs a band-pass filter with specified low and high cutoff frequencies, while band
pass filter function applies the designed filter to the GW data, removing noise outside the specified frequency range.

Data normalization

Normalization is another crucial preprocessing step that adjusts the GW data to a common scale, making it easier to analyze and
compare [9].

Purpose: Normalization ensures that the strain data have a mean of zero and a standard deviation of one. This is particularly
important for the future application of ML algorithms that are sensitive to the scale of the data [10].

Importance: Standardizing the strain data is essential for ensuring that all features contribute equally to the analysis and for
improving the performance of ML models (Figure 8).
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scaler = StandardScaler()

data[ 'strain’] =

FIG.8. Standard Scaler function standardizes the features so that they’re easier for ML algorithms to analyze.

Discussion

Data inspection

Initial data inspection: We briefly look at the data after it’s being preprocessed (Figure 9).

scaler.fit_transform(data

First few rows of data:

.126257e+09
.126257e+09
.126257e+09
.126257e+09
.126257e+09

time

Col headers:

Index(["time', ‘strain'], dtype="object"’)

Summary stats:

count
mean
std
min
25%
50%
75%
max

1
1
1
1.
1
1
1
1

time

.677722e+07
.126259e+09
.182413e+03

126257e+09

.126258e+09
.126259e+09
.126260e+09
.126262e+09

strain

.509170
.070279
. 209691
.618610
.256309

strain
1.677722e+07
-1.758737e-17
1.000000e+00
-3.686864e+00
-7.0388868e-01
1.167451e-03
7.087773e-01
4.284804e+00

Missing vals in each col:

time

strain
dtype: int64
Sampling frequency: 4096.0 Hz Hz

FIG. 9. Characteristics and features of the preprocessed GW data.

Data visualization

Visualization is a key part of data analysis, providing intuitive insights into the structure and characteristics of the GW data.
Below, we explain the purpose and significance of each plot used in this section [11].

Time series plot

o
0

We visualize how the strain data changes over time (Figure 10).
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FIG. 10. Graph of time-series plot (strain data versus time).

In the plot, peaks and troughs may correspond to significant events such as black hole mergers or neutron star collisions and it is
useful for initial data inspection, allowing us to identify the presence of potential GW events [12].

Spectrogram

We visualize how the frequency content of the strain data changes over time (Figure 11).

Spectrogram of Strain Data
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FIG. 11. Graph of spectrograms (strain data’s frequency versus time).
This plot helps identify transient events and their frequency components, which are crucial for distinguishing between noises and
actual GW signals. Additionally, spectrograms provide a detailed view of how the signal’s frequency content evolves and
spectrogram data can be used as 2D GW data for the implementation of certain ML models [13-17].
Histogram

We visualize the distribution of strain values (Figure 12) [18].
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FIG. 12. Graph of histogram (frequency distribution of strain data).

This plot provides an overview of the data’s spread, central tendency and outliers. This is useful for identifying any anomalies or
patterns in the data. Besides this, understanding the distribution of the strain values is crucial for subsequent statistical analysis
and for ensuring that the GW data meets the expectations of various ML algorithms [19,20].

Conclusion

In this paper, we have demonstrated the integration of astrophysical data analysis with programming techniques to preprocess,
filter and visualize GW data. Band-pass filtering effectively reduces noise, enhancing the SNR. Normalization ensures that the
data is on a standard scale, improving statistical analysis and future ML model performance. The visualizations (time-series plot,
spectrogram, and histogram) provide critical insights into the GW data, enabling the plain identification of GW events and the
assessment of data quality. Al-though ML is not applied in this paper, the preprocessing methods discussed are essential for
preparing the data for future ML applications in GW analysis.
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