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Abstract : Electroosmotic flow through a nano tube
and nano channel has many applications in biomechanics
and other sciences. Electroosmosis is the movement
of solvent together with solute under an applied elec-
tric field. For solving of the Governing equations on
Electroosmotic flow we can use some semi analytical
methods such as Reconstruction of Variational Itera-
tion Method (RVIM). Unlike perturbation method the
RVIM is independent of small parameters. RVIM tech-
nique is a powerful and convenient algorithm in finding
the approximate solutions for the linear and nonlinear
equations. While RVIM is capable of reducing the size
of calculation, it omits the difficulty arising in calculat-

ing nonlinear intricately terms. Also, it overcomes the
difficulty of the Adomian polynomials by applying
Laplace Transform and avoiding the use of Lagrange
multiplier. In this paper, Poisson-Boltzmann equation
has been investigated. This equation is employed in
electrokinetic phenomena. Poisson-Boltzmann equa-
tion for a 30 nm diameter nano tube has been solved
on the curvilinear coordinates. RVIM is applied and it
is shown that accuracy and convergence of the results
is good. Global Scientific Inc.

Keywords : Electroosmotic flow; Nano tube; Pois-
son-Boltzmann equation; Semi analytical solutions.

INTRODUCTION AND MATHEMATICAL
MODELING

Recently, after introducing micro fabrication tech-
nologies, several possibilities in the case of micro fluidic
devices have been invented. This idea has been ex-
panded to nano fluidic devices and followed by some
modern technologies such as Lab-on-a-Chip. One of
the most important subsystems of the micro and nano
fluidic devices is micro and nano Channel. Nano chan-

nel term is referred to channels with hydraulic diameter
less than 100 nanometers[1]. Some of the physical pa-
rameters such as surface tension are negligible in nor-
mal sizes. By decreasing the size and hydraulic diam-
eter, these physical parameters will be more significant.
Concentrating surface loads in liquid � solid interface

makes the EDL to be existed. If the loads are concen-
trated in the end of nano channels, a potential differ-
ence will be generated that forces the ions in the nano-
channel. However, induced electric field is discharged
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by electric conduction of the electrolyte. In 1870 ac-
cording to the first significant work that was introducing
the EDL by Helmholtz, flow and electricity parameters
for electrokinetic transport were detected.
Electroosomotic processes have been utilized since
1930s. Electroosmotic flow is commonly used in micro

fluidic devices[2], soil analysis and processing[3].
Modern theoretical progresses in the case of elec-

trokinetic flow can be found in[4-8]. Burgreen and
Nakache[4] and Oshima and Kondo[5] studied the flow
between two parallel plates. Also, Rice and White-
head[6], Lu and Chan[7] and Ke and Liu[8] studied the
flow in capillary tube. By the way, some papers con-
sider curvilinear coordinates in this case[9,10]. Also, all
of them studied the problem with existence of the pres-
sure gradient while in the modern applications, the pres-
sure gradient can be eliminated and consequently, solv-
ing the problem considering this fact is necessary. In
this paper, for small zeta potentials without pressure
gradient will be studied based on the curvilinear coor-
dinates in a nano tube by RVIM methods and next,
results will be compared by analytical and numerical
ones. Equations governing the electrokinetic phenom-
ena for rectilinear coordinates system have been inves-
tigated[11,12]. Also these equations govern the nano tube
electrokinetic phenomena in curvilinear coordinates sys-
tem as follow, Figure 1[13]:
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Equations (1) to (4) represent the Poisson-
Boltzmann, Navier-Stokes and conservation of spe-
cies equations respectively. In these equations, r is di-
mensionless radius that is normalized by nano tube ra-
dius; u is dimensionless velocity that is normalized by
free stream velocity U

0
.  is ionic strength, q is the el-

ementary charge and  is Debye-Huckel parameter. 
e

is dielectric constant of water, 
r
 is the relative

permittivity of the solvent and 
0
 is the permittivity of

free space. R is gas constant, T is temperature and F is
Faraday constant. k

B
 is Boltzmann�s constant,  is dy-

namic viscosity and X is concentration ratio of cation
(p subscript) and anion (n subscript). Also,  is dimen-
sionless potential that is normalized by zeta potential.
And E

0
 is the applied electric field. In this paper, it is

assumed that, zeta potential is too small. Assuming
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This is the simplified form of Poisson-Boltzmann
Equation for diffuse layer in nano tube with small zeta
potential and consequently, this paper main case study.

RVIM METHOD AND CONVOLUTION
THEOREM

In this section, an alternative method for finding the
optimal value of the Lagrange multiplier by the use of
the Laplace transform will be investigated[14,15]. Sup-
pose x is the independent variable; When the Laplace
transform is applied to x as variable, definition of Laplace
transform is
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We often come across functions which are not the
transform of known functions. But, by means of the
convolution theorem, we can take the inverse laplaceFigure 1 : Schematic of electroosmotic flow
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transform. The convolution of u(x) and (x) is written
as u(x)  (x). It is defined as the integral of the func-

tions after one is reversed and shifted.
If U(s) and V(s) are the Laplace transform of u(x)

and (x), respectively. Then U(x) V(s) is the Laplace

Transform of  
0

( ) ( )
x
u x v d    so we can take in-

verse Laplace Transform as below,

  1

0
( ) ( ) ( ) ( )

x
U s V s u x v d      L (10)

To illustrate the concept of the RVIM, we consider
the following general differential equation

 ( ( ) ) ( ( ) ) ( )L u x N u x f x  (11)
Where L and N are linear and nonlinear operators re-
spectively. And f(x) is the forcing term. To facilitate our
discussion of RVIM, introducing the new function
h(u(x)) = f(x) - N(u(x)) and considering the new equa-
tion, rewrite Eq. (11) as,

 ( ( )) ( , )L u x h u x (12)

Now, for implementation the RVIM technique
based on new idea of Laplace transform, apply Laplace
Transform on both sides of the Eq. (12). Now we in-
troduce artificial initial conditions to zero for main prob-
lem, then left hand side of equation after transformation
featured as
  ( ( ) ) ( ) ( )L u x U s P sL (13)

Where P(s) is polynomial with the highest order de-
rivative of the selected linear operator.
    ( ( ) ) ( ) ( ) ( , )L u x U s P s h u x L L (14)
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Using the convolution theorem we have
  ( ) ( ). ( ) ( ) * ( , )U s D s H s d x h u x  L (16)

Taking the inverse Laplace transform on both sides
of Eq. (16)
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Thus the following reconstructed method of varia-
tional iteration formula can be obtained
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SOLVING PROBLEM BY RVIM METHOD

First, we consider Eq. (5), with the initial condition,

 0 ( ) (0 )r a   (19)

Considering Eq. (12) for this equation we have,
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Applying Laplace Transform with respect to vari-
able r to both sides of Eq. (20), one can get,

  [ ] ( ) ( ( 0 ) , )s s h r  L (21)
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Using the inverse Laplace Transform and convolu-
tion theorem, we have
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So, in exchange with applying recursive algorithm,
following relations are achieved
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So we have,

 2
1 ( ) 5 0r a a r     (25)

 4
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(27)

The above process is continuous.
To obtain the value of a, we substitute the bound-

ary condition from Eq. (5) into 
i
(r, a) at y=1. Solving


i
(a) = 1, gives the value of a. This value is long that

are not shown in this paper. By substituting obtained a,
we can calculate the expressions of 

i
(r). By compar-

ing the results of this simulation TABLE 1 can be devel-
oped for 10th order RVIM[12].

Figures Plotted by RVIM are shown in Figure 2 to
5 in various coordinates. As shown in Figure 2, while
we put the bigger amount of epsilon we have more po-
tential. In increase of epsilon the angel of curve shown
dimensionless potential increases. Figures 3 and 4 show
the contours of these amounts in case of increase of
epsilon as well. Also the spherical coordinate of poten-
tial plot is simulated in Figure 5. Meaningfully, the trends
of increasing amount of the potential are obvious in Fig-
ures 3 to 5 same as Figure 3. Due to the definition of ,

Debye-Huckel parameter 
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TABLE 1 : Comparison of the results by the three different
methods

r RVIM Results Numerical Results HPM Results 

0.0 0.00035 0.00000 0.00036 

0.1 0.00037 0.00039 0.00046 

0.2 0.00061 0.00077 0.00082 

0.3 0.00155 0.00167 0.00176 

0.4 0.00396 0.00390 0.00401 

0.5 0.00967 0.00945 0.00981 

0.6 0.02417 0.02342 0.02421 

0.7 0.05986 0.05891 0.06070 

0.8 0.15152 0.14980 0.15393 

0.9 0.38802 0.38405 0.39367 

1.0 1.00000 1.00000 1.01330 

the relative permittivity of the solvent, the permittivity

of free space and the Boltzmann�s constant in different

cases. Further, the temperature has its portion in in-
creasing the potential. Moreover, the decrease in the
amount of ionic strength and the elementary charge
causes the potential amount to be increased.

CONCLUSION

In this work, our main concern has been to study
applicability of RVIM in solving a nonlinear singular dif-
ferential equation. The example presented here is the
Poisson-Boltzmann equations governing electrokinetic
flow inside a nano tube with small zeta potential. An
approximation to the analytic solution for the range -1

Figure 2 : Dimensionless potential for different values of 
from 0 to 1 and r from -1 to 1in cylinder coordinate

Figure 3 : Dimensionless potential amount for different val-
ues of  from 0 to 1 and r from -1 to 1

Figure 4 : Dimensionless potential amount for different val-
ues of  from 0 to 1 and r from -1 to 1

Figure 5 : Potential for different values of  from 0 to 1 and r
from -1 to 1in spherical coordinate
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to 1 was obtained by applying the RVIM Method. A
comparison of the results presented in this article with
the results obtained by HPM is given[10]. It suggests
that the Method is accurate, reliable and easy to use.
Furthermore, as it can be seen in TABLE 1, in some
cases, the result that has been obtained from RVIM
has more consistency with HPM solution rather than
numerical ones. The nearer to the nanotube wall, the
more singularity the equation has and consequently,
RVIM results will have less reliability, but as it can be
easily seen, over 90% of the solution field, RVIM re-
sults have more consistency than numerical results. Af-
ter all, we can accept RVIM as well. As a result, after
simulation, validation with other methods is mandatory
in order to avoid wrong approaches. While it is obvi-
ous in paper, RVIM does not have the limitation that
HPM has in finding first guess of the solution. As it has
been mentioned, results in this paper are validated by
other approach achieved by[12].
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