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Abstract : Electroosmotic flow through anano tube
and nano channd hasmany gpplicationsinbiomechanics
and other sciences. Electroosmosisisthe movement
of solvent together with solute under an applied el ec-
tric field. For solving of the Governing equationson
Electroosmotic flow we can use some semi and ytical
methods such as Reconstruction of Variational Itera-
tion Method (RVIM). Unlike perturbation method the
RVIM isindependent of small parameters. RVIM tech-
niqueisapowerful and convenient agorithminfinding
the approximate sol utionsfor thelinear and nonlinear
equations. WhileRVIM iscapableof reducingthesize
of caculation, it omitsthedifficulty arisingin cacul at-

INTRODUCTIONAND MATHEMATICAL
MODELING

Recently, after introducing micro fabricationtech-
nologies, severd posshilitiesinthecaseof microfluidic
devices have been invented. Thisidea has been ex-
panded to nano fluidic devices and followed by some
modern technol ogies such as Lab-on-a-Chip. One of
the most important subsystems of themicro and nano
fluidic devicesismicro and nano Channdl. Nano chan-

ing nonlinear intricately terms. Also, it overcomesthe
difficulty of the Adomian polynomials by applying
Laplace Transform and avoiding the use of Lagrange
multiplier. In thispaper, Poisson-Boltzmann equation
has been investigated. Thisequationisemployedin
el ectrokinetic phenomena. Poi sson-Boltzmann equa
tion for a30 nm diameter nano tube has been solved
onthecurvilinear coordinates. RVIM isapplied and it
isshown that accuracy and convergence of theresults
isgood. © Glabal Scientificlnc.

K eywor ds: Electroosmotic flow; Nano tube; Pois-
son-Boltzmann equation; Semi anaytical solutions.

nel termisreferred to channel swith hydraulic diameter
lessthan 100 nanometersl. Someof the physical pa-
rameters such assurfacetension arenegligiblein nor-
mal sizes. By decreasing thesize and hydraulic diam-
eter, these physicd parameterswill bemoresignificant.
Concentrating surfaceloadsin liquid —solid interface
makesthe EDL to beexisted. If theloads are concen-
trated inthe end of nano channels, apotential differ-
encewill begenerated that forcestheionsin the nano-
channel. However, induced e ectric field isdischarged
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by electric conduction of the electrolyte. In 1870 ac-
cordingtothefirst significant work that wasintroducing
the EDL by Helmholtz, flow and dectricity parameters
for electrokinetic transport were detected.
Electroosomotic processes have been utilized since
1930s. Electroosmotic flow iscommonly usedin micro
fluidic devices!?, soil analysisand processing®.

Modern theoretical progressesin the caseof elec-
trokinetic flow can be found in“®, Burgreen and
Nakache” and Oshimaand K ondo™ studied theflow
between two parallel plates. Also, Rice and White-
head®, Lu and Chanl” and Ke and Liu'® studied the
flow in capillary tube. By theway, some papers con-
sider curvilinear coordinatesin thiscasd®%. Also, dl
of them studied the problem with existence of the pres-
suregradient whileinthemodern gpplications, thepres-
suregradient can be eliminated and consequently, solv-
ing the problem considering thisfact isnecessary. In
thispaper, for small zetapotential swithout pressure
gradient will be studied based on the curvilinear coor-
dinates in anano tube by RVIM methods and next,
resultswill be compared by analytical and numerical
ones. Equationsgoverning the el ectrokinetic phenom-
enafor rectilinear coordinates system havebeeninves-
tigated™2, Also these equations govern the nano tube
electrokinetic phenomenain curvilinear coordinatessys-
tem asfollow, Figure 11*3;
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Figurel: Schematic of electroosmotic flow
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Equations (1) to (4) represent the Poisson-
Boltzmann, Navier-Stokes and conservation of spe-
ciesequationsrespectively. Intheseequations, risdi-
mensionlessradiusthat isnormalized by nano tubera
dius; uisdimensionlessve ocity that isnormalized by
freestreamvelocity U .. Bisionic strength, qisthed-
ementary chargeand ¢is Debye-Huckel parameter. &,
is dielectric constant of water, ¢ is the relative
permittivity of the solvent and & isthe permittivity of
freespace. Risgasconstant, T istemperatureand Fis
Faraday constant. k; is Boltzmann’s constant, 4iSdy-
namic viscosity and X isconcentration ratio of cation
(p subscript) and anion (n subscript). Also, gisdimen-
sionlesspotentia that isnormalized by zetapotential.
AndE_istheapplied éectricfield. Inthispaper, itis
assumed that, zeta potential istoo small. Assuming

g &K T

r

£q

L1224 @r-0=g-0and @r-1=4-1(9)
Thisisthesimplified form of Poisson-Boltzmann

Equationfor diffuselayer in nano tubewith small zeta

potentia and consequently, thispaper main casestudy.

RVIM METHODAND CONVOLUTION
THEOREM

Inthissection, an dternativemethod for finding the
optimal vaueof the Lagrange multiplier by the use of
the Laplacetransform will beinvestigated™. Sup-
pose xistheindependent variable; When the Laplace
trandformisgppliedtox asvariable, definitionof Laplace
transformis

L {u(x,t);s} = j:e’s‘u(x.t)dt (6)
S R L
) {2;2' ,s}: 52U (s) - su(0) - u,(0) ®)
U(s)=L {u(x);s} ®

We often come acrossfunctionswhich arenot the
transform of known functions. But, by means of the
convolution theorem, we can taketheinverselaplace
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transform. The convolution of u(x) and v(x) iswritten
asu(X) x UX). Itis defined as the integral of the func-
tionsafter oneisreversed and shifted.

If U(s) and V(s) arethe Laplacetransform of u(x)
and V(X), respectively. Then U(x) xV/(s) isthe Laplace
Transform of jox u(x—¢)-v(e)de sowecantakein-
verseLaplace Transform asbel ow,

LU (s)*V(s)}:j:u(x—g).v(g)dg (10)

Toillustratethe concept of theRVIM, we consider
thefollowing generd differentid equation

L(u(x)) + N (u(x)) = f(x) (11)
WhereL and N arelinear and nonlinear operatorsre-
spectively. And f(x) istheforcing term. Tofacilitate our
discussion of RVIM, introducing the new function
h(u(x)) =f(x) - N(u(x)) and considering the new equa-
tion, rewrite EQ. (11) as,

L(u(x)) = h(u,x) (12

Now, for implementation the RVIM technique
based on new ideaof Laplacetransform, apply Laplace
Transform on both sides of the Eg. (12). Now wein-
troduceartificia initial conditionsto zerofor main prob-
lem, thenleft hand Sde of equation after transformation
featured as
L {L(u(x))}=U (s)P(s) (13)
Where P(s) ispolynomial with the highest order de-
rivative of the selected linear operator.
L {L(u(x))}=U(s)P(s) =L {h(u,x)}

L {h(u,x)}
P(s)

(14)

U(s)= (15

And supposethat D(s) =% and L {h(u,x)} =H(s).
Usngthe convolution theoremwehave
U (s)=D(s).H(s)=L {d(x)*h(u,x)} (16)
TakingtheinverseLaplacetransform onboth sides
of EqQ. (16)
u(x):j:d(x—g).h(u,g)dg (17)
Thusthefollowing reconstructed method of varia-
tiond iteration formulacan be obtained

Uy (X) = Ug(X) + [ d(x-2)-h(u,,&)de (18)

SOLVING PROBLEM BY RVIM METHOD

First, weconsder Eq. (5), withtheinitia condition,
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Po(r)=¢(0)=a (19)
Considering Eq. (12) for thisequationwehave,

h(u,x)

Lip,r)=22-92 99, (20)

or or

Applying Laplace Transform with respect to vari-
abler to both sides of Eq. (20), one can get,
[sl® (s) =L {h(p(0),r)}

L {h(go,r)} (22)

Using theinverseLaplace Transform and convolu-
tion theorem, we have
o (r) = [ hip, s)ds (23)
So, inexchangewith gpplying recursiveagorithm,
followingrelationsareachieved

(21)

D (s) =

rpn+1(r)=<po(r)—f;((p”g—(zs)—a(pa”—s(s))ds (24)
Sowe have,

p,(r)=a+50-a-r? (25)

p,(r)y=a+416.7-a-r* (26)

o, (1) =a+50-a-1> —1389-a-r*

+1388.9-q-7°¢ (27)

Theabove processiscontinuous.

To obtainthevalue of a, we substitute the bound-
ary conditionfrom Eg. (5) into ¢(r, a) at y=1. Solving
¢(a) =1, givesthevalueof a. Thisvalueislong that
arenot showninthispaper. By substituting obtained a,
we can cal culate the expressions of ¢ (r). By compar-
ingtheresultsof thissmulation TABLE 1 can bedeve-
oped for 10th order RVIM[2,

FiguresPlotted by RVIM areshowninFigure2to
5invariouscoordinates. AsshowninFigure 2, while
we put the bigger amount of epsilonwehave more po-
tentid. Inincrease of epsilontheangd of curve shown
dimensionlesspotentia increases. Figures3 and 4 show
the contours of these amountsin case of increase of
epsilonaswell. Also the spherica coordinate of poten-
tid plotissmulaedin Fgure5. Meaningfully, thetrends
of increasingamount of the potential areobviousinFig-
ures3to5sameasFigure 3. Duetothedefinition of &,

kT
Debye-Huckel parameter ¢ = ,/% ,wehavea

rise in the amount of the potential in increase of
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TABLE 1: Comparison of theresultsby thethreedifferent

methods

r RVIM Results Numerical Results HPM Results

0.0 0.00035 0.00000 0.00036
0.1 0.00037 0.00039 0.00046
0.2 0.00061 0.00077 0.00082
0.3 0.00155 0.00167 0.00176
04 0.00396 0.00390 0.00401
05 0.00967 0.00945 0.00981
0.6 0.02417 0.02342 0.02421
0.7 0.05986 0.05891 0.06070
0.8 0.15152 0.14980 0.15393
0.9 0.38802 0.38405 0.39367
1.0 1.00000 1.00000 1.01330
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Figure?2: Dimensionlesspotential for different valuesof &
fromOtolandr from-1to lin cylinder coordinate
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Figure3: Dimensionlesspotential amount for different val-
uesof efromOtolandr from-1to1l
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Figure4: Dimensionlesspotential amount for different val-
uesof efromOtolandr from-1to1l
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Figure5: Potential for different valuesof efromQOtolandr
from-1tolin spherical coordinate

the relative permittivity of the solvent, the permittivity
of freespaceand the Boltzmann’s constant in different
cases. Further, the temperature hasitsportioninin-
creasing the potential. Moreover, the decreasein the
amount of ionic strength and the elementary charge
causesthe potential amount to beincreased.

CONCLUSON

Inthiswork, our main concern hasbeen to study
goplicability of RVIM insolvinganonlinear sngular dif-
ferential equation. The example presented hereisthe
Poi sson-Boltzmann equationsgoverning e ectrokinetic
flow insideanano tubewith small zetapotentia. An
approximation to theanaytic solution for therange-1
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to 1 was obtained by applying the RVIM Method. A
comparison of theresultspresented inthisarticlewith
the results obtained by HPM is given?, It suggests
that the Method is accurate, reliable and easy to use.
Furthermore, asit can beseenin TABLE 1, in some
cases, the result that has been obtained from RVIM
has more consistency with HPM solution rather than
numerical ones. The nearer to the nanotubewall, the
more singularity the equation has and consequently,
RVIM resultswill havelessreliagbility, but asit canbe
easily seen, over 90% of thesolutionfield, RVIM re-
sultshavemore consi stency than numerical results. Af-
ter all, wecan accept RVIM aswell. Asaresult, after
smulation, vaidationwith other methodsismandatory
inorder to avoid wrong approaches. Whileit isobvi-
ousin paper, RVIM does not havethelimitation that
HPM hasinfinding first guessof the solution. Asit has
been mentioned, resultsin this paper arevalidated by
other approach achieved by!*2.
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