
Abstract 
Cellulose, lignin and extractive material are mixed in certain proportions by having isolated from lignocellulosic materials, such as 

zeyrek stem, hazelnut shell and Scotch pine, respectively. Their Higher Heating Values (HHVs) are determined by using a bomb 

calorimeter system. Estimated HHVs are calculated by applying these mixture ratios to some Multiple (Non)-Linear Regression (M (N) 

LR) and Artificial Neural Network (ANN) models from the literature. MLR3 model is developed from the data of this study and this 

model reveals the highest R2 (0.974), lowest MAPE (0.012) and RMSE (0.278) values. The closest estimation accuracy to the MLR3 

model is obtained from MLR2 (R2:0.972, MAPE: 0.066 and RMSE: 1.714) in the comparative analysis. MNLR and ANN equations 

containing quadratic terms are found to show deviations up to 132.6% (ANN3). It is attributed to the lower size and poor homogeneity 

of the individual group of samples from which model equations are developed. 
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Introduction 
A rapidly increasing population and industrialization create the need for energy. Biomass energy, a renewable source, is one of 

the sources that are used to ensure that energy can be provided sustainably without causing environmental pollution. Biomass is 

quite diverse due to the herbal and animal waste it contains. Herbal biomass contains cellulose, hemicellulose, lignin, lipids, 

simple sugars, starch, water, hydrocarbons, ash and other components [1]. Biomass is not a standard compound, whose chemical 

composition, physical properties and thermal properties vary considerably and it is important to determine these properties. One 

of these properties, the Higher Heating Value (HHV), is an important parameter to consider in order for biomass to be converted 

into biofuel. 

The HHV is important and necessary in order to make an energy analysis of a system. A calorimeter bomb is used to measure 

HHV. This method is complex and time consuming due to the need for expensive experimental equipment, the devices that 

require certain expertise in their use and the operations [2,3]. Therefore, the number of studies aimed at developing useful 

theoretical equations to predict HHVs of lignocellulosic materials based on some analysis results (such as elemental analysis, 

proximate analysis or structural analysis) that can be obtained with much simpler and more basic instruments available in any 

laboratory has increased in the last two decades [4,5]. 

These studies are mostly based on the dulong approach developed for coal and often use elemental analysis results [6]. While the 

initial equations developed for the estimation of HHVs of plant biomass focus on the results of elemental analysis [7,8]. It is 

revealed that the equations based on the results of proximate analysis and/or structural analysis can also be used for this purpose 

in later studies. The number of studies based on structural analysis data is very limited [9]. 

HHV estimations, which are made by using structural analysis results, contain several difficulties and conveniences. Cellulose, 

lignin and extractive substance analysis can be performed relatively easily with simple laboratory equipment [10]. However, 

cellulose has a hard and water insoluble structure in addition to being a fibrous polymer [11]. Lignin, on the other hand, is a 
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biopolymer with a wide variety of functional groups and ten different bond types [12]. These features make their structures even 

more complex. The chemical composition of a material is closely related to its HHV and this relationship can be observed by the 

variability of the HHV estimating equations based on chemical composition [13]. 

The effect of the interaction of variables on the result has been studied by using many modern techniques. The Artificial Neural 

Network (ANN) approach has been widely used over the last three decades in various applications such as classification, 

modeling, principal component analysis of data driven nonlinear data, estimation of solar radiation and wind speed geothermal 

heating systems and food drying properties [14-18]. In a study using the ANN approach; it has been revealed that time and cost 

saving studies can be done with less error and without experimentation to obtain a hydrogen rich gas mixture from the pyrolysis 

of lignocellulosic wastes [19]. Multiple Linear Regression (MLR) is a technique usually used in statistics. Its purpose is to 

predict the possible outcome by revealing the relationship (for instance by drawing a graph) between multiple independent 

variables and a single dependent variable [20]. Buyukada examined the thermo gravimetric behavior of co-combustion of 

hazelnut shell coal and walnut shell lignite mixtures in two separate studies and tried to estimate the percentage of mass loss with 

the help of the most appropriate MLR models [21,22]. He also examined the thermo gravimetric behavior of co-combustion of 

peanut and coal and estimated the mass loss in the combustion process with ANN models in another study [23]. The method of 

ANN is used to determine the relationship between the chemical composition and properties of biodiesel [24]. 

According to the literature survey performed in the studies based on structural analysis, natural lignocellulosic samples are 

mostly used, but there are no studies based on the experimental HHV measurement results of mixtures prepared in certain and 

desired proportions of components such as pure lignin, cellulose and extractives. It is seen that the average of the lignin contents 

of the samples (approximately 90 samples) used in the examined articles is between 14.3%-43.7% and the average of the 

extractives is between 3.7%-22.6% [25-28]. However, it is known that there are lignocellulosic materials with lignin and 

extractives apart from these values [29,30]. It is thought that the samples with such extraordinary values are not included in the 

study, so this will lead to a relatively narrowing of the range of linearity of the estimation equation obtained. This, in turn, will 

affect estimation performance of the model. 

Lignocellulosic components of plant stems, scapes, branches and leaves are processed in various ways using thermal or 

biochemical processes to produce biofuels. These components can determine the characteristics such as HHV of the obtained 

biofuel. The studies in the literature usually consist of the analysis of natural samples and correlate them (component and HHVs) 

to each other. In this study, the estimating power of the traditional Multiple (Non) Linear Regression (M (N) LR) analysis and 

ANN based models previously developed in the literature were tried to be compared by using the experimental HHVs of the 

samples prepared at certain proportions by mixing cellulose, lignin and extractives isolated from natural samples. It was also 

investigated whether there was a statistically significant improvement in prediction power with the use of ANN based equations. 

Thus, other known and/or unpredictable factors that might affect the combustion process are minimized and only the interactions 

between the energy intensive components of the lignocellulosic biomass (lignin and extractive content for this study) were taken 

into account and their effects on the prediction equations were examined more closely. 

Materials and Methods 

Sampling and preparation for analysis 

The powdered samples of Scotch pine (Pinus sylvestris), Linum usitatissimum L stem (Locally known as Zeyrek) and hazelnut 

shell (Corylus avellana) were kept in a drying oven at 100°C for 3 hours to dry them. Then, they were ground in an IKA A11 

model laboratory type mill. The dried and ground biomass samples were separated into various particle sizes with the help of the 

Retsch AS 200 model vibrating sieve (15-20 minute sieving time at 60 Hz intensity). The samples with a particle size of 125-250 

µm was used in the analyses. 

Original wood analyses and preparation of samples 

The analyses conducted on the samples and the corresponding standards are presented in Table 1. 

TABLE 1. The analyses conducted on the samples and the corresponding standards. 

Analysis Method 

Moisture content (wt. %) ASTM D2016-74 

Ash ASTM D1102-84 

Volatile compounds ASTM E897-82 

Fixed carbon ASTM E870-82 
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Cellulose Kurschner-Hoffer's nitric acid method 

Lignin TAPPI T222-om02 

Extractives TAPPI T204-om88 

HHV DIN 51900-2 

The procedure that was used in the study about the preparation of the mixture samples is as follows. The amounts of cellulose, 

lignin and extractive substances weighed out to the nearest 0.1 mg were mixed at predetermined ratios and stored in a desiccator 

for HHV measurements. The applied mixing ratios were determined based on literature data. Accordingly, the lower limit for 

lignin was determined as 10% and the higher limit was determined as 50%, while the lower limit for the extractive substance was 

determined as 5% and the higher limit was determined as 45%. Cellulose was used as the carrier medium of lignin and extractive 

in a fixed ratio (45%) in the study. It has been reported in the literature that the HHV of cellulose does not depend on the kind of 

biomass, but HHVs of the lignin and extractives are (such as softwood, hardwood, straw). The extractive substance used was 

prepared as a solution whose concentration is known exactly due to its viscous feature [31]. Then, that solution was impregnated 

into the lignin cellulose mixture in the weighing bowl (in that case, decomposition vessel of calorimeter system) and dried in a 

drying oven until a constant weight is obtained. The HHVs of the samples were measured by using the IKA C2000 calorimeter 

device. 

Selection of regression models 

It was found in the literature that there is a linear relationship between carbon content and HHV for different wood species [32]. 

It is also known that the amount of lignin in different woody biomass species generally varies between 20% and 40% and it is 

demonstrated by various studies that it has a positive effect on HHV due to its high carbon content [33]. Extractives, on the other 

hand, are found in fewer amounts than other components of biomass. However, they can provide HHV due to their content of 

complex and variable compound profiles such as waxes, alkaloids, simple sugars, proteins, simple and complex phenolics, 

pectins, mucilages, resins and terpenes. Therefore, the effect of these two component types is considered important in many 

studies to predict HHVs from structural component analysis values of lignocellulosic materials. Hence, the models that highlight 

the contribution of these two structural components are taken into account in the selection of the equations included in the 

present study. One MLR equation is obtained from the data of this study using the IBM SPSS statistical program package 

(MLR3), while two MLR, one MNLR and three ANN equations are selected from the studies in the literature. 

Multiple (Non) Linear Regression Analyses (M (N) LRAs): Regression analysis is a statistical technique for estimating the 

relationship between variables which have cause and effect connection. The main focus of univariate regression is to analyze the 

relationship between a dependent variable and an independent variable and formulate the linear relationship equation between 

them. Regression models that include one dependent variable and more than one independent variable are called multiple linear 

regressions. In the study, Multiple Linear Regression (MLR) was used to explain the effect of variables such as lignin and 

extractive contents on HHV. The relationships between these dependent and independent variables can be linear or non-linear 

(MLR or MNLR). Nonlinear Regression (MNLR) is a form of regression analysis that is modeled by a function which is a 

nonlinear combination of data and includes one or more independent variables. Multiple Linear Regression (MLR) analysis has 

been used in many studies in the literature to explain the effect of cellulose, lignin and extractive contents on the HHV [34,35]. 

In some studies, Multiple Nonlinear Regression Analysis (MNLRA) in which equations containing quadratic terms that take into 

account the interaction contributions of these components to HHV are obtained is used [36,37]. 

Artificial Neural Network (ANN): Artificial Neural Networks (ANNs), inspired by the information processing technique of the 

human brain, have recently found a place in many different engineering applications. In particular, ANN has received significant 

attention due to its high performance in classification, modeling and estimating applications. With ANN, the way the simple 

biological nervous system works is imitated. In other words, it is the digital modeling of biological neuron cells and the synaptic 

bond that these cells establish with each other. An artificial neuron is the core processing unit of an ANN and can be 

implemented in a variety of ways. Figure 1 depicts the general architecture of an artificial neuron. In this manner, the input from 

the previous layer neuron's output is multiplied by the weight value. Usually, initial weights are assigned at random. As can be 

seen in this figure, the inputs, Weights (W), activation function (f) and output are the basic components that make up a simple 

artificial neuron (Figure 1).  
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FIG. 1. An artificial neuron model. 

In Figure 1, the output of a neuron can be described as follows: 

Neurons form networks by connecting to each other in various ways. These networks have the capacity to learn, memorize and 

reveal the relationship between data. In other words, ANNs produce solutions to problems that normally require a human's 

natural abilities to think and observe. ANN takes data samples instead of whole datasets to arrive at solutions, which saves both 

time and money. ANNs are considered fairly simple mathematical models to improve existing data analysis technologies. Figure 

2 shows a simple ANN structure. The most basic task of ANN is to learn the structure in the sample data set and make 

generalizations to fulfill the desired task. For this purpose, a wide variety of network structures and models have been developed 

in artificial neural networks. Multilayer Perceptron (MLP), Radial Based Function Networks (RBF), Learning Vector 

Quantization (LVQ), Hopfield Networks, SOM Networks and Adaptive Resonance Theory Networks (ART) are some of the 

ANN models used in different fields. 

FIG. 2. An ANN structure. 

Results and Discussion 

Results of original wood analysis 

The original wood analyses conducted on the raw materials and the results obtained are given in Table 2 below. 
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TABLE.2. The results of original wood analysis of the samples (wt. %)
*
 and HHVs (MJ/kg). 

Moisture Ash Volatile 

compounds 

Fixed 

carbon 

Cellulose Lignin Extractives HHV 

Zeyrek 

stem 

4.24 ± 

0.08 

11.82 

± 0.05 

62.70 ± 

0.04 

21.20 ± 

0.06 

36.07 ± 

0.04 

22.42 

± 0.08 

2.46 ± 0.34 18.33 

± 0.06 

Hazelnut 

shell 

5.29 ± 

0.06 

1.96 ± 

0.07 

65.12 ± 

0.09 

27.62 ± 

0.05 

32.90 ± 

0.03 

52.78 

± 0.06 

1.64 ± 0.42 21.03 

± 0.05 

Scotch 

pine 

powder 

4.49 ± 

0.11 

1.43 ± 

0.08 

73.31 ± 

0.08 

20.82 ± 

0.07 

35.35 ± 

0.06 

30.29 

± 0.05 

5.07 ± 0.28 20.18 

± 0.03 

Note:
 *

The percentages of moisture, ash, volatile compounds, extractives and fixed carbon were 

calculated based on air dried samples, the percentages of lignin and cellulose were calculated based on 

extractive free, air dried samples. 

It was found that HHV of cellulose sample isolated from Zeyrek stem was 15.530 ± 0.339, HHV of lignin sample isolated from 

hazelnut shell was 22.582 ± 0.427 and HHV of extractive material isolated from Scotch pine powder was 35.310 ± 0.190 Mg/kg. 

It seems that higher lignin percentage caused higher HHV value of hazelnut shell. This was followed by the HHV of Scotch pine 

powder, which had the second higher lignin value. In addition, Scotch pine powder had the highest percentage of extractives 

among the three samples. It is a known fact that natural lignocellulosic samples with a high percentage of lignin and extractive 

material show higher HHV values. 

Results of HHV values of sample mixtures 

Mixture ratios and corresponding HHV values for each sample prepared are given in Table 3. 

TABLE 3: Lignin, cellulose and extractives ratios and measured HHVs of the mixture samples. 

Sample 

code 

Cellulose 

(%w/w ± SD) 

Lignin 

(%w/w ± SD) 

Extractives 

(%w/w ± SD) 

HHV 

(Mj/kg) 

S1 44.99 ± 0.01 49.99 ± 0.01 5.02 ± 0.01 20.713 ± 0.049 

S2 44.99 ± 0.02 45.01 ± 0.03 10.00 ± 0.04 21.963 ± 0.074 

S3 44.97 ± 0.00 40,05 ± 0.00 14.98 ± 0.00 22.663 ± 0.056 

S4 44.99 ± 0.03 35.06 ± 0.02 19.95 ± 0.04 22.816 ± 0.200 

S5 45.00 ± 0.03 30.11 ± 0.02 24.89 ± 0.04 23.162 ± 0.152 

S6 45.07 ± 0.05 25.00 ± 0.03 29.93 ± 0.06 24.520 ± 0.316 

S7 44.57 ± 0.03 20.86 ± 0.01 34.57 ± 0.03 25.326 ± 0.131 

S8 44.85 ± 0.03 15.39 ± 0.01 39.76 ± 0.03 26.120 ± 0.260 

S9 44.96 ± 0.05 10.22 ± 0.01 44.82 ± 0.05 26.378 ± 0.066 

As can be seen from the table, although the lignin value shown to increase the HHVs in previous studies decreased from S1 to 

S9, the HHVs increased. It is seen that the reason for this might be the increasing rate of extractive material, which is another 

energy intensive component. It is known that the components such as waxes, alkaloids, resins, terpenes in the composition of the 

extractives provide high HHVs, although it varies according to the kind of biomass. Due to the high variability of its content, it 

can cause large deviations in the HHV prediction models in which it is included. 

Comparative evaluation of M (N) LR and ANN regression models 

The regression models and related statistical data obtained from the literature and the results of this study to be used to determine 

the effect of lignin and extractive substance ratios on HHVs are presented in Table 4 and Figure 3 below, respectively. 
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TABLE.4. Regression equations used and corresponding statistical data. 

Prediction 

models 

Regression 

equation 

MSE R
2
 RMSE MAPE MAE D-W

*

MNLR HHV=20.137+0.0

08L+0.131E-

0.004E
2
 

17.326 0.563 4.162 0.128 3.214 - 

MLR1 HHV=14.3377+0.

1228L+0.1353E 

8.102 0.962 2.846 0.097 2.411 - 

MLR2 HHV=15.605+0.0

74L+0.172E 

2.938 0.972 1.714 0.066 1.602 1.6193

MLR3 HHV=28.179+0.8

80L+1.019E 

0.077 0.974 0.278 0.012 0.247 2.181 

ANN1 HHV=17.0000+0.

0337689 (L)-

0.370197 

(E)+0.0217811 

(EL)-0.0001237 

(EL
2
)-0.00026906 

(LE
2
) 

124.79

9 

0.864 11.171 0.334 8.431 1.8845 

ANN2 HHV=18.9886-

0.0821496 (L)-

0.788837 

(E)+0.047379 

(LE)-0.00044862 

(EL
2)

-

0.000301034 

(LE
2
)+0.00146961 

(L
2
) 

195.11

4 

0.779 13.968 0.382 9.721 1.8455 

ANN3 HHV=20.7165-

0.141898 (L)-

1.78999 

(E)+0.0763139 

(LE)-0.0006305 

(EL
2
)-0.00244972 

(LE
2
)+0.00194996 

(L
2
)+0.112698 

(E
2
) 

0.003 0.813 53.576 1.379 35.29

6 

1.8179 

*
: D-W values are taken from the relevant literature. 

FIG. 3. R
2
 and MAPE values obtained according to the models. 
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When looked at Table 4 and Figure 3, it is seen that R
2
 values increased and MAPE values decreased as one goes from MLR1 to 

MLR3. The R
2
 value of the MNLR equation (0.563) is smaller than those of these equations, while the MAPE value (0.128) is 

higher. It is also seen that the R
2
 values of the ANN equations were lower than those of MLR equations, and the MAPE values 

were much higher. However, a more fundamental problem here was that the R
2
 values of the ANN1 and ANN2 equations, which 

were relatively comparable to the others, corresponded to a negative correlation. The graphs of the experimental HHVs against 

the predicted values drawn for each model are given below in order to be able to see the situation in this respect (Figure 4). 

FIG. 4. Comparative graphs of experimental and calculated HHVs according to the models. 

As can be seen in Figure 4, the relationship calculated by using the MNLR model was a negative relationship. Therefore, since 

the expected positive linear relationship could not be obtained, the calculated statistical parameters did not fully define the fitting 

of the model. 

When the MLR equations were evaluated among themselves, MLR3, which revealed a positive linear relationship, gave the 

highest R
2
 (0.974), the lowest MAPE (0.012) and RMSE (0.278) values, which were expected in terms of representing the 

sample. The standard error of the estimation in the model was 0.339. In addition, 46.26% of the variation in HHV could be 

explained by the lignin content, while 53.74% could be explicated by the extractive content. While these values were 62.4% and 

37.6%, respectively, in the MLR2 model, which revealed the closest prediction performance to this model, these values are 

56.4% and 43.6% in the MLR1 model. A greater part of the change in HHV, in MLR1 and MLR2 models was caused by lignin, 

while it was caused by the extractives in the model obtained from this study (MLR3). Among the possible reasons for this 

situation, the extractive material used in the current study was obtained from a single type (Scotch pine) sample, and the 

extractive ratios were up to 45% in contrast to the samples used in MLR1 and MLR2 studies (generally below 15%). 

It is important that there is no autocorrelation in the creation of MLR models. Durbin-Watson statistic is used to determine this 

situation. It is also applied to optimize model stability and distinguish important independent variables from unimportant ones. If 

there is a random distribution in the model, the value of the D-W statistic will be close to 2. In general, it is desirable for this 

value to be between 1.5-2.5. The value of the D-W coefficient obtained in this study is 2.181, which reveals that there is no 

autocorrelation in the study. The obtained D-W coefficient stands out as the best value among the examined models. 

Theoretical HHV values calculated by applying the mixture ratios prepared in this study to the equations selected from the 
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literature are given in Table S1 in comparison with the experimental HHV values. 

The percentage relative error between the experimental and calculated HHVs of the MNLR and MLR equations did not exceed 

15.71% for the samples in which the extractive substance value was below 30%. However, it is noteworthy that larger estimation 

deviations occurred in samples where the extractive substance value exceeds 30% (especially in MNLR model). When the 

relevant studies in the literature were examined, it would be seen that the extractive substance percentages were generally below 

30%. The lignin and extractive substance contents of the samples used in all three studies varied between 14.66%-57.36% and 

1.23%-28.28%, respectively, and these changes did not show homogeneity in each group of the samples. In addition, considering 

the limited number of samples in each group (N=12, 17 and 11) from which the relevant estimation equations were obtained, it 

could be concluded that the derived equations reflected the character of these samples in a way. Sheng and Azevedo also 

obtained the results supporting this idea in their study. 

When the model fit of the ANN equations in Figure 4 and Table 4 were considered, ANN1 and ANN2 models showed a negative 

relationship, while ANN3 showed a positive linear relationship but had very large deviations in the estimation results 

(RMSE=53.576, MAPE=1.379). Considering the experimental and calculated HHVs of the ANN based equations, it was seen 

that the percentage relative error increased in samples with 20% or more extractive substance percentage. For instance, the 

relative error rates of the ANN equations reached 40% for samples with extractive substance ratios of 30% and above and even 

reached 132.6% for the ANN3 model. 

While it is possible that the inclusion of quadratic terms in the equations can make a positive contribution to the accuracy of the 

estimation results calculated from the model obtained in the relevant study using a limited number of samples, it is obvious that 

these models will create large deviations when applied to samples where the distribution of lignin and extractive substance ratios 

are more homogeneous as in the current study. In fact, the main purpose of deriving such equations is to obtain the highest 

estimation model fit by using the least number of independent variables [38]. It can even be seen from the low R
2
 and high 

MAPE values obtained from the MNLR equation that the contribution of such terms can significantly alter the estimation 

accuracy. It is worthy of note that a quadratic term (E
2
) that is not in the other MLR equations is included in this equation. 

Since the samples, from which the estimation models are derived, are limited, their estimation performances are also limited. In 

addition, the addition of quadratic terms to the model causes large deviations in the estimation results obtained when the model is 

applied to different samples, unless it is studied with sufficiently large and homogeneous samples as much as possible. 

Conclusion 

Experimental HHVs of the study samples obtained by mixing cellulose, lignin and extractive substances, respectively, isolated 

from lignocellulosic wastes such as zeyrek stem, hazelnut shell and Scotch pine in certain proportions were determined. The 

estimation ability of traditional M (N) LR and ANN based models previously developed in the literature were examined 

comparatively by using these HHVs and lignin extractive substance ratios. When these models were applied to samples with 

different ratios of lignin and extractives than their own samples, they revealed large deviations in their estimation results 

(exceeding 130%). It has been shown that having quadratic terms in models with limited sample size (<20 for the models 

included in the study) revealed large deviations in estimation results when the model was applied to different samples. This 

demonstrated the importance of the sample size being as large as possible and the component (in this case lignin and extractives) 

ratio variability being homogeneous in deriving equations for the estimation of HHVs of lignocellulosic wastes. The MLR3 

model obtained from this study data showed the highest model fit. 

In future studies, lignin, cellulose and extractive material values of various lignocellulosic materials and their experimental 

HHVs are planned to be collected from the literature. Then, the agreement of the experimental HHVs of these data with the 

theoretical HHVs calculated using the model obtained from the current study (MLR3) will be investigated. 

Acknowledgements 

The author thanks to Dr. Fikret Akdeniz for his contributions and support at every stage of the study, to Rojda Naz Alibeyoglu 

for her support in the design of the graphical abstract and to Dr.Huseyin Ertap for his support in the graphic drawing, and to M. 

Ali Karabulut for his theoretical scientific support. 

http://www.tsijournals.com/


www.tsijournals.com | January-2023 

9 

Declaration of conflicting interests 

The author declares that there is no conflict of interest with any other research group or institution. 

References 

1. Zhang L, Xu CC, Champagne P. Overview of recent advances in thermo chemical conversion of biomass. Energy Convers

Manag. 2010;51(5):969-982.

2. Majumder AK, Jain R, Banerjee P, et al. Development of a new proximate analysis based correlation to predict calorific

value of coal. Fuel. 2008;87(13-14):3077-3081.

3. Nhuchhen DR, Salam PA. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel.

2012;99:55-63.

4. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel.

2005;84(5):487-494.

5. Maksimuk Y, Antonava Z, Krouk V, et al. Prediction of higher heating value based on elemental composition for lignin and

other fuels. Fuel. 2020;263:116727.

6. Hall PJ, Larsen JW. Use of Einstein specific heat models to elucidate coal structure and changes in coal structure following

solvent extraction. Energy Fuels. 1993;7(1):42-46.

7. Demirbas A, Gullu D, Caglar A, et al. Estimation of calorific values of fuels from lignocellulosics. Energy Sources.

1997;19(8):765-770.

8. Demirbaş A, Demirbaş AH. Estimating the calorific values of lignocellulosic fuels. Energy Explor Exploit. 2004;22(2):135-

143.

9. Vargas-Moreno JM, Callejon-Ferre AJ, Perez-Alonso J, et al. A review of the mathematical models for predicting the

heating value of biomass materials. Renewable Sustainable Energy Rev. 2012;16(5):3065-3083.

10. Demirbas A. Relationships between lignin contents and heating values of biomass. Energy Convers Manag.

2001;42(2):183-188.

11. Smook GA. Handbook for pulp and paper technologists, 3
rd 

edition, Angus Wilde publications, Bellingham. 2007.

12. Tejado A, Pena C, Labidi J, et al. Physico chemical characterization of lignins from different sources for use in phenol

formaldehyde resin synthesis. Bioresour Technol. 2007;98(8):1655-1663.

13. Alvarez A, Pizarro C, Garcia R, et al. Spanish biofuels heating value estimation based on structural analysis. Ind Crops

Prod. 2015;77:983-991.

14. Ghugare SB, Tiwary S, Elangovan V, et al. Prediction of higher heating value of solid biomass fuels using artificial

intelligence formalisms. Bioenergy Res. 2014;7(2):681-692.

15. Facao J, Varga S, Oliveira AC. Evaluation of the use of artificial neural networks for the simulation of hybrid solar

collectors. Int J Green Energy. 2004;1(3):337-352.

16. Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model.

Renew Energ. 2010;35(12):2732-2738.

17. Yabanova I, Kecebas A. Development of ANN model for geothermal district heating system and a novel PID based control

strategy. Appl Therm Eng. 2013;51(1-2):908-916.

18. Mehmet D, Akpinar EK. Mushroom drying in air heated solar collector drying system and modeling of drying performance

with artificial neural network. J Sci Technol. 2018;11(1):23-30.

19. Karaci A, Caglar A, Aydinli B, et al. The pyrolysis process verification of hydrogen rich gas (H-rG) production by

Artificial Neural Network (ANN). Int J Hydrog Energy. 2016;41(8):4570-4578.

20. Abrougui K, Gabsi K, Mercatoris B, et al. Prediction of organic potato yield using tillage systems and soil properties by

Artificial Neural Network (ANN) and Multiple Linear Regressions (MLR). Soil Tillage Res. 2019;190:202-208.

21. Buyukada M. Probabilistic uncertainty analysis based on Monte Carlo simulations of co-combustion of hazelnut hull and

coal blends: Data driven modeling and response surface optimization. Bioresour Technol. 2017;225:106-112.

22. Buyukada M. Uncertainty estimation by Bayesian approach in thermochemical conversion of walnut hull and lignite coal

blends. Bioresour Technol. 2017;232:87-92.

23. Buyukada M. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm

optimization and Monte Carlo simulation.  Bioresour Technol. 2016;216:280-286.

24. Jahirul MI, Rasul MG, Brown RJ, et al. Investigation of correlation between chemical composition and properties of

biodiesel using Principal Component Analysis (PCA) and Artificial Neural Network (ANN). Renew Energ. 2021;168:632-

646.

25. Telmo C, Lousada J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass

Bioenergy. 2011;35(5):1663-1667.

http://www.tsijournals.com/
https://www.sciencedirect.com/science/article/abs/pii/S0196890409004889
https://www.sciencedirect.com/science/article/abs/pii/S0016236108001488
https://www.sciencedirect.com/science/article/abs/pii/S0016236108001488
https://www.sciencedirect.com/science/article/abs/pii/S0016236112002967
https://www.sciencedirect.com/science/article/abs/pii/S0016236104003072
https://www.sciencedirect.com/science/article/abs/pii/S0016236119320812
https://www.sciencedirect.com/science/article/abs/pii/S0016236119320812
https://pubs.acs.org/doi/pdf/10.1021/ef00037a008?cookieSet=1
https://pubs.acs.org/doi/pdf/10.1021/ef00037a008?cookieSet=1
https://www.tandfonline.com/doi/abs/10.1080/00908319708908888
https://journals.sagepub.com/doi/abs/10.1260/0144598041475198
https://www.sciencedirect.com/science/article/abs/pii/S1364032112001487
https://www.sciencedirect.com/science/article/abs/pii/S1364032112001487
https://www.sciencedirect.com/science/article/abs/pii/S0196890400000509
https://www.sciencedirect.com/science/article/abs/pii/S0960852406002513?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852406002513?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0926669015304441
https://link.springer.com/article/10.1007/s12155-013-9393-5
https://link.springer.com/article/10.1007/s12155-013-9393-5
https://www.tandfonline.com/doi/abs/10.1081/GE-200033649
https://www.tandfonline.com/doi/abs/10.1081/GE-200033649
https://www.sciencedirect.com/science/article/abs/pii/S0960148110001898
https://www.sciencedirect.com/science/article/abs/pii/S135943111200703X
https://www.sciencedirect.com/science/article/abs/pii/S135943111200703X
https://dergipark.org.tr/en/pub/erzifbed/issue/36425/316812
https://dergipark.org.tr/en/pub/erzifbed/issue/36425/316812
https://www.sciencedirect.com/science/article/abs/pii/S0360319915315755
https://www.sciencedirect.com/science/article/abs/pii/S0360319915315755
https://www.sciencedirect.com/science/article/pii/S0167198718313515
https://www.sciencedirect.com/science/article/pii/S0167198718313515
https://www.sciencedirect.com/science/article/abs/pii/S0960852416315607?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852416315607?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852417301281?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852417301281?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852416307325?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960852416307325?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0960148120320188
https://www.sciencedirect.com/science/article/abs/pii/S0960148120320188
https://www.sciencedirect.com/science/article/abs/pii/S0961953410004964


www.tsijournals.com | January-2023 

10 

26. Akdeniz F, Bicil M, Karadede Y, et al. Application of real valued genetic algorithm on prediction of higher heating values

of various lignocellulosic materials using lignin and extractive contents. Energy. 2018;160:1047-1054.

27. Waliszewska B, Grzelak M, Gawel E. Chemical characteristics of selected grass species from polish meadows and their

potential utilization for energy generation purposes. Energies. 2021;14(6):1669.

28. Maksimuk Y, Antonava Z, Krouk V. Prediction of Higher Heating Value (HHV) based on the structural composition for

biomass. Fuel. 2021;299:120860.

29. Jimenez L, Gonzalez F. Study of the physical and chemical properties of lignocellulosic residues with a view to the

production of fuels. Fuel. 1991;70(8):947-950.

30. Howard ET. Heat of combustion of various Southern pine materials. Wood Sci. 1972;5(3):194-197.

31. Tillman DA. Wood as an energy resource. Academic Press, USA, 1978.

32. Demirbas A. Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses. Energy Sources A:

Recovery Util Environ Eff. 2017;39(6):592-598.

33. 35. Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass

Bioenerg. 2005;28(5):499-507.

34. 36. Callejon-Ferre AJ, Carreno-Sanchez J, Suarez-Medina FJ. Prediction models for higher heating value based on the

structural analysis of the biomass of plant remains from the greenhouses of Almeria (Spain). Fuel. 2014;116:377-387.

35. 37. Rhen C. Chemical composition and gross calorific value of the above ground biomass components of young Picea

abies. Scand J For Res. 2004;19(1):72-81.

36. 38. Rutledge DN, Barros AS. Durbin-Watson statistic as a morphological estimator of information content. Anal Chim

Acta. 2002;454(2):277-295.

(MRPFT)

http://www.tsijournals.com/
https://www.sciencedirect.com/science/article/abs/pii/S0360544218313501
https://www.sciencedirect.com/science/article/abs/pii/S0360544218313501
https://www.mdpi.com/1996-1073/14/6/1669
https://www.mdpi.com/1996-1073/14/6/1669
https://www.sciencedirect.com/science/article/abs/pii/S0016236121007377
https://www.sciencedirect.com/science/article/abs/pii/S0016236121007377
https://www.sciencedirect.com/science/article/abs/pii/001623619190049G
https://www.sciencedirect.com/science/article/abs/pii/001623619190049G
https://www.cabdirect.org/cabdirect/abstract/19730605404
https://www.tandfonline.com/doi/abs/10.1080/15567036.2016.1248798
https://www.sciencedirect.com/science/article/abs/pii/S0961953404002107
https://www.sciencedirect.com/science/article/abs/pii/S0016236113007515
https://www.sciencedirect.com/science/article/abs/pii/S0016236113007515
https://www.tandfonline.com/doi/abs/10.1080/02827580310019185
https://www.tandfonline.com/doi/abs/10.1080/02827580310019185
https://www.sciencedirect.com/science/article/abs/pii/S0003267001015550

