

Acta Chimica & Pharmaceutica Indica

Acta Chim. Pharm. Indica: 2(3), 2012, 119-131 ISSN 2277-288X

APPLICATION OF THE YOUNG'S PARTITION METHOD FOR COMBINATORIAL ENUMERATION OF GEM POSITION ISOMERS OF HOMO POLYSUBSTITUTED LINEAR N-ALKANES (PART II: N EVEN) ROBERT M. NEMBA^{*} and CHRISTIANE E. NEMBA

Faculty of Science, Laboratory of Physical and Theoretical Chemistry, University of Yaoundé I, P.O. Box - 812, YAOUNDE I, CAMEROON

(Received : 30.03.2012; Revised : 09.04.2012; Accepted : 10.04.2012)

ABSTRACT

A generalized combinatorial enumeration method is proposed for counting gem position isomers (GPIs) of any homopolysubstituted linear n-alkanes (HPSNA) with the empirical formula $C_nH_{2n+2-m}X_m$ where the chain length n_+ is even and where the degree of substitution m_{\pm} (odd or even) satisfies the Young's partition models $m_- = 32^{k_{\pm}}$, $m_+ = 3^2 2^{k_{\pm}}$ or $2^{k_{\pm}}$ with the restrictions $m_{\pm} \ge 2$ and $k_{\pm} \ge 0$.

Key words: Gem position isomer, Disubstitution, Trisubstitution, Homopolysubstituted linear n-alkane, Young's partition, Combinatorial enumeration.

INTRODUCTION

The different organic compounds possessing cumulative gem di and tri substitutions currently reported in the literature are perfluoro hydrocarbons used as fluorosurfactants, anaesthetics or thermo plastic fluoropolymers ¹⁻³ and polychlorinated n-alkanes(PCAs) ⁴⁻⁷ consisting of C_{10} to C_{30} n-alkanes with chlorine content from 30 to 70 by mass PCAs used as high temperature lubricants, plasticizers, flame retardants, and additives in adhesives, paints, rubber and sealants⁸⁻⁹.

The organo-chemists dealing with such molecules are often faced to the mathematical problem of enumerating with exactness all possible isomeric structures of straight chain polyhalogenated compounds. Such theoretical studies are scarce¹⁰⁻¹² and this second part of the study presents a method for direct combinatorial enumeration of gem position isomers (GPIs) of the series of homopolysubstituted linear n-alkanes (HPSNA) having the empirical formula $C_n H_{2n+2-m} X_m$ where the linear chain length n_+ is even and where the degree of substitution m_{\pm} is odd or even.

Mathematical formulation and computational method

Let us note the system $C_n H_{2n+2-m} X_m = (n_+, m_{\pm})$ when n_+ is even and m_{\pm} (odd or even) and consider that all germinal substitutions performed which the obligatory respect of the tetra valence of primary and secondary carbon atoms satisfy three Young's partition¹³ models given in Eqs. 1-2(a,b) hereafter:

Available online at www.sadgurupublications.com

^{*}Author for correspondence; E-mail: nembarobertmartin@yahoo.com

R. M. Nemba and C. E. Nemba: Application of the Young's Partition....

$$m_{-} = 32^{k_{\pm}}$$
 if $m_{-} \ge 3$ and $k_{\pm} = \frac{m-3}{2}$...(1)

$$m_{+} = 3^{2} 2^{k_{\pm}}$$
 if $m_{+} \ge 6$ and $k_{\pm} = \frac{m-6}{2}$ (2a)

$$m_{+} = 2^{k_{\pm}} if \quad m_{+} \ge 2 \text{ and } k_{\pm} = \frac{m}{2} \qquad \dots (2b)$$

In these previous equations the integer numbers 3 and 3^2 are one part or two parts of cardinality 3 which correspond to one gem or two gem trisubstitutions or formation of the $-CX_3$ group on one or two extreme primary carbon atoms while the number $2^{k_{\pm}}$ refers to k_{\pm} parts 2 representing k_{\pm} gem disubstitutions or formation of k_{\pm} ($-CX_{2^-}$) groups among n_+ -2 internal secondary carbon atoms of the chain. Throughout this paper the subscripts + and – refer to even and odd integer numbers, respectively.

Let $G_0(n)$ shown in Figure 1 denote the linear graph which is defined as a finite non empty set of n_+ white vertices indicated by numerical labels 1,...,i,..., n_+ together which a set of n_+-1 edges (dotted lines) connecting adjacent vertices i-1 and i. These white vertices and these edges represent the positions of carbon atoms and C-C bonds, respectively.

Fig. 1: Linear graph of an n-alkane

Molecular Graphs for GPIs of HPSNA

Let us represent in Fig. 2(a) shown below, a gem homo disubstitution as an operation which consists to attach two ligands of the same type X on a secondary or a primary carbon atom in order to generate the chemical group $-CX_{2-}$. Similarly a gem homo tri substitution represented in Fig. 2(b) is an operation consisting to attach three substituents of the same type X on a primary carbon atom located at the extremity of the linear chain in order to generate the chemical group $-CX_3$.

Fig. 2: Subgraphs representing -CX2. and -CX3 groups

The formation of geminal groups -CX₂₋ and -CX₃ are Young's partition of m_{\pm} substituents into parts 2 and 3 while the locations of these groups among n_{\pm} positions of $G_0(n)$ are combinations of distinct placements which generate numerous gem position isomers (GPIs) that may be classified in accordance with Eq. 1-2 into the following three categories of configurations: ${}^{32^{k_{\pm}}}G(n_{\pm},m_{\pm})$, ${}^{3^22^{k_{\pm}}}G(n_{\pm},m_{\pm})$, and ${}^{2^{k_{\pm}}}G(n_{\pm},m_{\pm})$ depicted by the generic molecular graphs given in Fig. 3 (*a*, *b*, *c*) hereafter:

Fig. 3 (a,b, c): Generic molecular graphs of the three categories of gem homopolysubstituted linear n₊.alkanes

Combinatorial enumeration of GPIs for HPSNA having the configuration $32^{k_{\pm}}G(n_{\pm},m_{-})$

The partition model given in Eq. 1, suitable for odd positive integer numbers m_{-} allows the formation of GPIs with the configuration ${}^{32^{k_{\pm}}}G(n_{+},m_{-})$ which results from the placement of one $-CX_3$ on one extreme position of the graph $G_0(n)$ and the distribution of k_{\pm} (-CX₂₋) among the n_{+} -1 remaining positions.

Proposition 1: By virtue of Eq. 1, the number of GPIs with the configuration ${}^{32^{k_{\pm}}}G(n_+,m_-)$ or number of distinct ways of putting one $-CX_3$ on one extreme position and k_{\pm} (- CX_2 -) on the remaining n_+ -1 positions of a linear chain $G_0(n)$ with a length n_+ , denoted ${}^{32^{k_{\pm}}}I(n_+,m_-)$ is derived from Eq. 4:

$${}^{32^{k_{\pm}}}I_{GPI}(n_{+},m_{-}) = \begin{pmatrix} n_{+}-1\\ \underline{m_{-}}-3\\ \underline{2} \end{pmatrix} \dots (4)$$

Combinatorial enumeration of GPIs for HPSNA having the configuration $3^{2}2^{k_{\pm}}G(n_{+},m_{+})$

The partition model given in Eq. 2(a) allows the formation of GPIs with the configuration ${}^{3^22^{k_{\pm}}}G(n_+,m_+)$ which results from the placement of k_{\pm} (-CX₂-) groups (k_- for m_+ doubly even and k_+ for m_+ singly even) on n_+ -2 internal positions and 2 (-CX₃) groups on the two extreme positions of G₀(n).

Proposition 2: The number ${}^{3^22^{k_{\pm}}}I(n_+,m_+)$ of configurations of type ${}^{3^22^{k_{\pm}}}G(n_+,m_+)$ or number of distinct ways of putting two $-CX_3$ on two extreme positions and $k_{\pm}(-CX_2-)$ on the remaining n_+-2 internal positions of $G_0(n)$, is the binomial coefficient derived from Eq. 5 hereafter:

$${}^{3^{2}2^{k_{\pm}}}I(n_{+},m_{+}) = \left(\frac{n_{+}-2}{\frac{m_{+}-6}{2}}\right) \qquad \dots (5)$$

It is to be noticed that ${}^{3^22^{k_{\pm}}}I(n_+,m_+)$ is the sum given in Eq. 6 of the number ${}^{3^22^{k_{\pm}}}I_s(n_+,m_+)$ of meso symmetrical configurations and the double of the number ${}^{3^22^{k_{\pm}}}I_u(n_+,m_+)$ of pairs of redundant unsymmetrical configurations:

$${}^{3^{2}2^{k_{\pm}}}I(n_{+},m_{+}) = {}^{3^{2}2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + 2\left[{}^{3^{2}2^{k_{\pm}}}I_{u}(n_{+},m_{+})\right] \qquad \dots (6)$$

The number ${}^{3^22^{k_{\pm}}}I_s(n_+,m_+)$ is derived according to the parities of the integers m_+ and k_{\pm} from Eqs. 7 and 8. If m_+ is singly even one obtains an even integer number $k_+ = \frac{m_+ - 6}{2}$ then:

$${}^{3^{2}2^{k_{+}}}I_{s}\left(n_{+},m_{+}\right) = \begin{pmatrix} \frac{n_{+}-2}{2} \\ \frac{k_{+}}{2} \end{pmatrix} = \begin{pmatrix} \frac{n_{+}-2}{2} \\ \frac{m_{+}-6}{4} \end{pmatrix} \dots (7)$$

If m_+ is doubly even one obtains an odd integer number $k_- = \frac{m_+ - 6}{2}$ then:

$${}^{3^2 2^{k_-}} I_s(n_+, m_+) = 0 \qquad \dots (8)$$

Determination of the number ${}^{3^{2}2^{k_{\pm}}}I_{u}(n_{+},m_{+})$ of unsymmetrical gem position isomers

The number of chemically distinct unsymmetrical GPIs or number of pairs of redundant unsymmetrical configurations, noted ${}^{3^22^{t_{\pm}}}I_u(n_+,m_+)$ is obtained from Eq. 9 hereafter:

$${}^{3^{2}2^{k_{\pm}}}I_{u}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[{}^{3^{2}2^{k_{\pm}}}I\left(n_{+},m_{+}\right) - {}^{3^{2}2^{k_{\pm}}}I_{s}\left(n_{+},m_{+}\right) \right] \qquad \dots (9)$$

If one considers the parity of k_{\pm} , therefore Eq. 9 becomes Eq. 10 if m_{\pm} is doubly even:

$${}^{3^{2}2^{k_{-}}}I_{u}\left(n_{+},m_{+}\right) == \frac{1}{2} \left[\binom{n_{+}-2}{k_{+}} \right] = \frac{1}{2} \left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}} \right] \qquad \dots (10)$$

or Eq. 9 becomes Eq. 11 if m_+ is singly even:

$${}^{3^{2}2^{k_{+}}}I_{u}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[\binom{n_{+}-2}{k_{+}} - \binom{\frac{n_{+}-2}{2}}{\frac{k_{+}}{2}} \right] = \frac{1}{2} \left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}} - \binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}} \right] \qquad \dots(11)$$

Proposition 3: The number of chemically distinct gem position isomers ${}^{3^2 2^{k_{\pm}}}I_{GPI}(n_+,m_+)$ obtained by putting 2 –CX₃ on two extreme positions of the chain having a length n_+ and permuting k_{\pm} (–CX₂) among the remaining n_+ -2 internal positions of G₀(n) is derived from Eq. 12 :

$$^{3^{2}2^{k_{\pm}}}I_{GPI}(n_{+},m_{+}) = {}^{3^{2}2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + {}^{3^{2}2^{k_{\pm}}}I_{u}(n_{+},m_{+}) \qquad \dots (12)$$

By replacing the right hand side terms of Eq. 12 by their equivalent given in Eqs. 7-8 and 10-11 one obtains, for m_+ doubly even and k_- :

$${}^{3^{2}2^{k_{-}}}I_{GPI}\left(n_{+},m_{+}\right) = \frac{1}{2}\left[\binom{n_{+}-2}{k_{-}}\right] = \frac{1}{2}\left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}}\right] \qquad \dots (13)$$

and for m_+ singly even and k_+ :

$${}^{3^{2}2^{k_{+}}}I_{GPI}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[\binom{n_{+}-2}{k_{+}} + \binom{\frac{n_{+}-2}{2}}{\frac{k_{+}}{2}} \right] = \frac{1}{2} \left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}} + \binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}} \right] \dots (14)$$

Combinatorial enumeration of GPIs for HPSNA having the configuration $2^{2^{k_{\pm}}}G(n_{+},m_{+})$

Let ${}^{2^{k_{\pm}}}I(n_{+},m_{+})$ denote the total number of configurations of type ${}^{2^{k_{\pm}}}G(n_{+},m_{+})$ issued from the given in Eq. 2b which allows $k_{\pm} = \frac{m_{+}}{2}$ gem disubstitutions distributed among n_{+} sites. Hence:

$${}^{2^{k_{\pm}}}I(n_{+},m_{+}) = \binom{n_{+}}{k_{\pm}} = \binom{n_{+}}{\frac{m_{+}}{2}} \qquad \dots (15)$$

As previously defined, $2^{k+}I(n_+,m_+)$ is a sum of two components given in the right hand side of Eq. 16:

$$2^{k_{\pm}}I(n_{+},m_{+}) = {}^{2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + 2\left[{}^{2^{k_{\pm}}}I_{u}(n_{+},m_{+})\right] \qquad \dots (16)$$

The components ${}^{2^{k_{\pm}}}I_s(n_+,m_+)$ and ${}^{2^{k_{\pm}}}I_u(n_+,m_+)$ are respectively the numbers of symmetrical and redundant unsymmetrical configurations ${}^{2^{k_{\pm}}}G(n_+,m_+)$ derived from Eqs. 17-18 according to the parities of the integers m_+ and $k_{\pm} = \frac{m_+}{2}$:

$$2^{k_{-}}I_{s}(n_{+},m_{+})=0$$

for m_+ singly even k_- (odd)

or

$${}^{2^{k_{+}}}I_{s}\left(n_{+},m_{+}\right) = \left(\frac{\frac{n_{+}}{2}}{\frac{k_{+}}{2}}\right) = \left(\frac{\frac{n_{+}}{2}}{\frac{m_{+}}{4}}\right) \qquad \dots (18)$$

for m_+ doubly even k_+ (even)

The numbers of chemically distinct unsymmetrical configurations $2^{k_{\pm}} G(n_{+}, m_{+})$ is derived from Eq. 19:

$${}^{2^{k_{\pm}}}I_{u}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[{}^{2^{k_{\pm}}}I\left(n_{+},m_{+}\right) - {}^{2^{k_{\pm}}}I_{s}\left(n_{+},m_{+}\right) \right] \qquad \dots (19)$$

which becomes Eq. 20 for m_+ singly even and k_- :

$${}^{2^{k_{-}}}I_{u}\left(n_{+},m_{+}\right) = \frac{1}{2}\left[\binom{n_{+}}{k_{-}}\right] = \frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}\right] \qquad \dots (20)$$

...(17)

or for m_+ doubly even and k_+ :

$${}^{2^{k_{+}}}I_{u}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[\binom{n_{+}}{k_{+}} - \binom{\frac{n_{+}}{2}}{\frac{k_{+}}{2}} \right] = \frac{1}{2} \left[\binom{n_{+}}{\frac{m_{+}}{2}} - \binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}} \right] \qquad \dots (21)$$

Proposition 4: The number $2^{k_{\pm}}I_{GPI}(n_{+},m_{+})$ of chemically distinct GPIs obtained by putting in distinct ways k_{\pm} (-CX₂-) groups among n_{+} positions of a linear chain G₀(n) is derived from Eq. 22:

$${}^{2^{k_{\pm}}}I_{GPI}(n_{+},m_{+}) = {}^{2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + {}^{2^{k_{\pm}}}I_{u}(n_{+},m_{+}) \qquad \dots (22)$$

By replacing the right hand side terms of Eq. 22 by their equivalent given in Eqs. 17-21 one obtains for m_+ singly even and k_- :

$${}^{2^{k_-}}I_{GPI}\left(n_+,m_+\right) = \frac{1}{2} \left[\begin{pmatrix} n_-\\k_- \end{pmatrix} \right] = \frac{1}{2} \left[\begin{pmatrix} n_+\\m_+\\2 \end{pmatrix} \right] \qquad \dots (23)$$

and for m_+ doubly even and k_+ :

$${}_{2^{k_{+}}}I_{GPI}\left(n_{+},m_{+}\right) = \frac{1}{2} \left[\binom{n_{+}}{k_{+}} + \binom{\frac{n_{+}}{2}}{\frac{k_{+}}{2}} \right] = \frac{1}{2} \left[\binom{n_{+}}{\frac{m_{+}}{2}} + \binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}} \right] \dots (24)$$

By virtue of Eqs. 2(a) and 2(b), the occurrence of two simultaneous modes of partition for the degree of substitution m_+ suggests the following assertion:

Proposition 5 : When the degree of substitution m_+ is doubly or singly even the total number of constitutionally distinct GPIs in the series $C_n H_{2n+2-m} X_m$, noted $I_{GPI}(n_+,m_+)$, is the sum of the numbers ${}^{3^22^{k_\pm}}I_{GPI}(n_+,m_+)$ and ${}^{2^{k_\pm}}I_{GPI}(n_+,m_+)$ for HPSNA having the configurations ${}^{3^22^{k_\pm}}G(n_+,m_+)$ and ${}^{2^{k_\pm}}G(n_+,m_+)$ respectively. Hence:

$$I_{GPI}(n_{+},m_{+}) = {}^{3^{2}2^{k_{\pm}}}I_{GPI}(n_{+},m_{+}) + {}^{2^{k_{\pm}}}I_{GPI}(n_{+},m_{+}) \qquad \dots (25)$$

By splitting the right hand terms ${}^{3^{2}2^{k_{\pm}}}I_{GPI}(n_{+},m_{+})$ and ${}^{2^{k_{\pm}}}I_{GPI}(n_{+},m_{+})$ into their respective components given in Eqs. 12 and 22, one obtains Eq. 26:

$$I_{GPI}(n_{+},m_{+}) = {}^{3^{2}2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + {}^{3^{2}2^{k_{\pm}}}I_{u}(n_{+},m_{+}) + {}^{2^{k_{\pm}}}I_{s}(n_{+},m_{+}) + {}^{2^{k_{\pm}}}I_{u}(n_{+},m_{+})$$
...(26)

If the right hand side terms of Eq. 26 are replaced by their explicit formula given in Eqs. 13-14 and 23 - 24, one obtains the generalized Eq. 27 and 28 for combinatorial enumeration of GPIs for any HPSNA having a singly or doubly even integer number m_+ of cumulative gem homo substitutions. Hence, for m_+ doubly even:

$$I_{GPI}(n_{+},m_{+}) = \frac{1}{2} \left[\begin{pmatrix} n_{+} \\ \frac{m_{+}}{2} \end{pmatrix} + \begin{pmatrix} \frac{n_{+}}{2} \\ \frac{m_{+}}{4} \end{pmatrix} + \begin{pmatrix} n_{-}-2 \\ \frac{m_{+}-6}{2} \end{pmatrix} \right] \qquad \dots (27)$$

and for m_+ singly even:

$$I_{GPI}(n_{+},m_{+}) = \frac{1}{2} \left[\begin{pmatrix} n_{+} \\ \frac{m_{+}}{2} \end{pmatrix} + \begin{pmatrix} n_{+}-2 \\ \frac{m_{+}-6}{2} \end{pmatrix} + \begin{pmatrix} \frac{n_{+}-2}{2} \\ \frac{m_{+}-6}{4} \end{pmatrix} \right] \qquad \dots (28)$$

RESULTS AND DISCUSSION

Applications

Example 1: To illustrate the application of Eq. 4 let us consider the molecular system $C_4H_5X_5$, where $n_+ = 4$, $m_- = 5$ and $k_- = 1$. Therefore the number of configurations ${}^{32^1}G(4,5)$ is ${}^{32^1}I_{GPI}(4,5) = \begin{pmatrix} 3\\1 \end{pmatrix} = 3$. The chemical graphs representing the two GPIs of a penta homosubstituted n-butane are depicted in Fig. 4 hereafter:

Fig. 4: Molecular graphs of the two GPIs of a penta homosubstituted n-butane.

The figure inventories of GPIs for HPSNAs having the configuratio ${}^{32^{k_{\pm}}}G(n_+,m_-)$ where $2 \le n_+ \le 12$, $3 \le m_{\pm} \le 25$ and $0 \le k_{\pm} \le 11$, are given in Table 1 hereafter:

Example 2: Let us consider the molecular system $C_6H_4X_{10}$ with the configuration ${}^{3^22^2}G(6,10)$ having $n_+=6$, $m_+=10$ and $k_+=2$. Two (-CX₂-) are to be placed among $n_+-2=4$ internal positions while 2 (-CX₃) are located at the two extreme positions of $G_0(n)$. The application of Eqs. 7 and 11 gives respectively ${}^{3^22^2}I_s(6,10) = \begin{bmatrix} 2\\I \end{bmatrix} = 2$ meso forms and ${}^{3^22^2}I_u(6,10) = \frac{1}{2} \begin{bmatrix} 4\\2 \end{bmatrix} - \begin{bmatrix} 2\\I \end{bmatrix} = 2$ unsymmetrical GPIs while Eq. 14 predicts ${}^{3^22^2}I_{GPI}(6,10) = \frac{1}{2} \begin{bmatrix} 4\\2 \end{bmatrix} + \begin{pmatrix} 2\\1 \end{bmatrix} = 4$ GPIs. These results indicate that the total number of GPIs having the configuration ${}^{3^22^2}G(6,10)$ for a gem homo decasubstituted linear n-hexane is 4, subdivided into 2 meso and 2 unsymmetrical forms which are represented by molecular graphs shown in Fig. 5 hereafter :

n +	m.	k _±	$^{32^{k_{\pm}}}I(n_{+},m_{-})$	n +	m.	\mathbf{k}_{\pm}	$^{32^{k_{\pm}}}I(n_{+},m_{-})$	n +	m.	k _±	$^{32^{k_{\pm}}}I(n_{+},m_{-})$
	3	0	1		3	0	1		3	0	1
2	5	1	1	4	5	1	3		5	1	5
				7	2	3	6	7	2	10	
					9	3	1		9	3	10
					•	•				4	5
										5	1
	3	0	1	10	3	0	1	12	3	0	1
	5	1	7		5	1	9		5	1	11
	7	2	21		7	2	36		7	2	55
8	9	3	35		9	3	84		9	3	165
	11	4	35		11	4	126		11	4	330
	13	5	21		13	5	126		13	5	462
	15	6	7		15	6	84		15	6	462
	17	7	1		17	7	36		17	7	330
					19	8	9		19	8	165
					21	9	1		21	9	55
									23	10	11
									25	11	1

Table 1: Figure inventories of GPIs for HPSNA having the configuration $^{32^k}G(n_+,m_-)$

Fig. 5: Molecular graphs of the 4 GPIs having the configuration ${}^{3^22^2}G(6,10)$ for a homo deca substituted n-hexane

Let us consider the configuration ${}^{2^5}G(6,10)$ where k = 5. From Eqs. 17, 20 and 23 one deduce respectively: ${}^{2^5}I_s(6,10) = 0$, ${}^{2^5}I_u(6,10) = \frac{1}{2} \left[\binom{6}{5} \right] = 3$ and ${}^{2^5}I_{GPI}(7,10) = \frac{1}{2} \left[\binom{6}{5} \right] = 3$ unsymmetrical GPIs depicted in Fig. 6 hereafter:

Fig. 6: Molecular graphs of the 3 GPIs having the configuration ${}^{2^5}G(6,10)$ for a homo decasubstituted n-hexane

The total number of GPIs for a homo decasubstituted n-hexane is:

$$I_{GPI}(6,10) = {}^{2^{5}}I_{s}(6,10) + {}^{2^{5}}I_{u}(6,10) + {}^{3^{2}2^{2}}I_{u}(6,10) + {}^{3^{2}2^{2}}I_{s}(6,10) = 0 + 3 + 2 + 2 = 7$$

This figure inventory match up with the result obtained from the direct application of Eq. 28 hereafter :

$$I_{GPI}(6,10) = \frac{1}{2} \left[\binom{6}{5} + \binom{4}{2} + \binom{2}{1} \right] = 7$$

Example 3: For the series $C_6H_6X_8$ having $n_+= 6$, $m_+= 8$ and $k_-=1$ the generic configuration ${}^{3^22^1}G(6,8)$ includes 2(-CX₃) at two extreme positions of $G_0(n)$ and 1(-CX₂-) groups to be placed among 4 internal positions. From Eqs. 8, 10 and 13 one obtains respectively:

Fig. 7: Molecular graphs of the 2 unsymmetrical GPIs having the configuration ${}^{3^22^1}G(6,8)$ for a homo octasubstituted n-hexane.

For the configuration ${}^{2^4}G(6,8)$ where $k_+ = 4$, Eqs. 18, 21 and 24 give respectively:

$${}^{2^{4}}I_{s}(6,8) = {3 \choose 2} = 3$$
, ${}^{2^{4}}I_{u}(6,8) = \frac{1}{2} \left[{6 \choose 4} - {3 \choose 2} \right] = 6$ and ${}^{2^{6}}I_{GPI}(6,8) = \frac{1}{2} \left[{6 \choose 4} + {3 \choose 2} \right] = 9$ depicted in Fig. 8

hereafter:

Fig. 8: Molecular graphs of 3 meso and 6 unsymmetrical GPIs having the configuration ${}^{2^4}G(6,8)$ for a homo octasubstituted n-hexane.

This enumeration process indicates that the total number of GPIs for a homo octasubstituted n-hexane is: $I_{GPI}(6,8) = {}^{2^4}I_s(6,8) + {}^{2^4}I_u(6,8) + {}^{3^22^1}I_u(6,8) + {}^{3^22^1}I_s(6,8) = 0 + 2 + 3 + 6 = 11$

This figure inventory match up with the result obtained from the direct application of Eq. 27 hereafter:

$$I_{GPI}(6,8) = \frac{1}{2} \begin{bmatrix} 6\\4 \end{bmatrix} + \begin{pmatrix} 3\\2 \end{bmatrix} + \begin{pmatrix} 4\\1 \end{bmatrix} = II$$

The results of the extensive application of such calculations are reported in Table 2 for HPSNA having $2 \le m_+ \le 20$ and $2 \le n_+ \le 10$. It is to be noticed that for $m_+=2$ and 4 only Eqs. 23 and 24 are applicable respectively. The 3 examples given in this study illustrate the direct and general application of this pattern inventory of GPIs for the systems $C_nH_{2n+2-m}X_m$ having the configurations ${}^{32^{k_\pm}}G(n_+,m_-)$, ${}^{3^22^{k_\pm}}G(n_+,m_+)$ and ${}^{2^{k_\pm}}G(n_+,m_+)$ and the accuracy of our theoretical results is testified by the method of drawing and counting molecular graphs of systems with smaller chain length.

CONCLUSION

In linear homopolysubstituted n-alkanes (HPSNAs) with the empirical formula $C_n H_{2n+2-m} X_m$, the gemination of m_{\pm} substituents among the n_{\pm} positions of the straight carbon chain is a perfect Young's partition process which allows to identify three classes of constitutionally distinct GPIs as follows -

The GPIs ${}^{32^{k_{\pm}}}G(n_+,m_-)$ having one $-CX_3$ located on one extreme position and k_{\pm} ($-CX_2$) distributed among n_+ - 1 positions.

$^{3^22^{k_\pm}}G(n_+,m_+)$							$^{2^{k_{\pm}}}G(n_{+},m_{+})$				
n_+	m_+	k_{\pm}	$^{3^22^{k_\pm}}I_s$	${}^{3^22^{k_\pm}}I_u$	$3^2 2^{k_{\pm}} I_{GPI}$	k_{\pm}	$2^{k_{\pm}}I_s$	$2^{k_{\pm}}I_u$	$2^{k_{\pm}}I_{GPI}$	$Gp_1(n,m_+)$	
2	2	-	-	-	-	1	0	1	1	1	
	4	-	-	-	-	2	1	0	1	1	
	6	0	1	0	1	3	-	-	1	1	
4	2	-	-	-	-	1	0	2	2	2	
	4	-	-	-	-	2	2	2	4	4	
	6	0	1	0	1	3	0	2	2	3	
	8	1	0	1	1	4	1	0	1	2	
	10	2	1	0	1	-	-	-	-	1	
6	2	-	-	-	-	1	0	3	3	3	
	4	-	-	-	-	2	3	6	9	9	
	6	0	1	0	1	3	0	10	10	11	
	8	1	0	2	2	4	3	6	9	11	
	10	2	2	2	4	5	0	3	3	7	
	12	3	0	2	2	6	1	0	1	3	
	14	4	1	0	1	-	-	-	-	1	
8	2	-	-	-	-	1	0	4	4	4	
	4	-	-	-	-	2	4	12	16	16	
	6	0	1	0	1	3	0	28	28	29	
	8	1	0	3	3	4	6	32	38	41	
	10	2	3	6	9	5	0	28	28	37	
	12	3	0	10	10	6	4	12	16	26	
	14	4	3	6	9	7	0	4	4	13	
	16	5	0	3	3	8	1	0	1	4	
	18	6	1	0	1	9	-	-	-	1	
10	2	-				1	0	5	5	5	
	4	-				2	5	20	25	25	
	6	0	1	0	1	3	0	60	60	61	
	8	1	0	4	4	4	10	100	110	114	
	10	2	4	12	16	5	0	126	126	142	

Table 2: Figures inventories of GPIs for HPSNA having a degree of substitution m_+ even and the configurations ${}^{3^22^{k_\pm}}G(n_+,m_+)$ and ${}^{2^{k_\pm}}G(n_+,m_+)$

$3^{2}2^{k_{\pm}}G(n_{+},m_{+})$							$^{2^{k_{\pm}}}G(n_{+},m_{+})$				
n ₊	m ₊	k_{\pm}	$^{3^22^{k_\pm}}I_s$	${}^{3^22^{k_\pm}}I_u$	${}^{3^22^{k_\pm}}I_{GPI}$	k_{\pm}	$2^{k_{\pm}}I_s$	$2^{k_{\pm}}I_u$	$2^{k_{\pm}}I_{GPI}$	$^{1}Gp_{I}(n_{-},m_{+})$	
	12	3	0	28	28	6	10	100	110	138	
	14	4	6	32	38	7	0	60	60	98	
	16	5	0	28	28	8	5	20	25	53	
	18	6	4	12	16	9	0	5	5	21	
	20	7	0	4	4	10	1	0	1	5	
	22	8	1	0	1	11	-	-	-	1	

- the GPIs $2^{k_{\pm}} G(n_{\pm}, m_{\pm})$ exhibiting k_{\pm} (-CX₂-) among n_{\pm} positions of the chain and,

- the GPIs ${}^{3^22^{k_{\pm}}}G(n_+, m_+)$ having k_{\pm} (-CX₂-) distributed among n_+ - 2 positions and 2 (-CX₃) groups located on the two extreme positions of the chain

The figures inventories of GPIs for these 3 categories of molecular systems are derived from the direct calculations of the number of distinct ways of putting a set of k_{\pm} (–CX₂-) and one or two -CX₃ groups among n_{\pm} positions of the linear chain. This combinatorial enumeration method is a useful tool for stereo chemical analyses and molecular design of these series of chemical compounds.

REFERENCES

- 1. Q. M. Zhang, V. Bharti, G. Karamos and M. Schwartz (Ed.), Polyvinylidene Fluoride (PVDF) and its Copolymers, Encylopedia of Smart Materials, John Wiley and Sons, **1-2** (2002) pp. 807-825.
- 2. R. Schwarz, J. Seeliq and B. Kunnecke, Structural Properties of Perfluorinated Linear N-Alkanes: a 19F and 13C NMR Study of Perfluorononane, Magn. Reson. Chem., **42**(**6**), 512-517 (2004).
- 3. S. S. Jang, M. Blanco, W. A. Goddard, G. Caldwell and R. B. Ross, Perfluorinated N-Alkanes, Macromolecules, **36(14)**, 5331-5341 (2003).
- B. Hilger, H. Fromme, W. Völke and M. Coelhan, Effect of Chain Length, Chlorination Degree, and Structure on the Octanol Water Partition Coefficients of Polychlorinated N-Alkanes, Environ. Sci. Technol., 45(7), 2842-2849 (2011).
- G. Tomy, A. Fisk, J. B. Westmore and D. C. G. Muir, Environmental Chemistry and Toxicology of Polychlorinated N-Alkanes, Rev. Environ. Contam. Toxicol., 158, 53-128 (1998).
- 6. I. Campbell and G. McConnell, Chlorinated Paraffins and the Environment, 1. Environmental Occurrence, Environ. Sci. and Technol., **14**, 1209-1214 (1980).
- 7. D. M. Serrone, R. D. N. Birtley, W. Weigand and R. Millischer, «Toxicology of Chlorinated Paraffins», Food Chem. Toxicol., **25**(7), 553-562 (1987).
- 8. A. B. Mukherjee, The Use of Chlorinated Paraffins and their Possible Effects in the Environment, National Board of Waters and the Environment, Helsinki, Finland, Series A, **66** (1990) p. 53.
- 9. Derek Muir, Gary Stern and Gregg Tomy, in: Handbook of Environmental Chemistry, Vol. 3A, Springer, Berlin Heidelberg, New York (2000) pp. 149-156.
- S. Shojania, The Enumeration of Isomeric Structures for Polychlorinated N-Alkanes, Chemosphere, 38(9), 2125-2141 (1999).

131

- 11. K. Balasubramanians, Enumeration of Stable Stereo and Position Isomers of Polyalkohols, Ann. New York Acad. Sci., **319** (1979) pp. 33-36.
- 12. R. M. Nemba and M. Fah, On the Application of the Sieve Formula to the Enumeration of Stable Stereo and Position Isomers of Deoxyalditols, Tetrahedron, **51**(**13**), 3831-3840 (1995).
- 13. A. Young, on Quantitative Substitutional Analysis, Proc. London Math. Soc., 28(2), 255-292 (1927).