APPLICATION OF THE YOUNG'S PARTITION METHOD FOR COMBINATORIAL ENUMERATION OF GEM POSITION ISOMERS OF HOMO POLYSUBSTITUTED LINEAR N-ALKANES (PART II: N EVEN) ROBERT M. NEMBA* and CHRISTIANE E. NEMBA

Faculty of Science, Laboratory of Physical and Theoretical Chemistry, University of Yaoundé I, P.O. Box - 812, YAOUNDE I, CAMEROON
(Received : 30.03.2012; Revised : 09.04.2012; Accepted : 10.04.2012)

Abstract

A generalized combinatorial enumeration method is proposed for counting gem position isomers (GPIs) of any homopolysubstituted linear n-alkanes (HPSNA) with the empirical formula $C_{n} H_{2 n+2-m} X_{m}$ where the chain length n_{+}is even and where the degree of substitution $m_{ \pm}$(odd or even) satisfies the Young's partition models $m_{-}=32^{k_{ \pm}}, m_{+}=3^{2} 2^{k_{ \pm}}$or $2^{k_{ \pm}}$ with the restrictions $m_{ \pm} \geq 2$ and $k_{ \pm} \geq 0$.

Key words: Gem position isomer, Disubstitution, Trisubstitution, Homopolysubstituted linear n-alkane, Young's partition, Combinatorial enumeration.

INTRODUCTION

The different organic compounds possessing cumulative gem di and tri substitutions currently reported in the literature are perfluoro hydrocarbons used as fluorosurfactants, anaesthetics or thermo plastic fluoropolymers ${ }^{1-3}$ and polychlorinated n-alkanes(PCAs) ${ }^{4-7}$ consisting of C_{10} to $\mathrm{C}_{30} \mathrm{n}$-alkanes with chlorine content from 30 to 70 by mass PCAs used as high temperature lubricants, plasticizers, flame retardants, and additives in adhesives, paints, rubber and sealants ${ }^{8-9}$.

The organo-chemists dealing with such molecules are often faced to the mathematical problem of enumerating with exactness all possible isomeric structures of straight chain polyhalogenated compounds. Such theoretical studies are scarce ${ }^{10-12}$ and this second part of the study presents a method for direct combinatorial enumeration of gem position isomers (GPIs) of the series of homopolysubstituted linear nalkanes (HPSNA) having the empirical formula $C_{n} H_{2 n+2-m} X_{m}$ where the linear chain length n_{+}is even and where the degree of substitution $m_{ \pm}$is odd or even.

Mathematical formulation and computational method

Let us note the system $C_{n} H_{2 n+2-m} X_{m}=\left(n_{+}, m_{ \pm}\right)$when n_{+}is even and $m_{ \pm}$(odd or even) and consider that all germinal substitutions performed which the obligatory respect of the tetra valence of primary and secondary carbon atoms satisfy three Young's partition ${ }^{13}$ models given in Eqs. 1-2(a,b) hereafter:

[^0]\[

$$
\begin{gather*}
m_{-}=32^{k_{ \pm}} \text {if } m_{-} \geq 3 \text { and } k_{ \pm}=\frac{m-3}{2} \tag{1}\\
m_{+}=3^{2} 2^{k_{ \pm}} \text {if } m_{+} \geq 6 \text { and } k_{ \pm}=\frac{m-6}{2} \tag{2a}\\
m_{+}=2^{k_{ \pm}} \text {if } m_{+} \geq 2 \text { and } k_{ \pm}=\frac{m}{2} \tag{2b}
\end{gather*}
$$
\]

In these previous equations the integer numbers 3 and 3^{2} are one part or two parts of cardinality 3 which correspond to one gem or two gem trisubstitutions or formation of the $-\mathrm{CX}_{3}$ group on one or two extreme primary carbon atoms while the number $2^{k_{ \pm}}$refers to $k_{ \pm}$parts 2 representing $k_{ \pm}$gem disubstitutions or formation of $k_{ \pm}\left(-\mathrm{CX}_{2^{-}}\right)$groups among $n_{+}-2$ internal secondary carbon atoms of the chain. Throughout this paper the subscripts + and - refer to even and odd integer numbers, respectively.

Let $\mathrm{G}_{0}(\mathrm{n})$ shown in Figure 1 denote the linear graph which is defined as a finite non empty set of n_{+} white vertices indicated by numerical labels $1, \ldots, \mathrm{i}, \ldots, \mathrm{n}_{+}$together which a set of $\mathrm{n}_{+}-1$ edges (dotted lines) connecting adjacent vertices $\mathrm{i}-1$ and i . These white vertices and these edges represent the positions of carbon atoms and C-C bonds, respectively.

Fig. 1: Linear graph of an n-alkane

Molecular Graphs for GPIs of HPSNA

Let us represent in Fig. 2(a) shown below, a gem homo disubstitution as an operation which consists to attach two ligands of the same type X on a secondary or a primary carbon atom in order to generate the chemical group - CX_{2-}. Similarly a gem homo tri substitution represented in Fig. 2(b) is an operation consisting to attach three substituents of the same type X on a primary carbon atom located at the extremity of the linear chain in order to generate the chemical group - CX_{3}.

Fig. 2: Subgraphs representing - CX_{2} - and $-\mathrm{CX}_{3}$ groups
The formation of geminal groups $-\mathrm{CX}_{2}$ and $-\mathrm{CX}_{3}$ are Young's partition of $m_{ \pm}$substituents into parts 2 and 3 while the locations of these groups among n_{+}positions of $\mathrm{G}_{0}(n)$ are combinations of distinct placements which generate numerous gem position isomers (GPIs) that may be classified in accordance with Eq. 1-2 into the following three categories of configurations: ${ }^{32^{k_{4}}} G\left(n_{+}, m_{-}\right),{ }^{3^{22^{k_{4}}} G\left(n_{+}, m_{+}\right) \text {, and }{ }^{2^{k_{4}}} G\left(n_{+}, m_{+}\right), ~(1)}$ depicted by the generic molecular graphs given in Fig. $3(a, b, c)$ hereafter:

Fig. 3 (a,b, c): Generic molecular graphs of the three categories of gem homopolysubstituted linear \mathbf{n}_{+}.alkanes

Combinatorial enumeration of GPIs for HPSNA having the configuration ${ }^{32^{k_{4}}} G\left(n_{+}, m_{-}\right)$

The partition model given in Eq. 1, suitable for odd positive integer numbers m. allows the formation of GPIs with the configuration ${ }^{32^{k_{t}}} G\left(n_{+}, m_{-}\right)$which results from the placement of one $-\mathrm{CX}_{3}$ on one extreme position of the graph $\mathrm{G}_{0}(n)$ and the distribution of $\mathrm{k}_{ \pm}\left(-\mathrm{CX}_{2}\right)$ among the $n_{+}-1$ remaining positions.

Proposition 1: By virtue of Eq. 1, the number of GPIs with the configuration ${ }^{32^{h a}} G\left(n_{+}, m_{-}\right)$or number of distinct ways of putting one $-\mathrm{CX}_{3}$ on one extreme position and $\mathrm{k}_{ \pm}\left(-\mathrm{CX}_{2^{-}}\right)$on the remaining $n_{+}-1$ positions of a linear chain $\mathrm{G}_{0}(n)$ with a length n_{+}, denoted ${ }^{32^{k_{4}}} I\left(n_{+}, m_{-}\right)$is derived from Eq. 4:

$$
\begin{equation*}
{ }^{32^{k^{4}}} I_{G P I}\left(n_{+}, m_{-}\right)=\binom{n_{+}-1}{\frac{m_{-}-3}{2}} \tag{4}
\end{equation*}
$$

Combinatorial enumeration of GPIs for HPSNA having the configuration ${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$

The partition model given in Eq. 2(a) allows the formation of GPIs with the configuration ${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$which results from the placement of $k_{ \pm}\left(-\mathrm{CX}_{2}-\right)$ groups (k_{-}for m_{+}doubly even and k_{+}for m_{+} singly even) on $n_{+}-2$ internal positions and $2\left(-\mathrm{CX}_{3}\right)$ groups on the two extreme positions of $\mathrm{G}_{0}(n)$.

Proposition 2: The number ${ }^{3^{2} 2^{k_{ \pm}}} I\left(n_{+}, m_{+}\right)$of configurations of type ${ }^{3^{2^{2} 2_{ \pm}}} G\left(n_{+}, m_{+}\right)$or number of distinct ways of putting two $-\mathrm{CX}_{3}$ on two extreme positions and $k_{ \pm}\left(-\mathrm{CX}_{2}\right)$ on the remaining $n_{+}-2$ internal positions of $\mathrm{G}_{0}(n)$, is the binomial coefficient derived from Eq. 5 hereafter:

$$
\begin{equation*}
{ }^{3^{2} 2^{k^{4}}} I\left(n_{+}, m_{+}\right)=\binom{n_{+}-2}{\frac{m_{+}-6}{2}} \tag{5}
\end{equation*}
$$

It is to be noticed that ${ }^{3^{2} 2^{k t}} I\left(n_{+}, m_{+}\right)$is the sum given in Eq. 6 of the number ${ }^{3^{2} 2^{k_{t}}} I_{s}\left(n_{+}, m_{+}\right)$of meso symmetrical configurations and the double of the number ${ }^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)$of pairs of redundant unsymmetrical configurations:

$$
\begin{equation*}
{ }^{3^{2} 2^{k_{4}}} I\left(n_{+}, m_{+}\right)={ }^{3^{2} 2^{l^{\prime}}} I_{s}\left(n_{+}, m_{+}\right)+2\left[\int^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)\right] \tag{6}
\end{equation*}
$$

The number ${ }^{3^{2} 2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)$is derived according to the parities of the integers m_{+}and $k_{ \pm}$from Eqs. 7 and 8. If m_{+}is singly even one obtains an even integer number $k_{+}=\frac{m_{+}-6}{2}$ then:

$$
\begin{equation*}
{ }^{3^{2} 2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)=\binom{\frac{n_{+}-2}{2}}{\frac{k_{+}}{2}}=\binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}} \tag{7}
\end{equation*}
$$

If m_{+}is doubly even one obtains an odd integer number $k_{-}=\frac{m_{+}-6}{2}$ then:

$$
\begin{equation*}
{ }^{3^{2} 2^{k}} I_{s}\left(n_{+}, m_{+}\right)=0 \tag{8}
\end{equation*}
$$

Determination of the number ${ }^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)$of unsymmetrical gem position isomers

The number of chemically distinct unsymmetrical GPIs or number of pairs of redundant unsymmetrical configurations, noted ${ }^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)$is obtained from Eq. 9 hereafter:

$$
\begin{equation*}
\left.{ }^{3^{2} 2^{k_{1}}} I_{u}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[3^{3^{2} 2^{k_{4}}} I\left(n_{+}, m_{+}\right)-\right)^{3^{2} 2^{k_{ \pm}}} I_{s}\left(n_{+}, m_{+}\right)\right] \tag{9}
\end{equation*}
$$

If one considers the parity of $k_{ \pm}$, therefore Eq. 9 becomes Eq. 10 if m_{+}is doubly even:

$$
{ }^{3^{2} 2^{k^{-}}} I_{u}\left(n_{+}, m_{+}\right)==\frac{1}{2}\left[\binom{n_{+}-2}{k_{+}}\right]=\frac{1}{2}\left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}}\right]
$$

or Eq. 9 becomes Eq. 11 if m_{+}is singly even:

$$
\begin{equation*}
{ }^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}-2}{k_{+}}-\binom{\frac{n_{+}-2}{2}}{\frac{k_{+}}{2}}\right]=\frac{1}{2}\left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}}-\binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}}\right] \tag{11}
\end{equation*}
$$

Proposition 3: The number of chemically distinct gem position isomers ${ }^{3^{2} 2^{k_{4}}} I_{G P I}\left(n_{+}, m_{+}\right)$obtained by putting $2-\mathrm{CX}_{3}$ on two extreme positions of the chain having a length n_{+}and permuting $k_{ \pm}\left(-\mathrm{CX}_{2}\right)$ among the remaining $n_{+}-2$ internal positions of $\mathrm{G}_{0}(n)$ is derived from Eq. 12 :

$$
\begin{equation*}
{ }^{3^{2} 2^{k_{4}}} I_{G P I}\left(n_{+}, m_{+}\right)={ }^{3^{2} 2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)+{ }^{3^{2} 2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right) \tag{12}
\end{equation*}
$$

By replacing the right hand side terms of Eq. 12 by their equivalent given in Eqs. 7-8 and 10-11 one obtains, for m_{+}doubly even and k :

$$
{ }^{3^{2} 2^{k_{-}}} I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}-2}{k_{-}}\right]=\frac{1}{2}\left[\left(\begin{array}{c}
n_{+}-2 \tag{13}\\
m_{+}-6 \\
2
\end{array}\right)\right]
$$

and for m_{+}singly even and k_{+}:

$$
\begin{equation*}
{ }^{3^{2} 2^{k^{+}}} I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}-2}{k_{+}}+\binom{\frac{n_{+}-2}{2}}{\frac{k_{+}}{2}}\right]=\frac{1}{2}\left[\binom{n_{+}-2}{\frac{m_{+}-6}{2}}+\binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}}\right] \tag{14}
\end{equation*}
$$

Combinatorial enumeration of GPIs for HPSNA having the configuration ${ }^{2^{4_{+}}} G\left(n_{+}, m_{+}\right)$

Let ${ }^{2^{k t}} I\left(n_{+}, m_{+}\right)$denote the total number of configurations of type ${ }^{2^{k_{4}}} G\left(n_{+}, m_{+}\right)$issued from the given in Eq. 2 b which allows $k_{ \pm}=\frac{m_{+}}{2}$ gem disubstitutions distributed among n_{+}sites. Hence:

$$
\begin{equation*}
{ }^{2^{4_{ \pm}}} I\left(n_{+}, m_{+}\right)=\binom{n_{+}}{k_{ \pm}}=\binom{n_{+}}{\frac{m_{+}}{2}} \tag{15}
\end{equation*}
$$

As previously defined, ${ }^{2^{k+}} I\left(n_{+}, m_{+}\right)$is a sum of two components given in the right hand side of Eq. 16:

$$
\begin{equation*}
2^{k^{\prime t}} I\left(n_{+}, m_{+}\right)=2^{2^{\prime 4}} I_{s}\left(n_{+}, m_{+}\right)+2\left[2^{2^{\prime 4}} I_{u}\left(n_{+}, m_{+}\right)\right] \tag{16}
\end{equation*}
$$

The components ${ }^{2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)$and ${ }^{2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right)$are respectively the numbers of symmetrical and redundant unsymmetrical configurations ${ }^{2^{k_{t}}} G\left(n_{+}, m_{+}\right)$derived from Eqs. 17-18 according to the parities of the integers m_{+}and $k_{ \pm}=\frac{m_{+}}{2}$:

$$
\begin{equation*}
{ }^{2^{k_{-}}} I_{s}\left(n_{+}, m_{+}\right)=0 \tag{17}
\end{equation*}
$$

for m_{+}singly even k - (odd)
or

$$
\begin{equation*}
{ }_{2^{k^{+}}} I_{s}\left(n_{+}, m_{+}\right)=\binom{\frac{n_{+}}{2}}{\frac{k_{+}}{2}}=\binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}} \tag{18}
\end{equation*}
$$

for m_{+}doubly even k_{+}(even)
The numbers of chemically distinct unsymmetrical configurations ${ }^{2^{k+4}} G\left(n_{+}, m_{+}\right)$is derived from Eq. 19:

$$
\begin{equation*}
{ }^{2^{k^{4}}} I_{u}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[2^{2^{k}} I\left(n_{+}, m_{+}\right)-2^{2^{k_{ \pm}}} I_{s}\left(n_{+}, m_{+}\right)\right] \tag{19}
\end{equation*}
$$

which becomes Eq. 20 for m_{+}singly even and k. :

$$
\begin{equation*}
{ }^{2^{k-}} I_{u}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}}{k_{-}}\right]=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}\right] \tag{20}
\end{equation*}
$$

or for m_{+}doubly even and k_{+}:

$$
\begin{equation*}
{ }^{2^{k_{+}}} I_{u}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}}{k_{+}}-\binom{\frac{n_{+}}{2}}{\frac{k_{+}}{2}}\right]=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}-\binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}}\right] \tag{21}
\end{equation*}
$$

Proposition 4: The number ${ }^{2_{4}{ }^{t_{A}}} I_{G P I}\left(n_{+}, m_{+}\right)$of chemically distinct GPIs obtained by putting in distinct ways $k_{ \pm}\left(-\mathrm{CX}_{2}-\right)$ groups among n_{+}positions of a linear chain $\mathrm{G}_{0}(n)$ is derived from Eq. 22:

$$
\begin{equation*}
{ }^{2^{k s_{t}^{2}}} I_{G P I}\left(n_{+}, m_{+}\right)={ }^{2^{k t}} I_{s}\left(n_{+}, m_{+}\right) \quad+{ }^{2^{k_{4}}} I_{u}\left(n_{+}, m_{+}\right) \tag{22}
\end{equation*}
$$

By replacing the right hand side terms of Eq. 22 by their equivalent given in Eqs. 17-21 one obtains for m_{+}singly even and k :

$$
\begin{equation*}
{ }^{2^{k}} I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{-}}{k_{-}}\right]=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}\right] \tag{23}
\end{equation*}
$$

and for m_{+}doubly even and k_{+}:

$$
\begin{equation*}
{ }^{2^{k_{4}}} I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}}{k_{+}}+\binom{\frac{n_{+}}{2}}{\frac{k_{+}}{2}}\right]=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}+\binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}}\right] \tag{24}
\end{equation*}
$$

By virtue of Eqs. 2(a) and 2(b), the occurrence of two simultaneous modes of partition for the degree of substitution m_{+}suggests the following assertion:

Proposition 5 : When the degree of substitution m_{+}is doubly or singly even the total number of constitutionally distinct GPIs in the series $C_{n} H_{2 n+2-m} X_{m}$, noted $I_{G P I}\left(n_{+}, m_{+}\right)$, is the sum of the numbers ${ }^{3^{2} 2^{k_{4}}} I_{G P I}\left(n_{+}, m_{+}\right)$and ${ }^{2^{k_{4}}} I_{G P I}\left(n_{+}, m_{+}\right)$for HPSNA having the configurations ${ }^{3^{2} 2^{k_{ \pm}}} G\left(n_{+}, m_{+}\right)$and ${ }^{2^{k_{ \pm}}} G\left(n_{+}, m_{+}\right)$ respectively. Hence:

$$
\begin{equation*}
I_{G P I}\left(n_{+}, m_{+}\right)={ }^{3^{2} 2^{k t}} I_{G P I}\left(n_{+}, m_{+}\right)+{ }^{2^{4 t}} I_{G P I}\left(n_{+}, m_{+}\right) \tag{25}
\end{equation*}
$$

By splitting the right hand terms ${ }^{32^{k+4}} I_{G P I}\left(n_{+}, m_{+}\right)$and ${ }^{2^{k t}} I_{G P I}\left(n_{+}, m_{+}\right)$into their respective components given in Eqs. 12 and 22, one obtains Eq. 26:

$$
\begin{equation*}
I_{G P I}\left(n_{+}, m_{+}\right)={ }^{3^{2} 2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)+{ }^{3^{2} 2^{2^{4}}} I_{u}\left(n_{+}, m_{+}\right)+{ }^{2^{k_{4}}} I_{s}\left(n_{+}, m_{+}\right)+{ }^{2^{h_{4}}} I_{u}\left(n_{+}, m_{+}\right) \tag{26}
\end{equation*}
$$

If the right hand side terms of Eq. 26 are replaced by their explicit formula given in Eqs. 13-14 and 23-24, one obtains the generalized Eq. 27 and 28 for combinatorial enumeration of GPIs for any HPSNA having a singly or doubly even integer number m_{+}of cumulative gem homo substitutions. Hence, for m_{+} doubly even:

$$
\begin{equation*}
I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}+\binom{\frac{n_{+}}{2}}{\frac{m_{+}}{4}}+\binom{n_{-}-2}{\frac{m_{+}-6}{2}}\right] \tag{27}
\end{equation*}
$$

and for m_{+}singly even:

$$
\begin{equation*}
I_{G P I}\left(n_{+}, m_{+}\right)=\frac{1}{2}\left[\binom{n_{+}}{\frac{m_{+}}{2}}+\binom{n_{+}-2}{\frac{m_{+}-6}{2}}+\binom{\frac{n_{+}-2}{2}}{\frac{m_{+}-6}{4}}\right] \tag{28}
\end{equation*}
$$

RESULTS AND DISCUSSION

Applications

Example 1: To illustrate the application of Eq. 4 let us consider the molecular system $C_{4} H_{5} X_{5}$, where $n_{+}=4, m_{-}=5$ and $k_{-}=1$. Therefore the number of configurations ${ }^{32^{1}} G(4,5)$ is $^{32^{1}} I_{G P I}(4,5)=\binom{3}{1}=3$. The chemical graphs representing the two GPIs of a penta homosubstituted n-butane are depicted in Fig. 4 hereafter:

Fig. 4: Molecular graphs of the two GPIs of a penta homosubstituted n-butane.
The figure inventories of GPIs for HPSNAs having the configuratio ${ }^{32^{k_{土}}} G\left(n_{+}, m_{-}\right)$where $2 \leq n_{+} \leq 12$, $3 \leq m_{ \pm} \leq 25$ and $0 \leq k_{ \pm} \leq 11$, are given in Table 1 hereafter:

Example 2: Let us consider the molecular system $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}_{10}$ with the configuration ${ }^{3^{2} 2^{2}} G(6,10)$ having $\mathrm{n}_{+}=6, m_{+}=10$ and $k_{+}=2$. Two ($-\mathrm{CX}_{2}$) are to be placed among $n_{+}-2=4$ internal positions while $2\left(-\mathrm{CX}_{3}\right)$ are located at the two extreme positions of $\mathrm{G}_{0}(n)$. The application of Eqs. 7 and 11 gives respectively ${ }^{3^{2} 2^{2}} I_{s}(6,10)=\left[\begin{array}{l}2 \\ 1\end{array}\right]=2$ meso forms and $3^{3^{2} 2^{2}} I_{u}(6,10)=\frac{1}{2}\left[\binom{4}{2}-\binom{2}{1}\right]=2$ unsymmetrical GPIs while Eq. 14 predicts ${ }^{3^{2} 2^{2}} I_{G P I}(6,10)=\frac{1}{2}\left[\binom{4}{2}+\binom{2}{1}\right]=4$ GPIs. These results indicate that the total number of GPIs having the configuration ${ }^{3^{2} 2^{2}} G(6,10)$ for a gem homo decasubstituted linear n-hexane is 4 , subdivided into 2 meso and 2 unsymmetrical forms which are represented by molecular graphs shown in Fig. 5 hereafter :

Table 1: Figure inventories of GPIs for HPSNA having the configuration ${ }^{32 k} G\left(n_{+}, m_{-}\right)$

\mathbf{n}_{+}	m.	$\mathbf{k}_{ \pm}$	${ }^{32^{\text {k/ }}} I\left(n_{+}, m_{-}\right)$	\mathbf{n}_{+}	m.	$\mathbf{k}_{ \pm}$	${ }^{32^{k+4}} I\left(n_{+}, m_{-}\right)$	\mathbf{n}_{+}	m.	$\mathbf{k}_{ \pm}$	${ }^{32^{k_{4}}} I\left(n_{+}, m_{-}\right)$
2	3	0	1	4	3	0	1	6	3	0	1
	5	1	1		5	1	3		5	1	5
					7	2	3		7	2	10
					9	3	1		9	3	10
										4	5
										5	1
8				10				12			
	3	0	1		3	0	1		3	0	1
	5	1	7		5	1	9		5	1	11
	7	2	21		7	2	36		7	2	55
	9	3	35		9	3	84		9	3	165
	11	4	35		11	4	126		11	4	330
	13	5	21		13	5	126		13	5	462
	15	6	7		15	6	84		15	6	462
	17	7	1		17	7	36		17	7	330
					19	8	9		19	8	165
					21	9	1		21	9	55
									23	10	11
									25	11	1

$3^{2} 2^{2} I_{s}(6,10)=2$

$$
3^{2} 2^{2} I_{u}(6,10)=2
$$

Fig. 5: Molecular graphs of the 4 GPIs having the configuration ${ }^{3^{2} 2^{2}} G(6,10)$ for a homo deca substituted n-hexane

Let us consider the configuration ${ }^{2^{5}} G(6,10)$ where $k=5$. From Eqs. 17, 20 and 23 one deduce respectively: ${ }^{2^{5}} I_{s}(6,10)=0 \quad, \quad{ }^{2} I_{u}(6,10)=\frac{1}{2}\left[\binom{6}{5}\right]=3 \quad$ and ${ }^{2^{5}} I_{G P I}(7,10)=\frac{1}{2}\left[\binom{6}{5}\right]=3$ unsymmetrical GPIs depicted in Fig. 6 hereafter:

Fig. 6: Molecular graphs of the 3 GPIs having the configuration ${ }^{2^{5}} G(6,10)$ for a homo decasubstituted n-hexane

The total number of GPIs for a homo decasubstituted n-hexane is:

$$
I_{G P I}(6,10)={ }^{2^{5}} I_{s}(6,10)+{ }^{2^{5}} I_{u}(6,10)++^{3^{2} 2^{2}} I_{u}(6,10)+{ }^{3^{2} 2^{2}} I_{s}(6,10)=0+3+2+2=7
$$

This figure inventory match up with the result obtained from the direct application of Eq. 28 hereafter :

$$
I_{G P I}(6,10)=\frac{1}{2}\left[\binom{6}{5}+\binom{4}{2}+\binom{2}{1}\right]=7
$$

Example 3: For the series $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{X}_{8}$ having $n_{+}=6, m_{+}=8$ and $k_{-}=1$ the generic configuration ${ }^{3^{2} 2^{1}} G(6,8)$ includes $2\left(-\mathrm{CX}_{3}\right)$ at two extreme positions of $\mathrm{G}_{0}(n)$ and $1\left(-\mathrm{CX}_{2}-\right)$ groups to be placed among 4 internal positions. From Eqs. 8, 10 and 13 one obtains respectively:
${ }^{3^{2} 2^{1}} I_{s}(6,8)=0,3^{3^{2} 2^{1}} I_{u}(6,8)=\frac{1}{2}\left[\binom{4}{1}\right]=2$ and ${ }^{3^{2} 2^{1}} I_{G P I}(6,8)=\frac{1}{2}\left[\binom{4}{1}\right]=2$ forms shown in Fig. 7.

Fig. 7: Molecular graphs of the $\mathbf{2}$ unsymmetrical GPIs having the configuration ${ }^{3^{22^{1}}} G(6,8)$ for a homo octasubstituted n-hexane.

For the configuration ${ }^{2^{4}} G(6,8)$ where $k_{+}=4$, Eqs. 18,21 and 24 give respectively:

$$
{ }^{2^{4}} I_{s}(6,8)=\binom{3}{2}=3,{ }^{2^{4}} I_{u}(6,8)=\frac{1}{2}\left[\binom{6}{4}-\binom{3}{2}\right]=6 \text { and }{ }^{2^{6}} I_{G P I}(6,8)=\frac{1}{2}\left[\binom{6}{4}+\binom{3}{2}\right]=9 \text { depicted in Fig. } 8
$$ hereafter:

${ }^{2^{4}} I_{s}(6,8)=3$

$$
2^{2^{4}} I_{u}(6,8)=6
$$

Fig. 8: Molecular graphs of 3 meso and 6 unsymmetrical GPIs having the configuration ${ }^{2^{4}} G(6,8)$ for a homo octasubstituted n-hexane.

This enumeration process indicates that the total number of GPIs for a homo octasubstituted n hexane is: $I_{G P I}(6,8)={ }^{2^{4}} I_{s}(6,8)+{ }^{2^{4}} I_{u}(6,8)+{ }^{3^{2} 2^{1}} I_{u}(6,8)+{ }^{3^{2} 2^{1}} I_{s}(6,8)=0+2+3+6=11$

This figure inventory match up with the result obtained from the direct application of Eq. 27 hereafter:

$$
I_{G P I}(6,8)=\frac{1}{2}\left[\binom{6}{4}+\binom{3}{2}+\binom{4}{1}\right]=11
$$

The results of the extensive application of such calculations are reported in Table 2 for HPSNA having $2 \leq m_{+} \leq 20$ and $2 \leq n_{+} \leq 10$. It is to be noticed that for $m_{+}=2$ and 4 only Eqs. 23 and 24 are applicable respectively. The 3 examples given in this study illustrate the direct and general application of this pattern inventory of GPIs for the systems $C_{n} H_{2 n+2-m} X_{m}$ having the configurations ${ }^{32^{k_{4}}} G\left(n_{+}, m_{-}\right)$, ${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$and ${ }^{2^{k_{4}}} G\left(n_{+}, m_{+}\right)$and the accuracy of our theoretical results is testified by the method of drawing and counting molecular graphs of systems with smaller chain length.

CONCLUSION

In linear homopolysubstituted n-alkanes (HPSNAs) with the empirical formula $C_{n} H_{2 n+2-m} X_{m}$, the gemination of $m_{ \pm}$substituents among the n_{+}positions of the straight carbon chain is a perfect Young's partition process which allows to identify three classes of constitutionally distinct GPIs as follows -

The GPIs ${ }^{32^{k \pm}} G\left(n_{+}, m_{-}\right)$having one $-\mathrm{CX}_{3}$ located on one extreme position and $k_{ \pm}\left(-\mathrm{CX}_{2}\right)$ distributed among $n_{+}-1$ positions.

Table 2: Figures inventories of GPIs for HPSNA having a degree of substitution \mathbf{m}_{+}even and the configurations ${ }^{32^{2} 2^{4}} G\left(n_{+}, m_{+}\right)$and ${ }^{2^{k_{ \pm}}} G\left(n_{+}, m_{+}\right)$

${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$						$2^{2_{4}} G\left(n_{+}, m_{+}\right)$				$I_{G P I}\left(n_{-}, m_{+}\right)$
n_{+}	m_{+}	$k_{ \pm}$	${ }^{3^{2} 2^{k_{t}}} I_{s}$	${ }^{3^{2} 2^{4}{ }^{4}} I_{u}$	${ }^{3^{2} 2^{k^{4}}} I_{\text {GPI }}$	$k_{ \pm}$	${ }^{2^{k_{4}} I_{s}}$	${ }^{2^{k^{4}} I_{u}}$	${ }^{2^{k_{4}}} I_{\text {GPI }}$	
2	2	-	-	-	-	1	0	1	1	1
	4	-	-	-	-	2	1	0	1	1
	6	0	1	0	1	3	-	-	1	1
4	2	-	-	-	-	1	0	2	2	2
	4	-	-	-	-	2	2	2	4	4
	6	0	1	0	1	3	0	2	2	3
	8	1	0	1	1	4	1	0	1	2
	10	2	1	0	1	-	-	-	-	1
6	2	-	-	-	-	1	0	3	3	3
	4	-	-	-	-	2	3	6	9	9
	6	0	1	0	1	3	0	10	10	11
	8	1	0	2	2	4	3	6	9	11
	10	2	2	2	4	5	0	3	3	7
	12	3	0	2	2	6	1	0	1	3
	14	4	1	0	1	-	-	-	-	1
8	2	-	-	-	-	1	0	4	4	4
	4	-	-	-	-	2	4	12	16	16
	6	0	1	0	1	3	0	28	28	29
	8	1	0	3	3	4	6	32	38	41
	10	2	3	6	9	5	0	28	28	37
	12	3	0	10	10	6	4	12	16	26
	14	4	3	6	9	7	0	4	4	13
	16	5	0	3	3	8	1	0	1	4
	18	6	1	0	1	9	-	-	-	1
10	2	-				1	0	5	5	5
	4	-				2	5	20	25	25
	6	0	1	0	1	3	0	60	60	61
	8	1	0	4	4	4	10	100	110	114
	10	2	4	12	16	5	0	126	126	142

Cont...

${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$						$2^{k_{4}} G\left(n_{+}, m_{+}\right)$				$I_{G P I}\left(n_{-}, m_{+}\right)$
n_{+}	m_{+}	$k_{ \pm}$	${ }^{3^{2} 2^{k_{4}} I_{s}}$	${ }^{3^{2} 2^{k_{t}} I_{u}}$	${ }^{3^{2} 2^{k_{4}}} I_{\text {GPI }}$	$k_{ \pm}$	${ }^{2^{k^{4}} I_{s}}$	${ }^{2^{k_{4}} I_{u}}$	${ }^{2^{k_{ \pm}} I_{G P I}}$	
	12	3	0	28	28	6	10	100	110	138
	14	4	6	32	38	7	0	60	60	98
	16	5	0	28	28	8	5	20	25	53
	18	6	4	12	16	9	0	5	5	21
	20	7	0	4	4	10	1	0	1	5
	22	8	1	0	1	11	-	-	-	1

- the GPIs ${ }^{2^{k_{4}}} G\left(n_{+}, m_{+}\right)$exhibiting $k_{ \pm}\left(-\mathrm{CX}_{2}-\right)$ among n_{+}positions of the chain and,
- the GPIs ${ }^{3^{2} 2^{k_{4}}} G\left(n_{+}, m_{+}\right)$having $k_{ \pm}\left(-\mathrm{CX}_{2}\right)$ distributed among $n_{+}-2$ positions and $2\left(-\mathrm{CX}_{3}\right)$ groups located on the two extreme positions of the chain

The figures inventories of GPIs for these 3 categories of molecular systems are derived from the direct calculations of the number of distinct ways of putting a set of $k_{ \pm}\left(-\mathrm{CX}_{2}-\right)$ and one or two $-\mathrm{CX}_{3}$ groups among n_{+}positions of the linear chain. This combinatorial enumeration method is a useful tool for stereo chemical analyses and molecular design of these series of chemical compounds.

REFERENCES

1. Q. M. Zhang, V. Bharti, G. Karamos and M. Schwartz (Ed.), Polyvinylidene Fluoride (PVDF) and its Copolymers, Encylopedia of Smart Materials, John Wiley and Sons, 1-2 (2002) pp. 807-825.
2. R. Schwarz, J. Seeliq and B. Kunnecke, Structural Properties of Perfluorinated Linear N-Alkanes: a 19F and 13C NMR Study of Perfluorononane, Magn. Reson. Chem., 42(6), 512-517 (2004).
3. S. S. Jang, M. Blanco, W. A. Goddard, G. Caldwell and R. B. Ross, Perfluorinated N-Alkanes, Macromolecules, 36(14), 5331-5341 (2003).
4. B. Hilger, H. Fromme, W. Völke and M. Coelhan, Effect of Chain Length, Chlorination Degree, and Structure on the Octanol Water Partition Coefficients of Polychlorinated N-Alkanes, Environ. Sci. Technol., 45(7), 2842-2849 (2011).
5. G. Tomy, A. Fisk, J. B. Westmore and D. C. G. Muir, Environmental Chemistry and Toxicology of Polychlorinated N-Alkanes, Rev. Environ. Contam. Toxicol., 158, 53-128 (1998).
6. I. Campbell and G. McConnell, Chlorinated Paraffins and the Environment, 1. Environmental Occurrence, Environ. Sci. and Technol., 14, 1209-1214 (1980).
7. D. M. Serrone, R. D. N. Birtley, W. Weigand and R. Millischer, «Toxicology of Chlorinated Paraffins», Food Chem. Toxicol., 25(7), 553-562 (1987).
8. A. B. Mukherjee, The Use of Chlorinated Paraffins and their Possible Effects in the Environment, National Board of Waters and the Environment, Helsinki, Finland, Series A, 66 (1990) p. 53.
9. Derek Muir, Gary Stern and Gregg Tomy, in: Handbook of Environmental Chemistry, Vol. 3A, Springer, Berlin Heidelberg, New York (2000) pp. 149-156.
10. S. Shojania, The Enumeration of Isomeric Structures for Polychlorinated N-Alkanes, Chemosphere, 38(9), 2125-2141 (1999).
11. K. Balasubramanians, Enumeration of Stable Stereo and Position Isomers of Polyalkohols, Ann. New York Acad. Sci., 319 (1979) pp. 33-36.
12. R. M. Nemba and M. Fah, On the Application of the Sieve Formula to the Enumeration of Stable Stereo and Position Isomers of Deoxyalditols, Tetrahedron, 51(13), 3831-3840 (1995).
13. A. Young, on Quantitative Substitutional Analysis, Proc. London Math. Soc., 28(2), 255-292 (1927).

[^0]: Available online at www.sadgurupublications.com
 *Author for correspondence; E-mail: nembarobertmartin@yahoo.com

