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ABSTRACT

Visible-NIR reflective spectrum was used to predict the nitrogen contents
of rice leaves. Different preprocessing methods were used in pretreatment
of the original spectra. The effective wavelengths were selected by suc-
cessive projections algorithm (SPA) for original spectra and pretreated
spectra. Multiplelinear regression (MLR) modelsand Partial least squares
regression (PLS) models were built respectively. SPA could reduce the
dimensions of spectral matrix efficiently. In the model s established on SPA
effective wavelength, ML R model and PL Smodel based on multiplicative
scatter correction (MSC) pretreated spectrum had the best predicting ef-
fect with r=0.7943 and RMSE=0.4558. In PLS models established on all
wavelengths, the best predicting effect model was that based on MSC
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pretreated spectrumwith r=0.8470 and RMSE=0.3953.
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INTRODUCTION

Riceisoneof the staplefoods around theworld,
especialy intheAsian regions. Themonitoring of rice
growth isimportant agricultura information. Nutrients
play an important role on rice growth, deficiency of
nutrientswill lead to short and weak bodies, influence
thecolor, shgpeand structure of leaves, and theninflu-
ence rice growth and yield™¥. For those reasons, the
monitoring of riceleavesnitrogen content becomesan
important aspect inthemonitoring of ricegrowth. The
traditiona method for nitrogen determinationisKjeldahl
method. Itsadvantageisthe high accuracy, and disad-
vantages arethe complexity of processing, time con-
suming, vulnerability of instrument, thehighleve of pro-
fessiond requirementsto the operator, and the high cost

for largenumber of samples. Spectrd analysisisahigh-
speed, low cost, and nondestructive analytical method.
It could finish the determination of large number of
samplesinashort time. In addition, it could simulta-
neoudly generate the content information of anumber
of ingredientsin samples during adetermination, and
has obviousadvantages compared with traditiond meth-
ods?7. Successiveprojectionsagorithm (SPA) isafor-
ward variablesd ection dgorithmthat minimizethecolin-
earity of vector space. Itsadvantageliesin extractinga
few characteristicwavelengthsand diminating there-
dundant informationinorigina spectral datamatrices.
It can be used for the sel ection of characteristicwave-
lengthg®™3.

In recent years, some researchers have used SPA
for the sel ection of effective wavel engthswhen using
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spectra analysismethod for the determination of cer-
tain important componentsin cropsand food. There
areresearchesabout the gpplication of SPA to nonde-
structive determination of pork pH value®, and appli-
cation of SPA in nondestructive determination of total
amino acidsin oil seed rapeleaves®. Someresearchers
exploring near and mid-infrared spectroscopy to pre-
dict traceiron and zinc contentsin powdered milk com-
bined with SPA for effectivewave engths sel ection*?,
and application of SPA asavariablesdectioninaQSPR
study to predict the octanol /water partition coefficients
(K,,) of some halogenated organic compounds™.
However, therearefew researches about the applica-
tion of SPA on spectral monitoring of riceleavesnitro-
gen contents.

Theobjectiveof thisstudy wasto investigatethe
gpplication of SPA on spectral monitoring of riceleaves
nitrogen contents. 5 segmentsmoving average, basdline
correction, areanormalization, 1st derivative, multipli-
cative scatter correction (M SC) was used to prepro-
cesstheorigind reflectance spectrums. Multiplelinear
regressons(MLR) and partid least squaresregressons
(PLS) wereapplied to establish regression model s of
riceleavenitrogen contents.

MATERIALSAND METHODS

Design of experiments

Experimentd fieldislocatedin Guizhou University
at 26° 342 N, 104° 342 E, and covers an arca of
420.48 m?, it wasdivided into 15 equal regions, which
were separated by balk covered with plastic film. Two
varieties of ricewere planted in every region, 0.3 m
wide spacewas|eaved to separate those two varieties,
inter plant distanceis0.13m x 0.17 m, transplanting
riceshootsindividualy, 30 samplepoints, 3 repetitions,
and completely randomarrangement. Thevarietiesare
loca glutinousrice (glutinousrice, full growth period
140 days, mark as S1) and Xiang You 109 (hybrid
indicarice, full growth period 145 days, mark as S2).
It was seeding onApril 28 and transplantingon June 2.
Fertilizer wasdesignedto 5 levels, which are 0, 120,
240, 360, 480 kg N ha* respectively, covered situa-
tionsof famine, lack, suitable, over dose, and severely
over dose. Calcium superphosphate was used 533.3
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kg ha' ineachregion asbasicfertilizer. Potash muriate
wasused 300 kg ha' asearring fertilizer. Experimental
soil issand loam. Tota soil nitrogen 1.15gkg?, avail-
able nitrogen 188.5 mg kg, total phosphorus1.21 g
kg, total potassium 72.7 mg kg, organic matter 9.96
gkg?, pH 6.78.

Spectral measurements

Collect samplesof each variety inevery region at
tillering, jointing, boot, heading and milk stage of rice
growth period. Reflectance spectraof thefirst and third
leaf of rice plant were measured in doors with an
AvaSpec-2048 Visible-NIR spectrophotometer
(Avantes, Netherlands, scanning region 332-1100 nm,
scanning intervals 2.4 nm). Before starting measure-
ments, zero reflectance was adj usted by blocking the
light path, and a standard whiteboard was used for
100% reflectance (so the spectrum obtained isdimen-
sonlessrdativereflectance). 10 spectrawereobtained
each sample, then they were averaged into onesample
gpectrum, 300 sample spectrumswere obtained in the
end[14, 15].

M easur ement of nitrogen contents of riceleaves

After measurement of spectra, theleaveswereleft
into paper bagsand killed out in an oven at 105°C for
haf hours, thendried at 70°C for 36 hours. Semi-micro
Kjeldahl method wascarried out to thedried leavesfor
nitrogen content determination.

Dividing of train set and prediction set

Combine reflectance spectra datawith nitrogen
content data respectively. Afterward, 15 abnormal
sampleswerediminated. Theremaining 285 samples
were used for spectral analysis. Those 285 samples
wererandomly dividedintotrain set and prediction set.
Thetraining set had 190 samples, and predi ction set 95
samples.

Spectral preprocessing

Tominimizetheerrorscomefrom environment and
operating process, spectral preprocessing wastaken.
We use 5 segments moving average, baseline correc-
tion, areanormalization, 1% derivativeand multiplica-
tive scatter correction (M SC) to preprocesstheorigi-
nal spectral data*®. Their model performancesand ef-
fectivewavelengths sel ected by SPA were compared.
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Variableselection by SPA

SPA isaforward variable selection algorithm that
minimizes colinearity of vector space. It wasfirst posed
by Bregman in 196510 solvetheconvex feasbility prob-
lem, andisnow widely used in thefiel ds of biomedical
imaging, computer tomography, signal processingand
spectrum metrology™®. SPA includesthree phases™-13:
At first, the a gorithm buil ds candidate subsets of
variablesonthebasisof acolinearity minimization cri-
terion. Those stepsare described bel ow, assuming that
thefirst variable, k (0), and thenumber N aregiven.
Step 1: Beforethefirstiteration (n=1), let X =] thcol-
umnof X_;j=1,...,J

Step 2: Let Sbethe set of variables which have not
been selected yet. That is: S={] suchthat 1<

j<Jdandje{k(0),...,k(n-1)}}

Step 3: Cdculatethe projection of X on the subspace
orthogonal to X, () 8 PX =X — (ij X, (n_l)) X,
1) _(ka_(n_l)xk (n_l))'1 forall je S wherePisthe
proj ection operator.

Step4: Letk(n) =arg (max|IPx|l. je S

Step 5. Letxj = ij, jeS

Step6: Letn=n+ 1. If n <N go back to step 2.

End:  Theresulting variablesare {k (n); n=0,...,
N-1}

Thenumber of projection operationsperformedin
the selection process can be shown to be (N-1) (J-N/2).

Thenthe best candidate subset ischosen based on
minimum root mean square error (RMSE) obtained
through avaidation procedure.

Findly, the selected subset issubjected toan elimi-
nation procedureto determineif any variablescan be
removed without significant lossof prediction ability.

SPA was redlized by MATLAB 7.0 (The Math
Works, Natick, United States).

Modelingby MLRand PLS

Multiplelinear regressons(MLR) areawidely used
regression method, which issimpleand easy to under-
gtand. But thismethod isusudly interrupted by the colin-
earity between variables, and the number of input vari-
ables should belarger than theresponse chemical vari-
able number and | essthan the sample number™. Nor-
mally, the spectral matrix hasthousandsof wavelength
varieties. Thereisseverecolinearity among wavelength
varieties, and the number of wavelength varietiesisfar
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morethanthenumber of samples. Therefore, for MLR
modeling, selection of effectivewave engthsisnecessity.

Partia least squaresregression (PLS) isakind of
multivariable correction method based on factor anay-
sswhichismostly used multivariablecorrection method
ingpectra andysisnow. PLSreducethe dimensionsof
spectral matrix and takestheinfluencesof properties
matrix into account at the sametime. Thedecomposi-
tion of spectrum and contentsisimplemented simulta-
neously. The content information isimportedinto the
spectral datadecomposition process. Scoresof spec-
traand contents are exchanged beforethe computation
of every new principa component. Inthisway, rdevance
was built between spectra principa componentsand
the content of interested componentsinsamples. PLS
wasappliedin chemical research from 1980s, and now
become one of the most popular multivariable correc-
tion methodsin chemometricg*” 19,

Crossvalidationisastatistical anaysisapproach
used to validatethe regression model. Itsbasicideais
todividethetrain set into k parts, and devel op regres-
sion model using k-1 parts, theremaining oneisused
asvdidation set to vaidatethe performanceof themodd
built previoudly. Thisprocessisimplemented ktimes
until every set hasbeen used asvalidation set. Finaly,
satistical resultsof al k validationsareused astheas-
sessment of origina model. Leave-one-out crossvai-
dationisoneof them. Inthevalidation process, every
samplewill be used asvalidation set for onetime. Its
advantages arethat most samplesareused inregres-
soneachloop, whichisclosetothesampledistribution
of wholetrain set, and thevaidation resultismorerdli-
able, especidly inthe case of small amount of samples.
Inour research, leave-one-out crossvalidationisused
tovaidaetheregresson modd devel oped by train et.

The performancesof regresson modelsareeva u-
ated through thecomputation of correlation coefficients
r and root mean square error (RMSE).

RESULTSAND DISCUSSION

Satistical description of samplenitrogen content

Thedatistica description of nitrogen contentintran,
prediction, and al samplessetsareshownin TABLE 1.
Therangesof nitrogen content of all samplesare0.9848-
4.8940%, statisticd parametersof train set arethesame
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or very closetothegtatistical parametersof al samples,
that indicatesagood representativenessof train set. As
showninFigure 1, frequency distributionsof train set
and prediction set aredmost the same, whichindicates
that all samplesarerandomly divided intotrain set and
predicting set, whichisvery important for subsequent
regressonmode establishing.

TABLE 1: Satigtical description of samplesnitrogen content

Data Number Range Mean Variance
Set Of Samples (%) (%)
Tran 190 0.9848 ~4.8940 3.2849 0.5237
Prediction 95 1.1428 ~4.8742 3.3015 0.5567
All 285 0.9848 ~4.8940 3.2904 0.5328
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Figurel: Histogram of nitrogen content intrain set, predic-
tion set, and all samples

Results of spectral preprocessing and effective
wavelength selected by SPA
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Original spectra and preprocessed spectra are
shown in Figure2. Asindicated in original spectra,
therefl ectance spectraof riceleaveshavethe genera
spectral characteristics of most green plantsinthis
region of wavelength. In between 400 nm and 700
nm waveband, the reflectance is lower than 30%.
Thereisastrong peak near 550 nm. Thereflectance
has asharp increase in wave range of 680-760 nm,
and becomes gradual in theinfrared region. At the
ends of spectra (<400 nm and >1000 nm), theinten-
sity of light source becomes weak, so the noises be-
comeobvious. Asindicated in preprocessed spectra,
there are not many differences between 5 segments
moving average spectra, baseline correction spectra
and origina spectra. In areanormalization spectra, the
reflectance around 550 nm isamplified, and there-
flectance in infrared region is compressed. The 1%
derivative spectraemphasized the differencesin the
wave range of 680-760 nm between samples, but
amplified the noises at the sametime. Spectrapre-
processed by MSC areal ot of different fromtheorigi-
nal spectra, thedifferences between samplesininfra-
red wave range become small, but they arelargein
visblewaverange.

Original Data

5 Segments Moving Average
i P s gy
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reflectance%
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Figure?2: Preprocessed spectra and effective wavelengths
selected by SPA
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TABLE 2: Effectivewavelengths selected by SPA

Preprocess Wavelengths

M ethod Selected by SPA
Origina Data 336 337 354 714 752 1095 1096 1100
5 Segments 338 341 352 684 713 745 897
Moving Average
Basdline 336 337 354 714 752 1095 1096 1098 1100
Area
Normalization 333 342 349 699 1091 1094
1<t Derivative 336 690 1100
MSC 337 342 349 713 1029 1100

Original Data 5 Segments Moving Average
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Figure3: Correationsbetween nitrogen content and differ-
ent preprocessed spectrain train set
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Dotted linesin spectraof Figure 2 show positions
of effectivewavelengths selected by SPA. Asindicated
inthefigureand TABLE 2, although the positions of
effectivewavelengthsaredifferent in different prepro-
cessed spectra, their smilaritiesaredistinet. Inorigina
and preprocessed spectra, five of them select wave-
lengths around 350 nm, Spectra preprocessed by 5
segment moving average, areanormalization and 1%
derivative select wavelengthsaround 690 nm, origina
spectraand spectrapreprocessed by 5 segment mov-
ing average, baseline correction and M SC sdect wave-
lengthsat 723nmor 714 nm, origind spectraand spec-
tra preprocessed by 5 segment moving average and
basdline correction select wave engthsaround 750 nm.
The sel ected wavel engths ahead of 342 nm and after

1090 nm can be attributed to thealgorithm itself, for
theedges of spectramay beliableto besd ected, which
can bedeleted in future applications. In genera, the
positionsof effectivewavdengths selected by SPA are
basically concentrated on four regions. 350 nm, 690
nm, 713 nmand 750 nm. Thoseregionsare frequently
used inthe construction of plant spectra indexeg™® 29,
Corrdationsbetween nitrogen content and different
preprocessed spectraintrain set areshownin Figure 3.
Thepositionsof pesksand vdleysinthefigureindicate
good relations between nitrogen content and correspond-
ing wavelengths. Compare Figure 3 against Figure 2, it
can be seen that effectivewave engths sel ected by SPA
havegood corrd ationswith nitrogen content, which prove
theeffectivenessof SPA to someextent.

Resultsof MLR and PL Smodels

Results of MLR and PLS models are shown in
TABLE 3. SPA-MLR and SPA-PLS are MLR and
PLS model s based on effective wavelengths sel ected
by SPA. For original and al preprocessed spectra,
SPA-MLR calibration performances are better than
SPA-PLS. Thebest calibration performance of SPA-
MLR modelscomesfrom themode based on basdline
correction with r=0.8356 and RMSE=0.3965. The best
calibration performance of SPA-PLS modelscomes
from the model based on baseline correction with
r=0.8348 and RMSE=0.3974. The best crossvaida-
tion performance of SPA-MLR models comesfrom
model based on basdline correction withr=0.8152 and
RMSE=0.4184. The best crossvalidation performance
of SPA-PLS models comes from model based on
basdline correction with r=0.8155 and RMSE=0.4180.
The crossvaidation performances of SPA-PLSmod-
elsbased on original and baseline correction spectra
are better than those of SPA-MLR models. But com-
paring the prediction performancesof SPA-MLR and
SPA-PLSmodels, it can be seen that PLS model s per-
form better than MLR models. Thebest prediction per-
formancesin both SPA-MLR and SPA-PLSmodels
come from spectra preprocessed by MSC with
r=0.7943 and RMSE=0.4558. Full Spectrum-PLS
meansthe PLS model sbased on all wavelengths, its
performancesof calibration, crossvalidation, and pre-
diction are better than the two kinds of model s based
on SPA effectivewave engths. 1% derivative spectrahas
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the best calibration performance with r=0.9476 and
RMSE=0.2305. Spectra preprocessed by area nor-
malization hasthe best crossvalidation performance
with r=0.8655 and RMSE=0.3619. M SC spectrahas
the best prediction performance with r=0.8470 and
RMSE=0.3953. Although the performances of SPA

—— Fuyl] Paper

models are worse than the performances of models
based on all wavelengths, SPA modelsarestill valu-
ablefor the number of SPA effectivewavelengthsare
merely about 1/200 of al 1335 datacollection points,
which reduce the dimensions of spectramatrixes ef-
fectively.

TABLE 3: Resultsof MLR and PL Smodels

SPA-MLR

Calibration Validation Prediction
r RM SE r RMSE r RMSE
Original data 0.8082 0.4250 0.7874 0.4452 0.7020 0.5322
5 segments moving average 0.8108 0.4224 0.7912 0.4418 0.7761 0.4695
Basdline 0.8356 0.3965 0.8152 0.4184 0.7128 0.5267
Areanormalization 0.7905 0.4420 0.7758 0.4556 0.7385 0.5031
1st derivative 0.7862 0.4460 0.7760 0.4554 0.6766 0.5491
MSC 0.8227 0.4103 0.8081 0.4254 0.7943 0.4558

SPA-PLS

Calibration Validation Prediction
r RM SE r RM SE r RMSE
Original data 0.8077 0.4255 0.7893 0.4434 0.7007 0.5334
5 segments moving average 0.8052 0.4281 0.7862 0.4463 0.7761 0.4695
Basdine 0.8348 0.3974 0.8155 0.4180 0.7154 0.5238
Areanormalization 0.7892 0.4433 0.7740 0.4571 0.7445 0.4981
1st derivative 0.4329 0.6506 0.4043 0.6605 0.6766 0.5491
MSC 0.8129 0.4203 0.7974 0.4358 0.7943 0.4558

Full Spectrum-PLS

Calibration Validation Prediction
r RM SE r RM SE r RMSE
Original data 0.9039 0.3087 0.8562 0.3734 0.8249 0.4219
5 segments moving average 0.9126 0.2951 0.8464 0.3866 0.8080 0.4417
Basdline 0.9177 0.2867 0.8614 0.3676 0.8276 0.4180
Areanormalization 0.9087 0.3013 0.8655 0.3619 0.8344 0.4095
1st derivative 0.9476 0.2305 0.8224 0.4137 0.8225 0.4223
MSC 0.9079 0.3026 0.8627 0.3656 0.8470 0.3953

MSC-SPA-MLR MSC-SPA-PLS MSC-Full-PLS
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Figure4: Prediction performances of 3 modelsbased on M SC spectra preprocessing

Comparing theregression performancesof differ-

ent preprocessing methods, M SC spectrahaveagood

— a%a['yttaa[’ CHEMISTRY

Au Tudian Yournal



220

Application of successive projections algorithm on spectral monitoring

ACAIJ, 12(6) 2013

Full Peaper ==

performance. Figure4 showsthe scatter diagrams of
referencevalueaganst predicted value of nitrogen con-
tentin prediction set.

CONCLUSIONS

Thenitrogen content of riceleaveswas success-
fully determined using Visible-NIR spectroscopy com-
bined with SPA for effectivewavd engthssd ection. Wave-
lengths selected by SPA in different preprocessed spec-
tramostly distributed near 350 nm, 690 nm, 713 nm,
750 nm, and therewas good correl ation between SPA
effectivewave engths and nitrogen content. SPA could
reducethedimensionsof spectrd matrix efficiently, the
resultsof MLR and PLS model sbased on SPA effective
wave engthswereworsethan that of PLS model sbased
onal waveengths. In modd sestablished on SPA effec-
tivewave engths, MLR modelsand PLS model sbased
on M SC pretreated spectrum had the best predicting
effect with r=0.7943 and RMSE=0.4558. In PLS mod-
e sestablished ondl wavdengths, thebest predicting ef-
fect model wasthat based on M SC preprocessed spec-
trawithr=0.8470 and RMSE=0.3953.

ABBREVIATIONSUSED

Visble-NIR, visibleand near-infrared; SPA, suc-
cessiveprojectionsagorithm; M SC, multiplicative scat-
ter correction; MLR, multiplelinear regression; PLS,
partia least-squares; RM SE, root mean squares error.
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