December 2010

ISSN : 0974 - 7443

CHEMICAL TECHNOLOGY

Trade Science Inc.

An Indian Journal

🗅 Full Paper CTALJ 5(2) 2010 [90-97]

Application of newly synthetic HP- Cr-III-containing mica- like structure meso-porous clay for stepwise remediation of industrial water-drains from some toxic heavy metals

Khaled M.Elsabawy^{1,2*}, Waheed F.El-Hawary^{2,3}, A.El.Maghraby^{2,4}

¹Materials Science Unit, Chemistry Department, Faculty of Science, 31725, Tanta University, (EGYPT)

²Materials Science & Analytical Units, Chemistry Department, Faculty of Science,

Taif University – 888 Alhawya, Taif, (KINGDOM OF SAUDI ARABIA)

³Analytical Lab, Chemistry Department, Faculty of Science, Cairo University, (EGYPT)

⁴Refractory & Ceramics Department, National Research Center, El Behooth Str., 12622 Dokki, Cairo, (EGYPT)

E-mail: ksabawy@yahoo.com

Received: 6th July, 2010; Accepted: 16th July, 2010

ABSTRACT

Mixed solid state / solution routes were applied to synthesize new family of free-fluoride synthetic clay for water remediation applications. The sample of synthetic free fluoride –Na-4-mica were having the general formula $(Na_4Mg_6M_4Si_4O_{22}.nH_2O)$ where $M = Cr^{3+}$. Structural and micro-structural properties were monitoring by using both of XRD and SEM evaluating, grain size of the mica bulk was found to be in between 2.27- 3.33 µm which are lower than those reported in literatures. Synthetic clay was tested and applied three time (stepwise) as a cations selective remediator material for some industrial polluted water drains containing traces from some selected heavy metals cations. Analytical investigations were made by using ICP-Ms spectroscopy. Investigations proved that synthetic Cr(III)-type clay has medium-to-strong efficiency as cation selective clay towards heavy metals tested. © 2010 Trade Science Inc. - INDIA

INTRODUCTION

Due to the interesting exchange behaviour observed in the high charge micas valuable for practical applications, big efforts have been made in understanding their cation exchange properties. Specifically, several studies have been performed to characterize the interlayer exchange of a set of hydrated monovalent and divalent metal ions on an ultrafine Na-4-Mica. It was established that the ion exchange is strongly influenced by the size of the complex formed in the aqueous solution, being less effective as the hydrated ionic

KEYWORDS

Synthesis; Mica clay; Free fluoride; XRD; SEM; ICP-Ms.

radius increases.

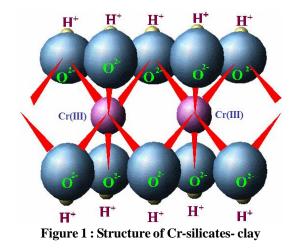
Waste streams encountered in mining operations, and various chemical processing industries, contain heavy metals which are non-biodegradable, toxic priority pollutants. Due to their tendency to accumulate in living organisms, causing various diseases and disorders, the treatment methods for metal-bearing effluents are essential for environmental and human health protection. Among numerous commonly used techniques for water purification, adsorption technologies have gained the most attention because of their low cost and easy operation^[4-18].

EXPERIMENTAL

In recent years, an intensive research was conducted focusing on the selection and/or production of low-cost adsorbents with good metal-binding capacities, which could be utilized as an alternative to the most widely used adsorbent in wastewater treatment-activated carbon. Natural materials of both organic and inorganic nature (such as chitosan, zeolites, minerals, etc) and certain waste products from industrial operations (such as fly ash, coal and oxides) are classified as low-cost adsorbents because they are economical and locally available^[19-28] Na-4mica has much the same composition as natural mica, containing aluminum, silicon, and magnesium. But natural mica also contains potassium ions, which sit in hexagonal holes in the mineral's layers, superimposed upon one another, bonding the sheets tightly together. This "closed" structure makes natural mica a poor ion exchange medium^[1,2].

The high adsorption capacity of such clays described above, together with an exclusive selectivity for harmful divalent and heavy metal captions have converted these samples in a promising material for practical applications^[29-31]. In particular, the availability of these clays for water decontamination and radioactive waste capture by ion exchange are under intense investigation^[32-34]. Several synthesis methods have been reported in order to obtain pure Na-4-Mica phase since it was identified by the first time in 1972 by Gregorkiewitz as secondary product from the reaction of augite powder in NaF and MgF, melts at 900 °C^[35]. Paulus et al. have described an elaborated multi-step process to obtain pure phase mica of much smaller crystal size^[36]. Later, Franklin and Lee presented a solid state synthesis procedure in which the crystal size of mica is controlled by selecting the crystallization temperature and reaction time^[37].

The major goal of the present article is to investigate efficiency of synthetic free-fluoride meso-porous mica-clay namely, Cr- -mica clay as cation selective with molecular sieving power towards


- 1. Selectivity of some di-valent toxic heavy metals $(Hg^{++}, Pb^{++} \text{ and } Cd^{++}).$
- 2. Tri-valent cation exchange of lanthanum species in the high charge Na-*n*-Mica (n = 4) is reported for the first time without any pre-swelling step and avoiding the use of long organic ions.

Clays synthesis

The selected samples of synthetic free fluoride – Na-4-mica which having the general formula $(Na_4Mg_6M_4Si_{4-x}Al_xO22.nH_2O)$ where $M = Cr^{3+}$, x = 1 was synthesized by applying solution route and sintering procedure using the molar ratios of $Na_2O.2SiO_2.2H_2O$, Al_2O_3 , $MgCO_3$ and Cr_2O_3 each of highly pure chemical grade purity. The mixture were ground carefully then disolved in few drops of concentrated nitric acid forming nitrate extract which diluted by distill water. The nitrate solution was neutralized by using 45 % urea solution and pH becomes ~ 6.5.

Mixture I was for sodium silicates solution and mixture II was for rest of component (Al +Mg+ Cr) nitrates according to chemical formula desired. Mixture I was diluted by distill water to be 100 ml then pH was adjusted to be 8.5 concentrated solution of ammonia was added carefully till heavy white precipitate from Metals hydroxide is obtained and the pH must be higher than 8. The precursor is filtered and washed by 2.5 % ammonium nitrate solution. Mixture II of (Mg+ Cr) was passing through the same treatment but in present of ethylene glycol as complexing agent to produce gelatinous precipitate of metals cations hydroxide precursor.

The Mixture I + Mixture II precursors were forwarded to muffle furnace and calcinations process was performed at 880 °C under a compressed air atmosphere for 15 hrs then reground and pressed into pellets (thickness 0.2 cm and diameter 1.2 cm) under 10 Ton /cm². Sintering was carried out under air stream at 1050 °C for 10 hrs. The samples were slowly cooled

CHEMICAL TECHNOLOGY An Indian Journal

down (20 $^{\circ}$ C /hr) till 500 $^{\circ}$ C and annealed there for 5 hrs under air stream. The furnace is shut off and cooled slowly down to room temperature. Finally the materials are kept in vacuum desiccator over silica gel dryer.

The sample was named as Clay $I = Na_4Mg_6Cr_4$ -Si_3AlO₂₂.nH₂O. As described in figure 1 tetrahedral units of silicate are the backbone structure of mica clay indicating that each unit cell surrounded by 4-Na-atoms that can be replaced if it is applied as cations exchanger.

Phase identification of applied clays

The X-ray diffraction (XRD) measurements were carried out at room temperature on the fine ground samples using Cu-K_a radiation source,Ni-filter and a computerized STOE diffractometer / Germany with two theta step scan technique.

Scannig Electron Microscopy (SEM) measurements were carried out at different sectors in the prepared samples by using a computerized SEM camera with elemental analyzer unit (PHILIPS-XL 30 ESEM/USA).

ICP-MS-analytical investigations

The trace elements (²⁰¹Hg⁺⁺, ²⁰⁷Pb⁺⁺, ¹¹²Cd⁺⁺ and ¹³⁹La⁺⁺⁺) were measured with an ICP-MS instrument (ELAN 5000a Perkin Elmer SCIEX, Norwalk, CT, USA) equipped with a standard troch, cross flow nenbulizer and Ni-sampler skimmer cones. The plasma

TABLE 1 : ICP-MS instrument (ELAN 5000a Perkin Elmer
operating conditions_

I.ICP-MS plasma condition						
Frequency/MHz	40					
Rf Forward power/Kw	1.0					
Argon gas flow rates ml min ⁻¹						
Oute	15					
Intermediate	0.8					
Nebulizer	0.93-0.98					
II.Measurements Parameters:						
- Resolution	m/z at 10 % peak hight	0.8(normal)				
- Scanning Mode		peak hopping				
- Replicate Time /ms		250				
- Sweeps per Reading		1				
- Reading per Replicate		1				
- Number of Replicates		10				
- Point per Spectral Peak		1				

conditions and measurements parameters applied are listed in the following TABLE 1.

Cation selectivity & molecular sieving experiment

The cation exchange and selectivity experiment with clay I (CrIII-clay) was performed by using different three columns each with diameter 1.2 cm² and the weight of applied clay was 200 mg in each column. The particle size of applied clay was selected to be $= 100 \,\mu m$ since the synthesized clay sieved by specific meshes then the column packed with clay. The outlet solution of first step was used as inlet for second remediation step and so on in the third remediation. We believed that the power responsible for remediation and removal of trace elements not only cation exchanging of 4Na-mica but also molecular sieving phenomenon within silicate structure of mica. All standard solutions were standardized to be 10 ppm for each standard by using metal oxide (each of purity = 99.9). The standard additions methods with Yinternal references was applied for all investigation.

The experiment was performed at R.T. 27 °C and the rate of flow was adjusted to be five drops /second by using 25 ml separating funnel and the investigated solution was left with clay in the column with continuous shaking for 2 hrs (experiment duration).

Surface area determination of Cr(III)-clay

Nitrogen adsorption-desorption isotherms were applied for estimation surface area of synthesized clay. The adsorption isotherms of N₂ were carried out in a Micromeritics ASAP 2000 instrument at -196 °C with a micro-pore system. Specific surface areas were calculated by applying the BET equation to the isotherm. The total volume was considered to be the volume of liquid N₂ adsorbed at a relative pressure of 0.98. The low BET surface area value calculated for this sample $-5 \text{ m}^2/\text{g}$ -agrees with the situation in which the sodium cations and the interlayer water are fully filling the bidimensional galleries of the aluminosilicate in a nonporous structure. But after the treatment with water, the product gave also a type II isotherm, with a type H4 hysteresis loop, indicative of new slit-shaped mesoporous structure. The increment in the specific BET surface area, up to six times $(21.4 \text{ m}^2/\text{g})$, is associated with an increment of the external surface between clay domains by the hydrothermal treatment of metal-hydroxide precursors.

RESULTS & DISCUSSION

Phase identification

Figure 2 displays the X-ray powder diffraction pattern recorded for synthetic free fluoride -- Na-4-mica samples which has the general formula $(Na_{4}Mg_{6}M_{4}Si_{2}AlO_{22}.nH_{2}O)$ where $M = Cr^{3+}$. The analysis of the corresponding 2θ values and the interplanar spacings d (A°) were carried out using computerized program and indicated that, the X-ray crystalline structure mainly belongs to a monoclinic phase Na₄Mg₆M₄Si₃AlO₂₂.nH₂O in major besides few peaks of M -silicate. The impurities have been identified as magnesium silicate phase called forsterite (Mg₂SiO₄ JCPDS 34-0189), as clear in Figure 2, and as sodium aluminosilicate phase (Na₆Al₄Si₄O₁₇ JCPDS 49-0004) indicated as blue circles. These unit cell parameters are in good agreement with those of the reported ones for Na₄Mg₆M₄Si₄O₂₂.nH₂O structure^[6].

From Figure 2 one can indicate that monoclinic phase of mica-clay Na₄Mg₆M₄Si₃AlO₂₂.nH₂O is the dominating phase by ratio exceeds than 92 % ($d_{100} = 1.22$ nm) confirming that nano-oxides component are successfully reacted and formed monoclinic biotite phase with very good degree of crystallinity.

Mica-Phase

• M-Silicates-Phase Cr-III-Mica-like Structure d = 12.2 Å 0 10 20 30 40 50 60 70 Two Theta Degree

Figure 2 : X-ray diffraction pattern recorded for free-fluoride mica with chemical formula $Na_4Mg_6Cr_4Si_3AlO_{22}$.nH₂O.

The strongest peak observed in the patterns, centred at ~7.4° 2θ , is attributed to the symmetrical basal [0 0 1] reflection for the hydrated Na-*n*-(Mica) (*n* = 4) with a spacing value of 1.2 nm as clear in Figure 2. Another basal peak of low intensity is also observed in the pattern at a distance of *d* = 0.9 nm – indicated as 001d in the Figure 2 - which is attributed in the literature to the anhydrous mica phase. The position of the basal peaks

is related to the distance between the layers and mainly depends on the layer attraction, nature of the cations present in the interlayer space, the hydration rate of those cations and also on the octahedral character of the M-silicates^[38,39].

TABLE 2 explain EDX-elemental analysis data recorded for $Na_4Mg_6M_4Si_3AlO_{22}.nH_2O$ that prepared via solution route. It is clear that the atomic percentage recorded is approximately typical with the molar ratios of prepared sample emphasizing the quality of preparation through solution technique.

 TABLE 2 : EDX-elemental analysis data recorded for Crclay-I.

Cr-Clay-I							
Element	Wt %	At %	K-Ratio	Ζ	Α	F	
O K	37.81	57.25	0.1069	1.7334	0.1481	1.0804	
NaK	18.21	35.13	0.0479	1.1733	0.7353	1.0131	
MgK	12.22	16.48	0.2731	1.0746	0.9607	1.0813	
Cr L	16.66	16.65	0.0513	0.5181	1.0718	1.1498	
Si L	16.98	16.23	0.2364	0.2175	1.0501	1.1212	
Al L	3.87	5.331	0.1235	0.1297	0.8650	1.0456	

On the basis of molar ratio the allowed error in experimental procedures through out solution rout is lesser than those reported in literatures for those synthesized by solid state routes^[1,28].

SE-microscopy measurements

Figure 3_{a-c} show the SEM-micrographs recorded $Na_4Mg_6M_4Si_3AlO_{22}$.nH₂O that prepared via solution route where M = Cr+++ with three different magnification factors. The estimated average of grain size was calculated and found in between 2.27-3.33 µm supporting the data reported in^[23].

The EDX examinations for random spots in the same sample confirmed and are consistent with our XRD analysis for polycrystalline $Na_4Mg_6M_4Si_3AlO_{22}.nH_2O$ that prepared via solution route, such that the differences in the molar ratios EDX estimated for the same sample is emphasized and an evidence for the existence of monoclinic - phase with good fitting to molar ratios see (TABLE 2).

From Figure 3_{a-c} , it is so difficult to observe inhomogeneity within the micrograph due to that the powders used are very fine and the particle size estimated is too small.

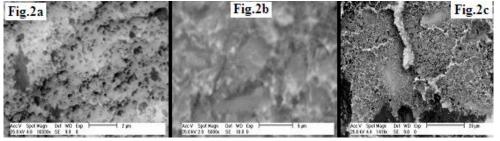


Figure 3_{acc} : SE-micrographs recorded for free-fluoride mica with chemical formula $Na_4Mg_6Cr_4Si_3AlO_{22}$.nH₂O with different three magnification factors.

This indicate that, the actual grain size in the material bulk is smaller than that detected on the surface morphology of the investigated clay. This trend of mismeasuring grain size was observed with^[40,41]. Furthermore, particle size was estimated from both of XRD and SEM analyses and its average found to be in between 22-130 nm confiming that solution route synthesis increases the fraction ratio of nano-particles formation.

The surface morphology as clear in Figure 3_a has huge numbers of porous due to the bubling effect resulted from biproduct gases (NH₃ & CO₂) that released during thermal treatment cycle by additional to solution route synthesis with M-hydroxide precursors formed after complexation enhance meso-porous structure which yield to increasing of surface area remarkably.

Stepwise remediation process

The cation exchange and selectivity experiment with clay I (CrIII-clay) was performed by using different three columns each with diameter 1.2 cm^2 and the weight of applied clay was 200 mg in each column. The particle size of applied clay was selected to be = 100 µm since the synthesized clay sieved by specific meshes then the column packed with clay. The outlet solution of first step was used as inlet for second remediation step and so on in the third remediation.

We believed that the power responsible for remediation and removal of trace elements not only cation exchanging of acidic 4Na-mica but also to the molecular sieving phenomenon within silicate structure and in between layers of mica.

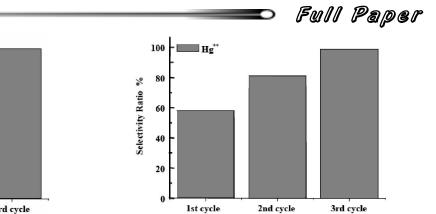
Figure 4a shows the cation selectivity of chromium clay towards divalent mercuric ion. It is clear that ~58 % of the standard solution (10 ppm) was captured through the cation exchange process together with molecular sieving in between silicate layers after first remediation cycle, 81 % after 2nd remediation cycle and finally 98.7 % after the third remediation cycle which confirm and reflect superior efficiency of Cr-III-clay towards Hg^{++} ion.

Figures $4_{b,c}$ show the cation selectivity of chromium clay towards divalent cations of (Pb⁺⁺, Cd⁺⁺), it was noticeable that after 1st remediation process the selectivity ratio was 69 and 75 %, 88, 89.5 % after 2nd remediation cycle and finally 98.9, 98.5 % after 3rd remediation cycle respectively.

Although there are no much investigations were found in literatures concerning application of micas clay towards tri-valent cations but in the present investigations we reported cation selectivity and high efficiency of Cr-IIIclay towards tri-valent La⁺⁺⁺ ion as clear in Figure 4_d the selectivity ratios were found 71, 91.3 and 99.4 % after 1st, 2nd and 3rd remediation cycles respectively.

Figures 5_{a-c} show the remain concentrations in ppm of investigated trace heavy metals namely (Hg⁺⁺, Pb⁺⁺, Cd⁺⁺ and tri-valent La⁺⁺⁺). It is clear that the remain concentrations after 1st cycle of remediation were 4.2, 3.1, 2.5 and 2.9 ppm while 1.9, 1.2, 1.05 and 0.87 ppm after 2nd remediation cycle and finally 0.13, 0.11, 0.14 and 0.06 ppm after 3rd remediation cycle respectively.

From Figure 5_{a-c} and TABLE 3 one can observe that the net result of La⁺⁺⁺ remediation is maximum efficiency recording 99.4 % after 3^{rd} cycle of remediation which is a surprise regarding to literatures.


This behavior has been related to the difficulty of the cations to diffuse into the narrow interlayer space or to the fact that edges could collapse at the beginning of the process preventing the exchange to proceed. Despite of the detailed study carried out in mono and divalent cations, not much information is available concerning the adsorption behavior of voluminous trivalent cations. In this direction, Shimizu et al.^[42] reported the formation of metal oxide pillared clays by intercalation 100

80

40

20

Selectivity Ratio % 60 **Hg⁺⁺**

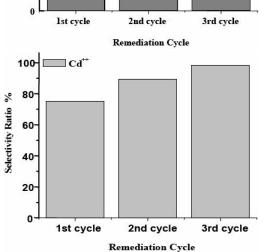
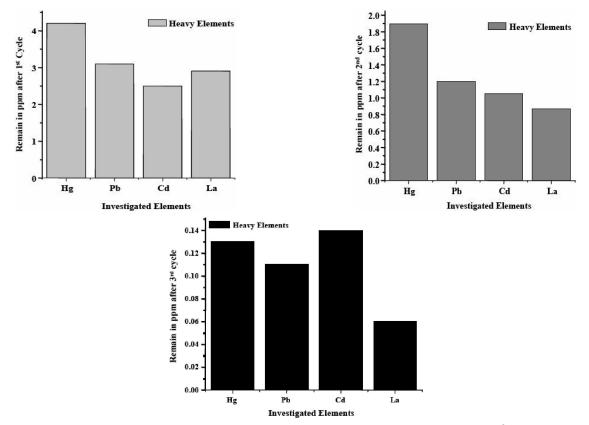



Figure 4a-d : Cation selectivity ratio after 1st, 2nd and 3rd remediation cycles for; Hg++ (b) Pb++, (c) Cd++ and (d) La+++ respectively.

 $Figure \ 5_{ac}: The remain \ concentration \ in \ ppm \ for \ tested \ metals \ ions \ after; 1^{st} \ remediation \ cycle \ (b) \ 2^{nd} \ remediation \ cycle \ and \ and$ (c) 3rd remediation cycle respectively.

of Fe³⁺ polyhydroxy cations in high charge Na-3-Mica and Na-4-Mica. However, for the ion exchange to be effective a long and tedious pre-swelling step with organoammonium ions was needed to open the layers and facilitate the incorporation of the pillar precursor.

Matching with Shimizu et al.^[42] in present investigations ethylene glycol was applied as complexing agent to produce gelatinous meso-porous precipitate of metals cations hydroxide precursor enhancing the layers and facilitate the incorporation of cations even those with tri-valent like La⁺⁺⁺. Consequently, an enhancement of stability is expected in those high charge micas from the extra thickness of the non-exchange mica layer in the stratified clay. Despite of the evident interest for this new family of Cr-III-clays, not much investigation has been pursued in this direction due to two fundamental points: (1) those swelling micas have not shown any affinity for trivalent cations or their hydrolysis products in solution, and (2) the inherent difficulty for the voluminous species to penetrate into the interlayer space. For the lanthanum to be exchanged, the polyhydrated cations have to compensate the highly attractive electrostatic forces between the layers to diffuse into the interlayer space. Once the thermodynamic requirement has been satisfied, a quick exchange is expected to occur since diffusion is faster in an already expanded structure.

In the present investigation, the cation exchange of lanthanum species in the high charge Na-*n*-Mica (n = 4) is reported for the first time without any pre-swelling step and avoiding the use of long organic ions. To facilitate the incorporation of the cations the solution route was applied with some hydrothermal conditions and complexing with organic moiety (Ethylene glycol). The diffusion of the hydrated lanthanum through the clay galleries has been confirmed by ICP-Ms investigations see TABLE 3.

Cr-ClayI	Composition	R(S) ppm	ррт	ppm	ppm R(S)
Clay Type		Hg ⁺⁺ ±0.03	Pb ⁺⁺ ±0.03	Cd ⁺⁺ ±0.03	La ⁺⁺⁺ ±0.03
1st		4.2(5.8)	3.1(6.90)	2.5(7.5)	2.9(7.1)
2nd	Na ₄ Mg ₆ Cr ₄ Si ₃ AlO ₂₂ .nH ₂ O	1.90(2.3)	1.2(1.90)	1.05(1.45)	0.87(2.03)
3rd		0.13(1.77)	0.11(1.09)	0.14(0.91)	0.06(0.81)

TABLE 3 : ICP-MS analytical data recorded for three remediation processes.

 $\mathbf{R} = \mathbf{Remain}, (\mathbf{S}) = \mathbf{Selective by clay}$

CONCLUSIONS

The conclusive remarks inside this article can be briefed as follow;

- Solution route with some hydrothermal conditions and complexing with organic moiety (Ethylene glycol) was applied to synthesize -free fluoride-Na₄Mg₆Cr₄Si₃AlO₂₂.nH₂O.
- Cr-III-clay exhibits moderate-to-strong strength as cation selective with molecular sieving power towards;
 - a. Selectivity of some di-valent toxic heavy metals $(Hg^{++}, Pb^{++} \text{ and } Cd^{++}).$
 - b. Tri-valent cation exchange of lanthanum species in the high charge Na-*n*-Mica (n = 4).
- 3. Solution route with some hydrothermal conditions yield to specific surface area 21.4 m²/g which is higher six time than those reported in literatures.
- 4. SE-micographs with EDX analysis confirmed that free fluoride- $Na_4Mg_6Cr_4Si_3AlO_{22}.nH_2O$ has

CHEMICAL TECHNOLOGY An Indian Journal meso-porous structure with grain size in between 2.27-3.33 μ m and average particle size 22-130 nm confiming that solution route synthesis increases the fraction ratio of nano-particles formation.

REFERENCES

- M.A.Al-Ghouti, M.A.M.Khraisheh, M.Tutuji; Chemical Engineering Journal, 104(1-3), 83-91 (2004).
- S.J.Allen, B.Koumanova; Journal of the University of Chemical Technology and Metallurgy, 40(3), 175-192 (2005).
- S.Aytas, S.Akyil, M.A.A.Aslani, U.Aytekin; Journal of Radioanalytical and Nuclear Chemistry, 240(3), 973-976 (1999).
- [4] S.Babel, T.A.Kurniawan; Journal of Hazardous Materials, B97(1-3), 219-243 (2003).
- [5] E.P.Barrett, L.G.Youner, P.Halenda; Journal of the American Chemical Society, 73(1), 373-380 (1951).

- [6] K.G.Bhattacharyya, S.S.Gupta; Journal of Colloid and Interface Science, **310**(2), 411-424 (2007).
- [7] C.Camilo, G.Carmen, M.Paula; Journal of Chemical Technology & Biotechnology, 80(4), 477-481 (2005).
- J.M.Charnock, K.E.R.England, M.L.Farquhar, D.J.Vaughan; Physica.B, Condensed Matter, 208-209, 457-458 (1995).
- [9] T.N.D.Dantas, A.A.D.Neto, M.C.P.Moura; Water Research, 35(9), 2219-2224 (2001).
- [10] M.K.Doula, A.Ioannou; Microporous and Mesoporous Materials, 58(2), 115-130 (2003).
- [11] F.Ekmekyapar, A.Aslan, Y.K.Bayhan, A.Cakici; Journal of Hazardous Materials, 137(1), 293-298 (2006).
- [12] E.Erdem, N.Karapinar, R.Donat; Journal of Colloid and Interface Science, 280(2), 309-314 (2004).
- [13] O.Hamdaouia, E.Naffrechoux; Journal of Hazardous Materials, 147(1-2), 381-394 (2007).
- [14] Y.S.Ho, J.F.Porter, G.McKay; Water, Air, and Soil Pollution, 141(1-4), 1-33 (2002).
- [15] IPCS (International Programme on Chemical Safety) 1998, Copper. Environmental Health
- [16] Criteria 200, Geneva, Switzerland: World Health Organization (1998).
- [17] A.Kayaa, A.H.Oren; Journal of Hazardous Materials, B125(1-3), 183-189 (2005).
- [18] M.A.M.Khraisheh, Y.S.Al-Degs, W.A.M.Mcminn; Chemical Engineering Journal, 99(2), 177-184 (2004).
- [19] S.Kubilay, R.Gürkan, A.Savran, T.Şahan; Adsorption, 13(1), 41-51 (2007).
- [20] S.Lazarević, I.Janković-Častvan, D.Jovanović, S.Milonjić, Dj.Janaćković, R.Petrović; Applied Clay Science, 37(1-2), 47-57 (2007).
- [21] S.-H.Lin, R.-S.Juang; Journal of Hazardous Materials, B92(3), 315-326 (2002).

- [22] N.Meunier, J.Laroulandie, J.F.Blais, R.D.Tyagi; Bioresource Technology, 90(3), 255-263 (2003).
- [23] T.Mishra, S.K.Tiwari; Journal of Hazardous Materials B, 137(1), 299-303 (2006).
- [24] A.E.Osmanlioglu; Applied Radiation and Isotopes, 65(1), 17-20 (2007).
- [25] M.Panayotova, B.Velikov; Journal of Environmental Science and Health A, 37(2), 139-147 (2002).
- [26] T.Kodama, S.Komarneni; J.Mater.Chem., 9, 533 (1999).
- [27] T.Kodama, S.Komarneni, W.Hoffbauer, H.Schneider; J.Mater.Chem., 10, 1649 (2000).
- [28] T.Kodama, Y.Harada, M.Ueda, K.Shimizu, K.Shuto, S.Komarneni; Langmuir, 17, 4881 (2001).
- [29] R.Ravella, S.Komarneni, C.Enid-Martínez; Environ. Sci.Technol., 42, 113 (2008).
- [30] M.D.Alba, M.A.Castro, M.Naranjo, E.Pavón; Chem.Mater., 18, 2867 (2006).
- [31] S.Komarneni, N.Kozai, W.J.Paulus; Nature, 410, 771 (2001).
- [32] M.Gregorkiewitz; Zur Darstellung von Tektosilicaten in Salzschemelzen, Diplomarbeit, Universität München, Germany, (1972).
- [33] W.J.Paulus, S.Komarneni, R.Roy; Nature, 357, 571 (1992).
- [34] K.R.Franklin, E.Lee; J.Mater.Chem., 6, 109 (1996).
- [35] G.W.Brindley, F.H.Gillery; Am.Mineral, 41, 169 (1956).
- [36] J.Davitdtz, P.F.Low; Clay Clay Miner., 18, 325 (1970).
- [37] Khaled M.Elsabawy; Physica C, 432, 263-269 (2005).
- [38] Khaled M.Elsabawy, Elsayed E.Kandyel; Materials Research Bulletin, 42(6,5), 1051-1060 (2007).
- [39] K.Shimizu, Y.Nakamuro, R.Yamanaka, T.Hatamachi, T.Kodama; Micropor.Mesopor. Mater., 95, 135 (2006).