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ABSTRACT

A quantitative structure-activity relationship (QSAR) study has been car-
ried out on 31 diverse organic pollutants by using molecular structural
descriptors. Modeling of the logarithm values LC50 (Iethal concentration
required to kill 50% of apopulation) in fish (after 96 h) of these compounds
as a function of the theoretically derived descriptors was established by
multiple linear regression (MLR) and artificial neural networks (ANN). The
Stepwi se SPSS was used for the sel ection of the variables (descriptors) that
resulted in the best-fitted models. For prediction logarithm values LC50 of
compounds three descriptors were used to develop a quantitative relation-
ship between the logarithm values LC50 and structural activity. Appropri-
ate models with low standard errors and high correlation coefficients were
obtai ned. After variables selection, compounds randomly were divided into
two training and test sets and MLR and ANN used for building the best
models. The predictive quality of the QSAR models were tested for an
external prediction set of 8 compounds randomly chosen from 31 com-
pounds. The regression coefficients of prediction for training and test sets
for ANN model were 0.9953 and 0.9938 srespectively. Result obtained
showed that ANN model can simulate the relationship between structural
descriptors and the Log LC50 of the molecules in data sets accurately and
Theoretical predictions coincide very well with experimental results.
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INTRODUCTION

The environmental risk assessment of organic
chemica srequiresinformation on both their physico-
chemical propertiesandtoxicity. Experimentd investi-
gaionsareoften carried out to collect thisinformation.
However, thedatacoll ection procedure, especialy that
conducted for toxicity determination, isextremely time
consuming. Onepractical dternativewould beto pre-

dict theseproperties, or toxic effects, by utilizing quan-
titative structure-activity relationships (QSARs). Many
such models have been devel oped and applied inthe
field of aguatic toxicology!™. Inrecent years, therehas
been an evol ution in the devel opment and application
of quantitativestructural activity relationships (QSAR)
withinthefield of aquatic toxicology?.

Quantitative structure-activity relationships
(QSARs) arethefundamental basisof developed ap-
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TABLE 1: Dataset and cor responding obser ved and ANN and

MLR predicted valuesof L og L C50*

No. Name LogLC50 LogLC50 LogLC50

Training set (EXP) (ANN) (MLR)
1 (2,4,5-Trichlorophenoxy)acetic acid 1.7176 1.7519 1.7364
2 (4-Chloro-2-methylphenoxy)acetic acid 2.1528 2.1399 1.9891
3 2-(2,4-Dichlorophenoxy)propionic acid 1.8493 1.8491 1.8297
4 2-(3-Chlorophenoxy)propionic acid 2.2477 2.2194 2.0605
5 2-(4-Chlorophenoxy)-2-methylpropionic acid 1.8755 2.0189 1.9351
6 2-(4-Chlorophenoxy)propionic acid 2.2477 2.2158 2.0593
7 2,4-Dichlorophenoxyacetic acid 2.1219 2.1087 1.9656
8 3,6-Dichloro-2-methoxybenzoic acid 2.4723 2.4400 2.2440
9 4-(2-Methyl-4-chlorophenoxy)butyric acid 1.4942 1.4044 1.6435
10 Benzene 1.1300 1.2524 1.1413
11 Biphenyl 0.1332 0.1823 -0.0293
12 Buprofezin 0.0358 0.0350 -0.1100
13 Buturon 1.1224 1.0092 0.5238
14 Chlorbromuron 0.8582 0.7879 1.0660
15 Chloroxuron 0.1752 0.1742 0.3586
16 Chlortoluron 1.1343 1.1393 1.3031
17 Diuron 1.1084 1.0139 1.2054
18 Fenuron 1.8980 1.8510 1.9432
19 Isoproturon 0.9313 1.2040 1.3766
20 Metoxuron 1.5089 1.5419 1.8529
21 Monuron 1.5062 1.3921 1.4791
22 Propargite -0.8327 -0.7855  -0.7848
23 Tetradifon -0.5406 -0.5965 -0.4416

Test set

24 2-(2,4,5-Trichlorophenoxy)propionic acid 1.4342 1.3477 1.5701
25 2-Phenoxypropionic acid 2.6331 2.6048 2.4812
26 Anthracene -0.2343  -0.0798  -0.4363
27 Bromobenzene 0.7835 0.8465 0.7305
28 Fluometuron 1.3404 1.1741 1.1758
29 Monolinuron 1.3719 1.4020 1.5727
30 Neburon 0.1000  -0.0356  0.5299
31 Triclopyr 2.2521 2.1029 1.9710

“Log LC50 in fish after 96 h

proachesfor estimating thetoxicity of chemicalsfrom
their molecular structure and/or physicochemica prop-
ertied®4, QSARsare mathematica model sthat can be
used to predict the physi cochemica andbiological prop-
ertiesof moleculesconsidering that thebiological activ-
ity of anew or untested chemical canbeinferred from
the molecul ar structure or other propertiesof similar
compounds whose activities have aready been as-
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sessed. Thetwo main objectivesof QSARsareto al-
low prediction of thebiological propertiesof chemi-
cally characterized compoundsthat have not been bio-
logically tested and to obtain information on the mo-
lecular characteristicsof acompound that areimpor-
tant for thebiological properties®.

Artificid neural networks (ANNS) areamong the
best avail abletool sto generate nonlinear models. Arti-
ficd neurd networksare pardle computationd devices
cong sting of groupsof highly interconnected process-
ing elementscalled neurons. Artificia neura networks
(ANNS), inspired by scientist’s interpretation of the ar-
chitectureand functioning of thehuman brain®8, mean,
however, amethodol ogy related to nonlinear regres-
siontechniques™d. Reviewshavebeen published con-
cerning applicationsof ANN indifferent fid d$°'9. Re-
cently, artificia neura networks (ANNS) havebeenused
toawidevariety of chemica problemssuch asspectral
anaysis*Y, prediction of didlectric constant™. and mass
spectra search*¥, ANNshave been applied to QSPR
andysissincethelate 1980sduetoitsflexibility inmod-
eling of nonlinear problems, mainly inresponsetoin-
crease accuracy demands; they have beenwidely used
to predict many physicochemica propertieg4-18,

Themainam of the present work is devel opment
of aQSAR mode sby usingANN asnonlinear method
to predict theLog LC50 (Iethal concentration required
tokill 50% of apopulation) infish (after 96h) of various
organic pollutantsand comparisonwith MLR aslinear
method.

Inthe present work, a QSAR study has been car-
ried out ontheLog LC50infishfor 31 diverseorganic
pollutants by using Structural molecular descriptors. Lin-
ear method, multiplelinear regressons(MLR) and non-
linear method, feed forward neura network with back-
propagation training a ong with Stepwise SPSSasvari-
able selection software were used to model the Log
LC50 withthe structural descriptors.

MATERIALSAND METHODS

Experimental data

The experimental data of the Log LC50, for 31
chemica compoundsincluding variousorganic pollut-
antsweretaken from*¥, that shownin TABLE 1. The
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dataset randomly wasdivided into two subsatsinANN:
training and test setsincluding 23 and 8 compounds

respectively.
MLR analys

Themultiplelinear regression (MLR) isan exten-
sion of the classical regression method to morethan
onedimension®, MLR cd culates QSAR equation by
performing standard multivariableregression calcula
tionsusing multiplevariablesinasingleequation. The
stepwisemultiplelinear regressionsisacommonly used
variant of MLR. Inthiscase, dsoamultiple-term linear
equationisproduced, but not al independent variables
areused. Each variableis added to the equation at a
timeand anew regressionisperformed. Thenew term
isretained only if equation passesatest for significance.
Thisregression method isespecially useful when the
number of variablesislarge and whenthekey descrip-
torsare not known?4,

Artificial neural networks(ANN)

Principles, functioning and applicationsof artificia
neural networks have been adequately described el se-
wherd?223, Therelevant principleof supervised learn-
inginanANN isthet it takesnumericd inputs(thetraning
data) and trandferstheminto desired outputs. Theinput
and output nodes may be connected to any other nodes
withinthenetwork. Theway inwhich each nodetrans-
formsitsinput dependson the so-called ‘connection
weights’ or ‘connection strength’ and bias of the node,
which aremodifiable. The output values of each node
depend on both the weight strength and bias val ues.
Training of theANN can be performed by using the
backpropagation agorithm. In order to train the net-
work using the back propagation agorithm, the differ-
ences betweenthe ANN output and itsdesired value
arecalculated after each training iteration and the val -
uesof weghtsand biasesmodified by usngtheseerror
terms.

A three-layer feed-forward network formed by one
input layer consi sting of anumber of neuronsequal to
the number of descriptors, one output neuron and a
number of hidden unitsfully connected to both input
and output neurons, were adopted in this study. The
most used learning procedure is based on the back-
propagation agorithm, in which the network readsin-
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Figurel: Plotsof predicted L og L C50 estimated by ANN (a)
and M LR (b) modeling ver susexperimental L og L C50 com-
pounds
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Figure2: Plotsof residual ver susexperimental Log LC50in
ANN (@) and M LR (b) models

puts and corresponding outputsfrom aproper data set
(training set) and iteratively adjustsweightsand biases
inorder tominimizetheerror in prediction. Toavoid
overtraining and consequent deterioration of itsgener-
aization ability, the predictive performance of the net-

Au Tudian Yournal



ACAIJ, 10(5) 2010

Mehdi Alizadeh

333

TABLE 2: Molecular descriptor semployed for the proposed
ANNand MLR modes
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TABLE 4: Architectureand specification of the generated
ANNs

No. Descriptor Notation class Coefficien

Eigenvalue 10 form edge adj )

1 matrix weighted by edge EEigiox Fogeadiacency g0,

indices

degrees

2 Heat of formation HF  Thermodynamic -0.0018
Partition coefficient "

3 (octanol/water) CLogP Thermodynamic -0.4451
Constant 2.2393

TABLE 3: Correlation matrix of thethreedescriptorsand
LogL C50used inthiswork®

EEig10x HF CLogP Log LC50
EEig10x 1 0.4656  0.8411 -0.8548
HF 1 0.2632 -0.7334
CLogP 1 -0.7996
Log LC50 1

“The definitions of the descriptors are given in TABLE 2

work after each weight adjustment ischecked on un-
seen data (vaidation set).

Inthiswork, training gradient descent with momen-
tum isapplied and the performance function wasthe
mean square error (M SE), the average squared error
between the network outputs and the actual outpuit.

The QSAR modelsfor the estimation of theLog
L C50 of various compounds are established inthefol -
lowing six steps: molecular structureinput and genera:
tion of thefilesconta ning thechemica sructuresstored
inacomputer—readable format; quantum mechanics ge-
ometry optimization with asemi—empirical method,;
structura descriptors computation; structural descrip-
tors selection; structure-Log L C50 model sgeneration
withthe multivariatemethodsand statistica analysis.

Computer hardwar eand software

All caculationswererunonaPentium 1V persond
computer with windows X P asoperating system. The
molecular 3D structuresof data set were sketched us-
ing hyperchem (ver. 7.1), then each molecule was
“cleaned up” and energy minimization was performed
using geometry. Optimization was done using
semiempirical AM1 (Austin Model) Hamiltonian
method. After optimization of structures, 3D structures
with lower energy conformers obtained by the afore-
mentioned procedure werefed into dragon (ver. 5.2-
2005) and ChemOffice 2005 molecular modeling soft-
ware ver. 9, supplied by Cambridge Software Com-

No. of nodesin theinput layer
No. of nodesin the hidden layer
No. of nodesin the output layer

learning rate 0.3
Momentum 0.1
Epoch 1000

Transfer function Sigmoid

TABLE 5: Satigtical parameter sobtained usngtheANN and
MLR models'
Ft Fc R® R Rt Rc SEt SEc Mode
2207.6451 476.4930 0.9906 0.9876 0.9953 0.9938 0.0902 0.1128 ANN
3454659 92.6994 0.9427 0.9392 0.9709 0.9691 0.2174 0.2436 MLR

“c refers to the calibration (training) set; t refers to test set; R is
the correlation coefficient; R? is the correlation coefficient
square and F is the statistical F value

pany, for cal culation of thestructural molecular descrip-
tors(condgtitutional, topol ogical, connectivity, geometri-
ca, getaway , thermodynamic and charge descriptors).
Through these descriptorswhich have va uesfurther
than 90% zero or have equal valuesfurther than 90%
arenot useful and cut. Then Descriptor selection was
accomplished by using Stepwise SPSS (SPSS Ver.
11.5, SPSSInc.). other calculationswereperformedin
the MATLAB (version 7.0, MathWorks, Inc.) envi-
ronment.

RESULTSAND DISCUSSION

Descriptorsselection

Generdly thefirst stepinvariablesselectionisthe
calculation of thecorrel ation between variablesand with
seeking activity. In the present case, to decreasethe
redundancy existed in the descriptorsdatamatrix, the
correlationsof descriptorswith each other and withthe
Log LC50 of the molecules were examined, and de-
scriptorswhich showed highinterrelation (i.e., r>0.9)
with Log LC50 and low interrelation (i.e., r<0.9) with
each other were detected. For each class of the de-
scriptor just one of them waskept for construction the
fina QSAR model and therest weredeleted. In sec-
ond step, Stepwise SPSSwas used for variables se-
lection. After these processthree descriptorswerere-
mai ned, that keepsmogt interpretiveinformationfor Log
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LC50. TABLE 2 showsdescriptorsthat usedinANN
method. A correlation andysiswas carried out to evalu-
ate correl ationsbetween sal ected descriptorswith each
other and with Log LC50 (TABLE 3).

ANN optimization

A three-layer neura network was used and starting
network weightsand biaseswererandomly generated.
Descriptors selected by stepwise method wereused as
inputsof network and thesignd of theoutput noderep-
resent the Log L C50 of organic pollutants. Thus, net-
works havethreeneuronsininput layer, and one neu-
roninoutput layer. The networks performancewas op-
timized for thenumber of neuronsin the hidden layer
(hnn), thelearning rate (Ir) of back-propagation, mo-
mentum and the epoch.Asweights and biased are op-
timized by the back-propagation iterative procedure,
training error typically decreases, but test error first
decreases and subsequently beginsto rise again, re-
vealing aprogressiveworsening of generalization abil-
ity of thenetwork. Thustraining was stopped when the
test error reachesaminimum value. TABLE 4 shows
thearchitectureand specification of the optimized net-
works.

Results of ANN analysis and comparison with
MLR

The QSAR model s provided by the optimal ANN
and MLR are presented infigure 1aand 1b wherecom-
puted or predicted Log LC50 va uesare plotted against
the corresponding experimentd data. Figure 2aand 2b
showsaplot of residua sversustheobserved Log LC50
values. Thesubstantid random pattern of thisplot indi-
catesthat most of the datavarianceisexplained by the
proposed models.

The agreement between computed and observed
valuesin ANN training and test sets are shown in
TABLE 1. Thegatistica parameterscal culated for the
ANN model are presented in TABLE 5. Goodness of
the ANN-based model isfurther demonstrated by the
high vaueof the correlation coefficient Rbetween cal-
culated and observed Log LC50 valuesare (0.9953,
0.9938) for training and test set respectively. For com-
parison, alinear QSAR model relating Log LC50to
the selected descri ptorswere obtained by meanof MLR
method. Withthe purpose MLR modd built onthesame

Hnalytical CHEMISTRY o

subsetsthat usedinANN analysis. Multiplelinear re-
gressions (MLR) are one of the most used modeling
methodsin QSAR. For the best MLR model contained
three sdected descriptorscorrel ation coefficient (R) be-
tween cal culated and observed Log LC50 values are
(0.9709, 0.9691) for training and test set respectively.

Comparison between statistical parameters in
TABLE 5revedsthat nonlinear ANN mode produced
better resultswith good predictive ability than linear
modd.

CONCLUSIONS

QSAR analysiswas performed on aseries of or-
ganic pollutantsusing ANN method that correlate Log
LC50 vauesof these compound tothetheir structural
descriptors. According to obtained resultsit is con-
cluded that the (EEig10x , HF, CLogP) can be used
successfully for modeling Log L C50 of theunder study
compounds. Thedatistica parametersof thebuilt ANN
mode were satisfactory which showed thehigh quality
of the chose descriptors. High correl ation coefficients
and low prediction errors obtained confirm good pre-
dictiveability of ANN model. The QSAR mode spro-
posed withthesmply calculated molecular descriptors
can be used to estimate the Log L C50 for new com-
poundseveninthe absence of the standard candidates.
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