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INTRODUCTION

Toxicity is a property that assesses the degree of
toxic or poisonous effects of a chemical compound. The
toxicity may relate to the effect produced either on a
superior organism, as for instance a human being or
over a bacterium or a plant, or a substructure, such as a
cell (cytotoxicity).

The emergence of diseases due to poisoning has
made us understand the power that can exhibit the toxic
compounds. In former times, the main toxic effects
studied were those associated with death; however
nowadays the toxicity is also assessed for other purposes
as for example to combat pests and diseases, for
disinfection and even for military endpoints.

Actually, about 28 million chemicals have been
synthesized, out of which about 200.000 are sold and
used daily. Nearly 3.000 new products are introduced
annually by the chemical industry into the marketplace.

From these, only 10.000 are based on the ownership
of toxicity. Faced with this situation, companies marketing
these products, need to conduct pilot studies to verify
its use and then throw up for sale proceeds[1,2].

The quantitative structure activity relationships
paradigm (QSAR) has been broadly used for chemical
hazard assessment[3-5]. One of the most efficient QSAR
method is that based on molecular topology[6] (MT) and
the multilinear regression analysis.

One of the most significant features is that it has
been shown that the toxicity in cellular organisms can
be a good reflection of the extent of this property to
superior mammalians. In fact, there are a lot of studies
based on analysis of toxicity in animals such as fish, using
the MT methodology[7,8].

To a lesser extent, experimental studies have been
conducted with single-cell organisms such as algae,
where the behaviour against the attack of toxic
compounds we can yield good predictions. The use of
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ABSTRACT

In this paper a multilinear regression analysis has been carried out in order
to look for a mathematical model capable to accurately predict the toxicity of
Chlorella vulgaris of a set of organic chemicals. The structural description
has been achieved through topological indices and the model was validated
by a cross-validation test, an external validation test and a randomization
test. The results confirm the model�s capability to predict the analysed
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QSAR for such a goal has been depicted evident in
several works[9,10] using as a single body to Chlorella
vulgaris.

Our scientific aim here is focused at finding
mathematical models for predicting the toxicity of organic
compounds compared to single-cell organisms. To do
that, we have used MT within a framework widely
recognized and applied to the prediction of different
properties[11-14].

MATERIALS AND METHODS

Analysed compounds

In this study a group of 91 organic compounds with
information about toxicological assessment has been
selected. Toxicity data[log(1/EC

50
] (pC) were

determined in a biochemical assay utilizing the unicellular
algae C.vulgaris in the logarithmic phase of its growth
cycle. All toxicological analyses were performed in a
buffer solution with a pH of 6.9 and a temperature
between 25 and 300C[10]. Assays were conducted
following the protocol described by Worgan et al.[15].
TABLE 1 shows the CAS number, name and
experimental toxicity, pC

exp
, for each compound studied.

Molecular descriptors

A set of well-known topological indexes, TIs, was
used in this work. Each compound was characterised
by 62 TIs calculated with the aid of the DesMol1
program (available by e-mail request). 32 connectivity
Randiã-Kier-Hall type indices, m

t
, and differences and

quotients, mD
t
 and mC

t
[16], 20 topological charge indices,

G
m
 and J

m
,[17] and other 10 discrete invariants[18].

Multilinear regression analysis, MLRA

MLRA was performed with the 2R and 9R modules
of the BMDP software, which estimate regression
equations for the best subsets of predictor variables
and provides detailed residual analysis by using the
Furnival-Wilson algorithm[19]. Equations with minimal
Mallows C

p
 parameter were initially chosen[20].

The stability of the equation selected was evaluated
through a cross-validation by the leave-one-out
algorithm. To do this, one compound of the set is
extracted, and the model is recalculated using as training
set the remaining N-1 compounds. The property is then

C. vulgaris CAS Nº Name 
PCexp* PCcalc** Residual 

67-56-1 Methanol -4.06 -3.92 -0.14 
64-17-5 Ethanol -3.32 -3.52 0.20 
75-65-0 2-Methyl-propan-2-Ol -3.16 -2.67 -0.49 
78-92-2 Butan-2-Ol -2.98 -2.49 -0.49 

868-77-9b 
2-Hydroxyethyl 
methacrylate 

-2.82 -2.09 -0.73 

818-61-1 2-Hydroxyethyl acrylate -2.79 -2.39 -0.40 
96-33-3 Methyl acrylate -2.75 -2.75 0.00 
71-36-3 Butan-1-Ol -2.73 -2.71 -0.02 
78-93-3 Butanone -2.51 -2.80 0.29 
80-62-6b Methyl methacrylate -2.24 -2.53 0.29 
96-22-0 Pentan-3-One -2.23 -2.40 0.17 

4170-30-3 Crotonaldehyde -1.98 -2.14 0.16 
6728-26-3 Trans-2-hexenal -1.94 -1.38 -0.56 
1576-87-0 Trans-2-pentenal -1.88 -1.89 0.01 
108-95-2 b Phenol -1.46 -1.22 -0.24 

96-05-9 Allyl methacrylate -1.42 -1.95 0.53 
62-53-3 Aniline -1.34 -1.12 -0.22 
110-43-0 2-Heptanone -1.18 -1.53 0.35 
100-66-3 Anisole -1.09 -0.90 -0.19 

367-12-4 b 2-Fluorophenol -1.08 -1.17 0.09 
348-54-9 2-Fluoroaniline -1.05 -1.07 0.02 
108-39-4 3-Cresol -1.01 -0.76 -0.25 
150-76-5 4-Methoxyphenol -0.97 -0.86 -0.11 
95-55-6 2-Hydroxyaniline -0.91 -0.99 0.08 

90-05-1 b 2-Methoxyphenol -0.88 -0.84 -0.04 
87-62-7 2,6-Dimethylaniline -0.87 -0.15 -0.72 
100-52-7 Benzaldehyde -0.81 -1.00 0.19 
95-48-7 2-Cresol -0.81 -0.70 -0.11 
90-02-8 2-Hydroxybenzaldehyde -0.8 -0.74 -0.06 

98-95-3 b Nitrobenzene -0.78 -0.33 -0.45 
950-37-8 Methidathion -0.73 -0.57 -0.16 
106-44-5 4-Cresol -0.66 -0.75 0.09 
95-65-8 3,4-Dimethylphenol -0.65 -0.31 -0.34 
104-87-0 4-Tolualdehyde -0.65 -0.49 -0.16 
94-71-3 b 2-Ethoxyphenol -0.62 -0.50 -0.12 

24964-64-5 3-Cyanobenzaldehyde -0.57 -0.73 0.16 
99-08-1 3-Nitrotoluene -0.5 0.00 -0.50 
106-48-9 4-Chlorophenol -0.42 -0.59 0.17 
97-02-9 2,4-Dinitroaniline -0.36 0.24 -0.60 

106-41-2 b 4-Bromophenol -0.35 -0.14 -0.21 
106-40-1 4-Bromoaniline -0.33 -0.03 -0.30 
108-42-9 3-Chloroaniline -0.31 -0.60 0.29 
2495-37-6 Benzyl Methacrylate -0.21 -0.08 -0.13 
618-87-1 3,5-Dinitroaniline 0.03 0.47 -0.44 
89-98-5 b 2-Chlorobenzaldehyde 0.06 -0.29 0.35 
540-38-5 4-Iodophenol 0.16 0.21 -0.05 
4748-78-1 4-Ethylbenzaldehyde 0.16 -0.08 0.24 

58-27-5 
2-Methyl-1,4-
naphthoquinone 

0.16 0.65 -0.49 

88-69-7 2-Isopropylphenol 0.17 0.32 -0.15 
626-43-7 b 3,5-Dichloroaniline 0.24 -0.14 0.38 

603-71-4 
1,3,5-Trimethyl-2-
nitrobenzene 

0.25 0.62 -0.37 

608-31-1 2,6-Dichloroaniline 0.26 -0.03 0.29 
88-18-6 2-Tert-Butyl phenol 0.29 0.50 -0.21 

TABLE 1: Chemical Abstracts Service (CAS) number,
chemical name, experimental and calculated toxicity (log(1/
EC

5J0
)(mM) (compounds listed in increasing order of toxicity

to C.vulgaris)
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predicted for the removed element. This process is
repeated for all the compounds of the set so obtaining a
prediction for every one. This procedure also aids in
the detection of outlying points[21].

In order to evidence the possible existence of
fortuitous regressions, the randomization test is adopted
in this paper. Thus, the values of the property of each

compound are randomly permuted and linearly
correlated with the aforementioned descriptors. This
process is repeated as many times as needed. The usual
way to represent the results of a randomization test is
plotting the correlation coefficients versus predicted
ones, r2 and q2 respectively.

RESULTS AND DISCUSSION

When working with groups of compounds
structurally heterogeneous, as is our case, it is easy to
unveil the presence of outliers. For making that, the use
of the 2R module from the BMDP software is
particularly efficient to figure out, as a first
approximation, the most significant variables for
predicting the toxicity.

In our case, the outcome resulted in five variables,
0v, G

1
v
, 
G

5
v
, 
J

4 
and V

3
 , with a variance r2 = 0.9068.

Figure 1 shows the plot of experimental versus
calculated pC values for each compound. The
compounds labelled with black dots clearly appear as

Figure 1: Graphic representation of the pC
exp 

versus pC
calc

from the topological model selected (outliers compounds:
black points)

 p
C

ex
p

 pC
calc

C. vulgaris CAS Nº Name 
pCexp** pCcalc** Residual 

95-50-1 1,2-Dichlorobenzene 0.37 -0.19 0.56 
99-65-0 b 1,3-Dinitrobenzene 0.38 0.26 0.12 
51-28-5 2,4-Dinitrophenol 0.4 0.15 0.25 
100-25-4 1,4-Dinitrobenzene 0.41 0.27 0.14 
99-61-6 3-Nitrobenzaldehyde 0.45 -0.12 0.57 
732-11-6 Phosmet 0.47 0.91 -0.44 

298-00-0 b Methylparathion 0.6 0.96 -0.36 
121-75-5 Malathion 0.64 0.13 0.51 

99-30-9 
2,6-Dichloro-4-
nitroaniline 

0.64 0.80 -0.16 

86-50-0 Methyl azinphos 0.69 1.55 -0.86 
121-14-2 2,4-Dinitrotoluene 0.7 0.44 0.26 

2636-26-2 b Cyanophos 0.79 0.77 0.02 

3531-19-9 
6-Chloro-2,4-
dinitroaniline 

0.8 0.83 -0.03 

99-28-5 
2,6-Dibromo-4-
nitrophenol 

0.81 1.60 -0.79 

640-15-3a Thiometon 0.94 -0.54 1.48 
89-61-2 2,5-Dichloronitrobenzene 0.97 0.75 0.22 

94-62-2 b Piperine 0.97 1.87 -0.90 
939-97-9 4-Tert-butylbenzaldehyde 1 0.63 0.37 
634-93-5 2,4,6-Trichloroaniline 1.11 0.46 0.65 
83-42-1 2-Chloro-6-nitrotoluene 1.17 0.67 0.50 

5388-62-5 
4-Chloro-2,6-
dinitroaniline 

1.19 0.96 0.23 

528-29-0 b 1,2-Dinitrobenzene 1.23 0.67 0.56 
100-00-5 a 1-Chloro-4-nitrobenzene 1.25 0.07 1.18 
2463-84-5 Dicapthon 1.36 1.42 -0.06 

128-37-0 
2,6-Di-tert-butyl-4-methyl 
Phenol 

1.45 1.95 -0.50 

3481-20-7 2,3,5,6-Tetrachloroaniline 1.48 1.03 0.45 

609-89-2b 
2,4-Dichloro-6-
nitrophenol 

1.5 0.82 0.68 

83-38-5 a 2,6-Dichlorobenzaldehyde 1.5 0.35 1.15 
55-38-9 Fenthion 1.56 1.24 0.32 
96-76-4 2,4-Di-Tert-butylphenol 1.6 1.33 0.27 
87-86-5 Pentachlorophenol 1.69 1.45 0.24 

122-14-5 b Fenitrothion 1.71 1.20 0.51 

89-69-0 
1,2,4-Trichloro-5-
nitrobenzene 

1.88 1.10 0.78 

6284-83-9 
1,3,5-Trichloro-2,4-
dinitrobenzene 

1.89 1.32 0.57 

1689-82-3 Phenylazophenol 2.16 1.80 0.36 

 
4-(Dibutylamino) 
benzaldehyde 

2.18 1.53 0.65 

117-18-0 b 
2,3,5,6-
Tetrachloronitrobenzene 

2.34 1.77 0.57 

608-71-9 Pentabromophenol 3.1 3.73 -0.63 
* Experimental values obtained from Ref. [10]; ** Calculated
values from selected topological model; a outliers compounds;
b External test.

TABLE 2: Topological model selected with toxicity, pC, through
MLRA(pC= -4,4937+ 0,5679 0v -0,1131 G

1
v -1,1609 G

5
v+

10,0710 J
4 
+ 0,1881 V

3
)

Variables Standard error p 
Intercept 0.1702 0.0001 

0


v 0.0408 0.0001 
G1

v 0.0227 0.0001 
G5

v 0.2353 0.0001 
J4 1.359 0.0001 
V3 0.0241 0.0001 

N= 70, SEE = 0.4048, r = 0.9622, p< 0.0001, F= 180, q2 = 0.9383, r2

= 0.9282 , Cp Mallow = 6
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outliers. Namely thiometon, 1-chloro-4-nitrobenzene
and 2,6-diclorobenzaldehide display values of standard
error of estimation above  2SEE. These three

Figure 2: Graphic representation of the residuals versus
pC

exp 
obtained with the topological model selected
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Figure 3: Graphic representation of the residuals obtained
in the cross-validation versus the residuals obtained with
the topological model selected

Residuals

Figure 4: Graphic representation of the pC
exp

 versus pC
pred

for the external test
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molecules were removed from the training group and
the 88 remaining compounds were hence left for the
predictive analysis.

The topological indices selected show a relatively
poor intercorrelation (r <0.700), although they all are
statistically significant for predicting the property studied.
The index 0v, would take into account of topological
and structural aspects related to molecular volume[22],
whereas G

1
v
, 
G

5
v
 
and J

4 
would profile the intramolecular

charge transfer responsible for the value of the toxicity
of each compound and V

3
 the presence of multiple

bonds in the molecule.

Selection of the best prediction regression function

After removing the three causing a loss of predictive
capability, we applied the module 9R of the BMDP
software, using a training set of 70 compounds and
leaving out at random the 18 remaining compounds as
a test group.

TABLE 2 shows the selected function together with
the associated statistical information. As can be seen,
all the indexes therein show a statistical significance
above 99.9% (p <0.001) (see TABLE 2 column 3).
Furthermore, the selected function explains over 92%
of the variance (r2=0.9282).

Figure 2 shows the graphic representation of the
residual versus pC

exp
 obtained with the topological model

selected. The toxicity of every compound was predicted
in a satisfactory manner (see TABLE 1) except for
azinphos methyl, with an residual slightly higher than 
2SEE.

Randomization and predictive ability tests

The cross-validation analysis of the training group,

Figure 5: Graphic representation of the prediction
coefficient ,Q2, versus correlation coefficient, r2, obtained
by randomization study

Q
2

r2
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shows similar result to the obtained in the analysis of
multilinear regression (q2  0900) what demonstrates
the stability of the selected function, see figure 3.

To complete the validation of the predictive model,
we extracted from the matrix of data (N = 88), 18
compounds, actually 20% of the overall group. TABLE
1 (black mark) and figure 4 show the values obtained
for the external test group. It has obtained a prediction
coefficient q2 = 0.8951 bringing us confirmation of the
good performance of the selected function.

Finally, a study of randomness was carried out, in
order to evidence the possible existence of fortuitous
regressions. The values of the pC

exp
 of each compound

were randomly permuted and linearly correlated with
the aforementioned descriptors. The process was
repeated ten times. Figure 5 shows the graphic
representation of the prediction coefficient, q2, versus
correlation coefficient, r2, obtained in this study. In all
cases, the values of q2 were below 0.5 (the black point
in figure 5 belongs to selected model), therefore, the
selected prediction equation is not fortuitous.

CONCLUSIONS

Toxicity is a biological property whose assessment
is more and more important nowadays. In our work,
we have tried to obtain a mathematical function capable
to predict the toxicity by means of topological indices.
Initially, we performed a literature search of possible
databases to provide a reliable, commercial and
transferred to the experimental world. Following the
topological indices more suitable for predicting the
toxicity and the possible emergence of outliers, were
selected using standard and well proven algorithms. The
selection of five topological indices and the emergence
of three outliers was the first outcome of the study.

Altogether, a mathematical model with five variables
enable to estimate the toxicity with a r2 > 0.92 in a
group including 70 training compounds. The validation
of the model was conducted with the help of a cross-
validation leave-one-out and an external test
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