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ABSTRACT

In this study, the short-time effects of operative parametersincluding influent
COD, CODI/N ratio, COD/Prétio, aerationtime, settling time, and temperature
on performance of a sequencing batch reactor (SBR) were investigated,
which wasapplied for starchy wastewater treatment. For COD removal (%),
R?is0.8250, implying that 82.50% of response variability isachieved by a
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regression model. According to the regression model that obtained for COD
removal (%), the maximum COD removal (%) was 78.33% that was obtained
at the COD of 400 mg-L %, COD/N ratio of 5, COD/Pratio of 100, settlingtime

of 90 min, and temperature of 22 °C.
© 2014 Trade Sciencelnc. - INDIA

INTRODUCTION

Starch production plantsare cons dered ashigh pol-
lutingindustries. Thewastewater originated from starch
industries are characterized by high chemical oxygen
demand (COD) content, ranging from 2000 to 24000
mgL* aswell ashightotal suspended solid (TSS)1+4,
Washing thefeed stocks, starch extraction process, and
cleaningthepipdinesandinstrumentsarethemainre-
sources of wastewater in starch industries®.

Asyet, many methods have been suggested for im-
proving the efficiency of starch wastewater treatment
systems. Furthermore enforcementof stringent discharge
gandards stimulatestheintroduction of effectivewaste-
water treatment systems. Thereare severd studiesthat
investigated the ability of anaerobicbiologica trestment
such as upflow anaerobic sludge blanket reactor
(UASB)!®, anaerobic baffled reactor (ABR)7, hori-

zontal flow filter (HFF)®, anaerobic tapered fluidized
bed reactor (ATFBR)*9, and anaerobic pond™?.
Rajasimman et a. studied thetreatability of cassava
gdarch wastewater using aerobicfluidized bed bioreactor
(FBB)™. Besides, inafew works, ability of membrane
technology in treating starchy wastewater wasinvesti-
gated[12'141.

Activated dudge systemsfall within aerobic bio-
logical systems. A conventional activated sludge has
severd disadvantagessuch asreatively highenergy con-
sumption, high biomassproduction, high operation costs
and problemsassociated to the digposd of largeamount
of sudge®®. Wastewater treatment with sequencing
batch reactor (SBR) isan aternative solution, com-
pared to the activated d udge process. SBRsoffer vari-
ousadvantages, including minimal spacerequirements
and ease of management*®l, Furthermore, SBRsand
modified SBRshave been successfully applied to treat
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complex chemica wastewaterd2%, and also they are
ableto remove nitrogen compounds®24,

SBR cycleconsistsof severa phases(filling, aera-
tion, settling, decanting andidle); but for nitrogen and
phosphorousremoval, conducting anaerobic—aerobic
condition (with anoxic and aeration phasesin each
cycle) isnecessary.

In this study, the SBR system is applied to treat
synthetic starchy wastewater. Thusfar, the short-time
effectsof operaiveparametersincluding influent COD,
COD/N retio, COD/Prétio, aerationtime, settlingtime,
and temperature on performance of aSBR intreating
starchy wastewater have not been reportedin litera-
tures. Thispaper amstofill thisknowledgegapinthe
SBR process.

THEORY

Theoutput variables depend not only on input pa:
rameters. In many cases, interactions between theinput
parametersmay severely affect theoutput ones. Sothese
possibleinteractionsmust betakeninto account.Varying
oneinput parameter and keeping the other ones con-
stant, istheconventiond procedureto study the effects
of operative parameters. But using thismethod, thein-
teractionsbetween different factorsareoverl ooked, leed-
ingtoamisinterpretation of theresults§?%, The perfor-
manceof aSBRintreating starchy wastewater isacom-
plex and sensitive function of numerous
parameters.Applying asystematic approach to study the
effects of these parameters on the performance of sys-
tem and obtai ning the optimum condition seemsneces-
sary. Design of experiment (DoE) technique can assess
theinteractionsthat could not beconsidered by varying
one parameter and keeping others constant. In recent
years, DoE hasbeen usedin severd fiddsof scienceand
engineering duetoitshighability inmaking designlayout
of experiments?3, Besides, decreasing the number of
experimentsinsudyingaphenomenonisof interest. DoE
providesapowerful tool that preventsdoing unnecessary
experimentsaswell asconsdering theinteractionsbe-
tween factors. DoE consistsof severa subsets. One of
themethodsusedinthisstudy isfractiond factoria de-
sgn(FFD).FFD isagatisticd method for moddlingthe
experimentd dataaswel | asscreeningtheinsignificant
parameters. Inthisstudy, Design Expert! softwarewas
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usedtodevel op theexperimentd planlayout and andyz-
ingtheobtained data.

TABLE 1: Operativeparameter sand levelsfor foldover frac-
tional factorial design

. levels
Operative parameters

-1 0 1
(A) COD (mg2.%) 200 300 400
(B) CODI/N ratio 5 125 20
(C) COD/Pratio 20 60 100
(D) Aeration time (min) 90 180 270
(E) Settling time (min) 10 15 20
(F) Temperature (°C) 22 27 32

TABLE 2: Design layout of 255“—3 fractional factorial design

Oper ative parameters
B C D E F
5.00 100.00 270.00 10.00 22.00
20.00 100.00 90.00 10.00 32.00
1250 60.00 180.00 15.00 27.00
5.00 100.00 90.00 20.00 22.00
20.00 20.00 270.00 10.00 22.00
1250 60.00 180.00 15.00 27.00
500 20.00 270.00 20.00 32.00
20.00 100.00 270.00 20.00 32.00
20.00 20.00 90.00 20.00 22.00
500 20.00 90.00 10.00 32.00

Run Block

200.00
200.00
300.00
400.00
400.00
300.00
200.00
400.00
200.00
400.00
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TABLE 3: Design layout of 2;3“—3 foldover fractional facto-
rial design.

Operative parameters

Run Block
B C D E F
11 2 200.00 20.00 100.00 270.00 20.00 22.00
12 2 200.00 5.00 20.00 90.00 10.00 22.00
13 2 300.00 1250 60.00 180.00 15.00 27.00
14 2 200.00 20.00 20.00 270.00 10.00 32.00
15 2 400.00 20.00 100.00 90.00 10.00 22.00
16 2 400.00 5.00 20.00 270.00 20.00 22.00
17 2 300.00 1250 60.00 180.00 15.00 27.00
18 2 400.00 20.00 20.00 90.00 20.00 32.00
19 2 400.00 5.00 100.00 270.00 10.00 32.00
20 2 200.00 5.00 100.00 90.00 20.00 32.00

MATERIALSAND METHODS

Thewastewater used throughout the study wasa
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synthetic starch effluent. Thewheat starch powder was
dissolved in tap water to attain the required COD of
feed, COD concentration wasin the range 200400
mgL* and wasandyzed following the standard meth-
0ds®*4. The air was introduced by an aerator in the
bottom of thereactor. To preparethe seed dudge acow-
dung has been used as seed culture and sludge was
developed within 50 daysin SBR by asynthetic starchy
wastewater. The SV was determined by reading the
volumeof thesettled udgeinalliter container after
30 min settling (after the aeration phase and before set-
tlingand effluent withdrawa phase) and cal culated from
the settled d udge volumeand thetotal suspended sol-
ids. A cubic reactorswith dimensionsof 30x30x60 cm
and working volumeof 451, wasoperated in sequenc-
ing batch mode.Effluent wasdrawn at 20, 30, and 40
cmfromthebottom, so 16| wasleftinthereactor after
effluent withdrawa.Influent addingwas donefromthe
top of thereactors. Aerationisoff during feeding, efflu-
ent withdrawal, and settling phases.
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Figurel: A half-normal probability plot for COD removal
(%)

The operative parametersand their valuesat the
twoleves(high, +1andlow,”1 levels) set in the design
have been shownin TABLE 1. Also, the center points
(level 0) were set along thedesign layout to check the
curvature and experimental error. These pointsarelo-
cated justinthemidpoint of highand low levels.

Thetestsconfigurationsand experimental resultsof
two-level FFD, consisting of 8 experimentsaswell as
two center points, aresummarizedinTABLE 2.

Thenumber of experimentsfor factorid desgnwith
7 operative parametersis 2°. So, the current design
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layout isactudly a1/8th fraction of factoria design. Itis
obviousthat every effect isaliased with 7 other ones,
which may result in misinterpreting the effects of oper-
atling parametersandtheir relationship. Thediases struc-
turesfor 252 design areashe ow®:
[A]=A+BD +CE
[B] =B +AD +CF
[C]=C+AE+BF
[D] =D +AB +EF
[E]=E+AC+DF
[F]=F+BC+DE
[AF] =AF + BE + CD

Itisimportant to notethat threeand higher factor
Interactionswereignored to avoid unnecessary screen
clutter. Itisfound that main effectsare confounded with
plausibletwo factor interactions. For thesituation that
every two factor interaction has unimportant effect on
theoutput parameters, thisaliasingisnegligible. But if it
doesnot, de-dliasing main effect and two factor inter-
actions seems necessary. In other words, running sev-
eral moreexperimentsviafoldover designwould clear
up theconfounding. Thefoldoverdesignlayout waspre-
sentedinTABLE 3.

RESULT AND DISCUSSION

Half-normal probability plot

Figure 1 showsHaf-norma probahility plot of the
effects, adiagramin which theabsolutevaue of every
effectwas plotted a ong the X -axiswhilethe probability
percentwas plotted dongtheY-axis. Ha f-normd prob-
ability plotisauseful tool to determinethesignificance
of themain and theinteraction effects. Thelargest ef-
fect islocated at theright sideof diagram.Every effect
that liesdongthelineisinggnificant, but Sgnificant ones
arepretty far fromtheline. Hence, themain effectsin-
cluding COD (A), temperature (F), AF and BC asthe
interaction effect significantly influenced the COD re-
mova percentage. AsisshowninFigure3(a), theman
effectsof COD/N (B) and COD/P (C) arenot signifi-
cant, but to present ahierarchic model ; these param-
etersare included in the model. Non-hierarchically
modelsareincorrect®. Figure 2 shows Pareto chart
of the selected effects. Pareto chart isauseful graphica
tool for showingthereativesizeof effects. Inanayzing
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Normal Plot of Residuals
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Figure3: Normal probability plot of residual for COD re-
moval (%)

thischart, the effectswould be divided into three cat-
egories: (I) significant effects (above Bonferroni limit),
(I) possibly significant effects (above t-value limit and
below Bonferroni limit), and (I1I) insignificant effects
(below t-vduelimit).Theresultsof Pareto chartare s mi-
lar to haf-normal probability plot ones.

ANOVA analysis

Design Expert software makes data analysis in
coded form. Operating parameters are coded by the
following equiation®:

x; — Xihigh 2_ Kilow
Xihigh — Xilow
2
where C, isthe coded value of operative parameter x,,
X nign @ X | arethevalues of thisparameter at high
andlow levels, respectively.

Theaccuracy of model was measured using corre-
lation coefficient index (R?), whichisdefined asfol-
lows

e
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N
Where v, and v, 4. areexperimenta and pre-
dicted values, respectively, and N isthenumber of data.
Thenorma probability plot of thestudentized resduals
isshowninFigure 3. Thenormal probability plot indi-
cateswhether theresiduasfollow anormal distribution
or not. Thepointsthat follow agtraight lineconfirm that

@
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errorswere normally distributed with amean of zero.
Definite patternslikean “S-shaped” curve indicate that
atransformation of response may be needed.

TheANOVA tablefor assessingthe COD remova
(%) isshowninTABLE 4.

TABLE 4: ANOVA tablefor COD removal (%)

Source Sum of df Mean Fvalue Prob>F
squares sguare
Block 8820.00 1 8820.00
Model 4403750 6 7339.58 9.43 0.0006 Significant
4.091E- Not
Curvature 3.47 1 3.47 003 0.9501 significant
Residua 9339.72 12 77831
Lackof 773970 10 77397 o097 06092 N
Fit significant
Pureerror  1600.00 2 800.00
Cor. total  62197.22 19 R-squared  0.8250
Adj. R-
squared 0.7375
Adeq. 11.448
precision

Vduesof (Prob> F) lessthan 0.05indicatethemodd
termsaresignificant and valuesgreater than 0.10indi-
catethey areinggnificant. So, accordingto theANOVA
tablefor COD remova (%), the moddl issignificant.
Adequate precison of 11.448indicatesan adequate S g-
na. TheModd F-vadueof 9.43impliesthat themode is
significant. Thereisonly a0.06% chancethat aModel
F-Vauethislargecould occur asaresult of noise. The
“lack of fit F-value” of 0.97 implies that the lack of fit is
insignificant relativeto pureerror. Pureerrorisamea
sureof error related to repeatability. Thistermisthesum
of squaresof the repeatedobservationsdivided by the
degree of freedom. There is a 60.92% chance that a
“Lack of Fit F-value” this large could occur due to noise.
Non-sgnificant lack of fitisgood. Theintegrity of amodd
can be checked by the determination of R? coefficient
and adjusted R??2, Inthisstudy, for COD remova (%),
R2is0.8250, implying that 82.50% of responsevariabil-
ity isachived by aregressonmodel. R?increasesasthe
number of termsincreasesinthemodel, whilenoim-
provement inmode isobserved®”. Sotofacethisprob-
lem, adjusted R? wasintroduced, whichwouldincrease
only and only duetothemodd improvement. Inthiscase
adjusted R?is0.7375 reasonably in accordswith R?that
meansthat thisvaueof R?isnot unred. Thefina equa:
tionfor permesteflux intermsof coded factorsobtained
from regression of valuesisasbe ow:
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Figure4: 3-D diagram of COD removal (%) vs. significant oper ativeparameters

TABLES5: Theoptimum condition

CODI/IN
ratio

COD/P
ratio

Aeration time
(min)

coD
(mg2™)

Settling
time (min)

COD
removal (%)

Temperature

(°C) Desirability

400.00 5.00 100.00 90.00

20.00 22.00 78.33 1.000

COD removal% = —4.17 + 33.13 X A — 6.25 X B+ 10.00 X C — 28.75 X F + 16.25 X

AXF—20.62 XBXC 4
Thefina egquationfor COD removal (%) interms

of coded parameters obtained from regression of val-
ues. But, expression of COD removal (%) in actual
vauesispreferred. So, by converting the coded values
to actua onesusing equation 1, thefollowing equation
intermsof actual valueachieved:

COD removal% = 258.81250 — 0.54625 X COD + 3.29167 x COD/N + 1.10937 x

COD/p — 15.50000 X Temperature + 0.032500 X COD x Temperature — 0.068750 X

COD/N X COD/P ©)

Subjected to: 200<COD<400 (mgL?), 5<COD/
N<20, 20<COD/P<100 and 90<Aeration time<270
(min), 10 < settlingtime< 20 (min), 22 < Temperature
<32(°C). This model can be used to predict the COD
Removal (%) within the limits of operative
parameters. Asmentioned earlier, finding the optimum
conditionissoimportant because by running thereac-
tor onthebasisof optimum condition the performance
of treatment processwill beat themaximumvalue.

The Design Expert softwarefinds optimum condi-
tion. The optimum condition for this processis pre-
sented inTABLEDS.

Data analysis

Therelated diagram obtained from equation 5is
illustrated in Figure4. In Figure 5, acomparison be-
tween filtrate and non-filtrate COD has been made.
Figure 6 shows acomparison between experimental
dataand the data predicted by regression model for
COD removad (%). Itisfound fromtheANOVA table

that the aeration time and settling timehaveno consid-
erable effect on reactor performance in treating the
starchy wastewater.According to Figure 5, non-filtrate
COD remova (%) showed largevariationsduring the
experimentation and on severa runsreached negative
vaues. Thenegative COD remova efficiency meansthat
theeffluent CODconcentration ishigher thanthat of the
influent one. The negative COD removal (%) may be
duetoimproper setting propertiesor asort of “memory”

100 -

50 4 @ Filterate

0 -

25 4p Non-filterate
50 4

COD removal (%)

-100

-150
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Figure5: Comparison between filtrateand non-filtrate COD
removal (%)
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Figure6: Experimental datacompared to predicted values
given by theregression model for permeateflux
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inthereactor™, Figure 7 showsthe non-filtrate COD
removal (%) aswell as corresponded sludge volume
index (SV1).The COD/N ratio greater than 90 leadsto
excessivegrowth of filamentous, which damage settling
properties®, SVI morethan 150 mL-gtisrelated to
thefilamentous growth“? whilethe maximum COD/N
ratiowas 20inthiswork.In current study, except run 1
and 18, the SVI wasbelow 100 mgL™?, whichisac-
ceptablefor SBR*Y. So, thereason of emerging nega-
tive COD remova (%) isthat when theinfluent COD
had asudden decrease, the effluent concentration was
gtill influenced by theliquid present in thereactor dueto
highhydraulicretentiontime (HRT).

150

100-W

AN AN

, NS A YN
5 \'\115 20 25

-50 4

| SVI

SVI (mg/L)

-100 A
€ Non- filterate COD

-150 - removal (%)

COD removal (%)

-200 - Run number
permeate flux

Figure7: Non-filtrate COD removal (%) and SVI vs. run
number

CONCLUSIONS

Theeffectsof operative parameterson performance
of asequencing batch reactor (SBR) wereinvestigated,
whichwas applied for starchy wastewater treatment.
The performance of reactor waseva uated using COD
removal (%). For COD removal (%), correlation coef-
ficientindex (R?) is0.8250, implying that 82.50% of
responsevariability isachieved by aregresson model.
Itisfound from theANOVA tablethat theaerationtime
and sttling time have no cons derableeffect on reactor
performanceintreating the starchy wastewater. In cur-
rent study, except run 1 and 18, the SVI was below
100 mgL*, whichisacceptablefor SBR. Accordingto
theregression model that obtained for COD remova
(%), themaximum COD removd (%) was 78.33% that
would be obtained at the COD of 400 mgL*, COD/N
ratio of 5, COD/Pratio of 100, settlingtimeof 90 min,

Application of experimental design approach for investigating the short-term effect
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and temperatureof 22 °C.
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