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Abstract : Applicability of Artificial Neural Net-
work (ANN) for the prediction of gas holdup in ta-
pered bubble columns using non-Newtonian
pseudoplastic liquids have been reported. The ex-
perimental dataused for thisanalysisaretaken from
our earlier publication (Jana S. K., A. B. Biswas
and S. K. Das, Gas holdup in tapered bubble col-
umn using pseudoplastic non-Newtonian liquids,
Korean J.. Chem. Engg., 31(4) (2014) 574-481). The

INTRODUCTION

Bubble columnisadeviceinwhich agas-phase
isbubbled through acolumn of liquid and it can pro-
mote achemical or biochemical reactioninthe pres-
ence or absence of a catalyst suspended in the lig-
uid phase. Bubble columnisvery popular and widely
used in industry as absorber, stripper, reactor and
fermenter etc. It hassimple construction and absence
of any moving parts, good mixing, control of tem-
perature, high heat and masstransfer rate, minimum
maintenance and low capital cost involved. Bubble
coal escence, high pressure drop, considerabl e back
mixing in both phases, short residence time of gas

ANN with multilayer perceptron (MPL) with one
hidden layer and four different transfer functionswith
backpropagation a gorithm were used to demonstrate
the applicability of ANN in the prediction of gas
holdup. © Global Scientificlnc.
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and complex hydrodynamics flow patterns are the
main disadvantages in bubble column. However, it
isextensively used in biotechnology, food process-
ing, pharmaceutical processesand waste water treat-
ment processes. Jana et a. (2014) reviewed on the
bubble columns and modified bubble columns in
detail .

Straight cylindrica bubble column, slurry bubble
column have been extensively used in the process
industries. Taper bubble columns are also used in
industrial practicein the field of biochemical reac-
tions, biological wastewater treatment for morethan
few decaded?" 1618 13, Zhang et al. (2003) reported
that the gasholdup in cylindrical bubble column does
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not changeintheaxial direction at low gas velocity
but decreases dlightly at high gas velocity from the
bottom to top, whereas in tapered bubble column
the axial gas holdup decreases from bottom to the
top. Sointhetapered bubble column flow isaways
developing nature, i.e., bubbles are rising from the
bottom as a spherical shape and then coalesce to
form bigger bubbles, structure of the big bubble
changes continuously from circular to dlightly flat-
tened and rapture of the big bubblesto small bubbles.
Jana et a. (2014) reported detail bubble character-
istics and flow regime in taper bubble column. Lit-
erature review suggested that most researchers used
Newtonian liquids in their study. The rheological
behavior of non-Newtonian liquidsis complex and
hencethe bubbleflowsin theseliquids has different
characteristics than that of Newtonian liquids™ @.
Only few literatures are available using non-
Newtonian liquidsin bubble column® 2. 10.17. 15,
Artificial neural network has gain awidespread
application in many engineering fieldg?. Oneof the
advantage of ANN that it can learn from example,
incorporate a large number of variables, provide
quick response to the new information and predict
most accurately®l. Shaikh and Al-Dahhan (2003)
concluded that theANN correlation gives better pre-
diction than the empirical correlation for the pre-
diction of gasholdup in bubble column. Bar and Das
(2011, 2012) showed that the MLP with
backpropagation algorithmis useful for the predic-
tion of hydrodynamic parameter in two-phase gas-
non-Newtonian liquid flow through bends and hori-

zontal pipeline. Bar et al. (2011) used MLP with
backpropagation a gorithm for the prediction of fric-
tional pressure drop in two-phase gas-non-
Newtonian liquid flow through helical coilsin hori-
zonta orientation. Thisresearch investigatesthe ex-
perimental determination of the gas holdup in taper
bubble columns and the use of artificial neural net-
work for the gas holdup prediction.

ANN methodology

Inartificial neural network, ANN model of sys-
tem, feed-forward architecture namely Multiple
Layer Perception (MLP) is most commonly used.
Figure 1 shows schematic diagram of it. It hasthree
layers: an input layer, hidden layer(s) and an output
layer. Each layer consists of anumber of elementary
processing units known as neurons. Each neuronin
the input is connected to its hidden layer through
weights. Also there is connection between hidden
and output layers. When an input isintroduced to the
neural network, the synaptic weights between the
neurons are ssimulated and these signal's propagate
through layers and the output result is formed. The
main objective is to form output by the network
should closeto the expected output, the wei ghts be-
tween the layers and the neurons are modified in
such a way that next time the same input will pro-
videan output that are closer to the expected output.
Various agorithms are available for training of the
neural networks. Backpropagation algorithm isthe
most versatile and robust technique, provides most
efficient learning procedurefor MLP networks. This
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Figure 1 : Schematic diagram of neural network
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algorithm is especialy capable of solving predic-
tive problems™ U, Literature survey suggested that
a network with single hidden layer using different
popular transfer functions like sigmoid, hyperbolic
tangent etc. are extensively used for prediction and
it performed successfully. Bansal et al. (1993) and
Tamuraand Tateishi (1997) observed that thesingle
hidden layer can solve most of the problemsfor more
input variablesand outputs. Hencethis study isbased
on MLP using a single hidden layer. The values of
thelearning rate and momentum constant of networks
are 0.01 and 0.9 respectively. Four different trans-
fer functions in a hidden layer are used in the net-
work and are shownin TABLE 1. Transfer function
5 representsthe output function. So the prediction of
the gas holdup is carried out using multilayer
perceptron (MPL) with one hidden layer and four
different transfer functions and istrained with very
popular backpropagation (BP) algorithm using
MATLAB R2010b asacomputational tool.

Experimental detailg
A schematic diagram of the experimental setup

has been shown in Figure 2. It consists of tapered
bubble column, manometers for pressure measure-
ment, distributor (D) to distribute the air, compres-
sor (C), pressure gauge (PG), rotameter (R) for
flow measures and other accessories. The tapered
bubble columns were made of thick perspex and
square shaped. A perforated plates made of Perspex
of 50 holes of different diameters were used for air
distribution and connected with the column by means
of flanges. Air inlet would be provided in column
by means of nozzles of 4mm diameter and then the
air is distributed through the distributor plate and
entersinto the column. Two tapered bubble columns
of different cross-section areas are used for the ex-
periment. Detailed dimension of the columns are
shown in TABLE 2. Columns were fitted to verti-
cally by means of clampsto avoid any vibration.
Thedesired amount of Sodium salt of carboxym-
ethyl celluse (SCMC) were dissolved in tap water,
a few drop of formaldehyde was added to avoid
biological degradation and kept around onenight for
aging. Four different SCMC concentrations, 0.2 -
0.8 kg/m?® were used for the experiment. The dilute
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TABLE 1 : Different transfer functions

Case Name of activation function Equation
Transfer function 1 Tan hyperbolic function (tansig) y = tanh(net)
1
Transfer function 2 Logsigmoid function (logsi =
gsig (logsig) y (L+ exp(_nel))
Transfer function 3 Radial basis function(radbas) y = exp(—net?)
y=1-abs(net) it 15(nety21

Transfer function 4

Transfer function 5 Linear function(purelin)

Triangular basis function(tribas)

Y=0 siherwise

y = (net)

(Output function)
TABLE 2 : Dimension of bubble columns
Smaller Tapered Bubble Larger Tapered
. Bubble
Characteristic parameters Column
TB1 Column
TB2
Thickness of Perspex sheet, m 0.0127 0.0127
Height of column, m 1.83 1.83
Top areaof the column m? 0.0762x0.0762 0.1016x0.1016
Bottom area of the column, m? 0.0508x0.0508 0.0508x0.0508
Equivalent diameter, i.e., log mean diameter based on bottom
equivalent diameter and the equivalent diameter of the gas- 0.0605?D.?0.0614 0.06927D.?0.0710
liquid interface, m
Hole diameter of the air inlet and outlet, m 0.0127 0.0127
Taper angle(deg) 0.44 0.86
Hole diameter of different sieve plates used, m 0.00277,0.00357,0.00436 0'00%7362'30;357’
Hole number of sieve plate 50 50
TABLE 3 : Physical properties of the SCMC solutions
Concentration Flow behavior Consistency index Density Surface tension
Kg/m® Index (n) K (Ns"/m? P (Kg/m®) o (N/m)
0.2 0.9013 0.0138 10001.69 0.07834
0.4 0.7443 0.1149 1002.13 0.08003
0.6 0.6605 0.3454 1002.87 0.08142
0.8 0.6015 0.6486 1003.83 0.08321

solution of SCMC is a time independent
pseudoplastic fluid and its rheology is described by
Oswald de-Waele or Power law model,

r=K ( - d—I}

\ dr (1)
where K and n are the constants for the particular
liquid with n <1. The constant K is known as con-
sistency index of theliquid and the higher thevalue
of K the more viscous is the fluid. The rheological
properties of the SCMC solutions were measured
by means of pipeline viscometer. DuNouy tensiom-

eter and specific gravity bottle measured surface ten-
sion and density respectively. The physical proper-
tiesof theliquid are shownin TABLE 3.
Theliquid height used for the experimentswere
1.12m, 1.17mand 1.22m for both columns. The air
at apressure of 1kg/cm? gauge was introduced into
the column, and under steady state condition, read-
ing of manometers attached to the taping were noted
and also the height of liquid in the columnwas aso
noted. Flow pattern was observed visually and it
was bubble and plug according to theincreasing air
flow rate. The experimentswere repeated a number
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of times to ensure the reproducibility of the data.
The temperature was maintained at atmospheric
temperature30+2°C.

The gas holdup for particular gas flow rate is
thefraction of thetotal gas-liquid volumethat isoc-
cupied by the gas. This gas holdup is measured ex-
perimentally by subtracting theinitial liquid volume
from the volume of the gassed system and dividing
this difference by the volume of the gassed system
as expressed by the following expression,

K~
f.: V

£

(2
RESULTSAND DISCUSSION

Figures 3-5 show the effects of different param-
eters on gas holdup. The gas holdup increases with
increasing gas flow rate. As bed height increases
the gas hol dup decreases compareto the smaller bed
height and is due to bubbles coalescence to form
bigger sized bubbleswhich arefound to concentrate
in the central core of the column and it rise quickly
through theliquid. With increasing SCM C concen-

16

tration the effective viscosity of theliquidincreases,
this decreases the gas holdup, and is due at higher
concentration dense medium will tend to suppress
and coal escence the bubblesto form bigger bubbles.
Withincreasing the distributor hole diameter the gas
holdup decreases due to bigger size bubble genera-
tion.

Perfor mance of theANN

Range of variables investigated is show in
TABLE 4. Initidly the total data of 646 was ran-
domized. The 90% of the dataare used for training
and 10% for testing. The synapse that connects a
hidden layer to the input layer adjusts the weights
and learning rate. It isaways desired that the num-
ber of processing elementsin the hidden layer must
be kept at a minimum to reduce the complexity of
network. Hence one hidden layer isused. The num-
bers of nodes in the hidden layer were selected by
varying the nodes from 5 to 25, each case the mean
squareerror (M SE) was cal cul ated and then by com-
parison of minimum M SE va uethe number of nodes
are selected. Figure 6 shows the variation in MSE
with the number of nodes. The optimum number of
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Figure 3 : Variation of gas holdup with the gas flow rate
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Figure 4 : Variation of gas holdup with the gas flow rate as the SCMC solution concentration as parameter
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nodesisthat nodewheretheMSE isminimum. These  optimum numbersof node are used for theanalysis.
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TABLE 4 : Range of variables investigated

M easurement type

Range

Q,, Gasflow rate, m*/s

pi, Density of liquid Kg/m®

o, Surface tension, N/m
K'Consistency index, Ns"/m?

n, Flow behaviour index

D., Diameter of column(log mean), m
D, Distributor hole diameter, m

Ho, Clear liquid height, m
H,Gas-liquid mixture height in the column, m
0, Taper angle(deg)

&g,Gas hold-up(dimensionless)

0.0000058< Q, <0.00046154
1001.69< p, <1003.83
0.07834< o, <0.0832
0.0138< K'<0.6486
0.6015< n'<0.9013
0.0605<D<0.0710
0.00277< D, <0.00436
1.12<Hy< 1.22
1.13<Hpn <14
0.44 and 0.86
0.00813< ¢, <0.138462

The output is generated by using the transfer func-
tion 5 and compare with the desired output. The er-
ror passes to backpropagation for corrective adjust-
ment of synaptic weight of network for training. The
backpropagation process propagatesthe errors back-
ward through the network and allows adaptation of
hidden processing element and a closed-loop con-
trol systemis thus established. The weights are au-
tomatically adjusted using a gradient-descent-based
algorithm.

The performance of the network is checked by
calculating mean square error (MSE), average ab-
soluterelative error (AARE), standard deviation (o),
cross-correlation coefficient (R) and Chi-sgquare test
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The chi-square test was performed to find the
best-fit network moddel when the values of cross-
correlation coefficient are close to each other. The

minimum value y? give best model.

Input parameter sarethe physical and operating
variables of the system

Gas holdup is expressed as a function of liquid
and gas physical properties, geometric variables of
the system and dynamic variables. The operating
variables include the gas flow rate, Q, density of
liquid, p,, surface tension of the liquid, o,, consis-
tency index, K, flow behavior index, n, log mean
diameter of column, D_, gas-liquid mixtureheightin
the column, H_, distributor hole diameter, D , the
taper angle of the column, 6. Other parameterslike,
density of air, number of holesinthedistributor plate
and the accel eration dueto gravity are not the input
parameter in ANN asthey are constant in all cases.
The diameter of the column was calculated by first
calculating the equivalent diameter of the base and
at the gas-liquid interface, then calculates the log
mean diameter, D, of the column. Hence, for each
gas flow rate the diameter, D, varies according to
the height of the gas-liquid interface. The range of
variables investigated is shown in TABLE 4. For
this system the optimum result was achieved using
2000 epochs for training. The gradual decrease of
the value of average M SE as shown in Figure 6 in-



ChemXpress 8(2), 2015

0.00007

0.00006

0.00005

0.00004

0.00003

0.00002

Minimum Value of MSE for Training

0.00001

0.00000

System Transfer function
b —O0— 1

—0o—

2
H—A— 3
4

——

15 20

25

Number of Nodes in Hidden Layer
Figure 6 : Variation of MSE with the number of nodesin hidden layer

TABLE 5 : Performance of best neural network for testing in gas holdup
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M easur ement tvpe Transfer Transfer Transfer Transfer
yp function 1 function 2 function 3 function 4
AARE 0.1001 0.095332 0.100901 0.120589
SD(o) 0.11425 0.114004 0.10781 0.10925
MSE 0.0000288693 0.0000276932 0.0000440029 0.10925
CCC(R) 0.97284 0.9713 0.97441 0.95798
N 0.035501 0.03953 0.035601 0.049578
Optimum no. qf processing el ements 14 19 20 20
in hidden layer
o1 o
onafF °
s
noaf 5 o 3 o
Q
20w © i G
2 o,/ ©
ﬁ =]
g 0.0e
B
§ o0& =
004 o g
Q0
ooafF < 08 OCP
002 e
D.IEIE D.::G D.EIA D.:’.iS D.:iS D.:"}F D.:’_IS D.iZB D.l1

Experimental gas holdup

Figure 7 : Comparison of gas holdup for the prediction
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dicatesthat thetraining procedureisaccurate enough.
The training is acceptable as the cross-correlation
coefficient (R) obtained 0.9917.

TABLE 5 represents the performance of the ar-
tificial neural network for prediction of the gas
holdup for different transfer functionsused in ahid-
den layer after optimization. These comparisons
prove the effectiveness of the artificial neural net-
work analysis. For the holdup prediction the cross-
correlation coefficient, R value is greater than 0.97
for al four different transfer functions used in the
hidden layer. Hence, all the transfer functions used
is acceptable for the prediction of the gas holdup.
The chi-sguare test was performed to find the best
transfer function to be used in future for the predic-
tion of the gas holdup. The chi-square test results
areshownin TABLE 5 and it confirmsthat the best
network isthe transfer function 1 with 14 process-
ing elements in a hidden layer. Figure 7 shows the
comparison between the experimental to the predicted
outpuit.

CONCLUSIONS

The gas holdup were measured in two different
tapered bubble columns using non-Newtonian lig-
uids. The effects of gas holdup on different operat-
ing parameters were investigated. An applicability
of artificial neural network model using multilayer
perceptron with backpropagation a gorithm was used
to predict the gas holdup. The ANN model accu-
rately predicts the gas holdup. The chi-square test
confirms that the transfer function 1 with 14 pro-
cessing elementsin ahidden layer gives better pre-
dictability.

Nomenclature

consistency index, Ns'/m?

log mean diameter of column, m

hole diameter in the distributor, m
acceleration due to gravity, m/s?

gas-liquid mixture height in column, m

total number of data set

cross-correlation coefficient (dimensionless)
experimental value of gas holdup (dimension-
less)

o

=

3

X DWZ2TQ OOR

y predicted vaue of gas holdup (dimensionless)
n flow behaviour index(dimensionless)
Q, gasflow rate, m3/s

Greek letters

6  taper angleof thecolumn

¢ gashold-up, dimensionless

p, denstyof liquid, Kg/m®
surfacetension, N/m

o  standard deviation (dimensionless)
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