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ABSTRACT

This model is comprises of a system of time-independent reaction-diffu-
sion equations describing steady state of a chemical process that in-
volves three species: two reactions and diffusion. The system of equa-
tions coupled with the non-linear reaction terms with mixed Dirichlet and
Neumann boundary conditions. A closed form of an analytical expression
of concentrations for the full range of enzyme activities has been derived
using Homotopy Perturbation method. A simple approximate analytical
expression of concentrations in terms of dimensionless parameter  is
also reported. These analytical results are compared with numerical re-
sults (MATLAB Programme) and are found to be in good agreement.
 2010 Trade Science Inc. - INDIA

INTRODUCTION

We consider a classical chemical reaction between
two species A and B to form a product, according to
the reaction mechanism 2A + B  product. We model
the transport inside the membrane as diffusive, thus the
model will be given by a system of reaction-diffusion
equations that are coupled with the non-linear reaction
terms. The reaction path consists of a coupled pair of
irreversible simple reaction[1].
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
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

(1)

where and are the binary reaction rates. The rigor-
ous singular perturbation analysis for the steady-state
problem was provided by Seidman and Kalacheve[2,3].

The corresponding time dependent system of this prob-
lem has been considered by Haario Seidman[4], for the
boundary conditions of a quite different type, to de-
scribe reactions in the film model for a gas/liquid inter-
face. Also the steady state problem has many impor-
tant applications, in chemical engineering modeling.
Recently, Butuzov et al.[5,6] have solved some related
problems of exchange of stabilities using different tech-
niques (upper and lower solutions). However, to the
best of author�s knowledge, no general analytical re-
sults of substrate concentration for all values of dimen-
sionless parameter  have been published. The pur-
pose of this communication is to derive approximate
analytical expressions for the steady-state concentra-
tions for all values of  using Homotopy Perturbation
method.
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Mathematical formulation of the problem and
analysis

The covering nonlinear reaction diffusion equation
in the membrane is expressed in the following non-di-
mensional format[1]:
u

xx
 = uv + uw (2)

v
xx

 = uv (3)

w
xx

 = uw - uv (4)

where u(x), v(x) and w(x) denote the concentrations of
the chemical species, A, B, and C respectively. The
diffusion coefficient of three species is considered to
have an equal diffusion coefficient which is equal to 1.
We assume that the specie A is supplied with a given
fixed concentration >0 at x = 0, and the specie B with
>0 at x = 1. Boundary conditions are
u=; v

x
=0; w= at x= 0 (5)

u
x
 = 0; v=; w

x
=0 at x= 1 (6)

Due to the appearance of the large factor >>1 is
one of the terms in each reaction-diffusion equation.
The equations have features of singularly perturbed
problems[1].

Solution of boundary value problem using HPM

Recently, many authors have applied the HPM to
various problems and demonstrated the efficiency of
the HPM to hand non-linear structure and solve vari-
ous physics and engineering problems[7-10]. This method
is a combination of Homotopy in topology and classic
perturbation techniques. Ji-Huan He used the HPM to
solve Lighthill equation[11], Duffing equation[12], then the

idea goes through and has been used to solve non-lin-
ear boundary value problems[13], Emden-Flower type
equations[14] and many other problems. These wide
varieties of applications show the power of the HPM in
solving functional equations. The HPM is unique in its
applicability, accuracy and efficiency. The HPM[15] uses
the imbedding parameter p as a small parameter and
only little alteration is needed to search for an asymp-
totic solution. Recently, Eswari et al.[16] derived the ap-
proximate analytical expressions for the substrate hy-
drogen peroxide concentrations and current for the non-
linear Michaelis-Menten kinetic scheme in a system of
coupled non-linear reaction-diffusion equations using
the Homotopy Perturbation method. Meena et al.[17]

presented the approximate analytical expressions for
the substrate and mediator concentrations for the non-
linear reaction-diffusion processes of conducting the
polymer modified ultra microelectrodes exhibits the
spillover using the Homotopy Perturbation method.
Using this method[18], we can obtain the following solu-
tion to the equations (2) to (4) (Appendix A).

xxx
2
1

x
2
1

)x(u 22
 (7)


2
1

x
2
1

)x(v 2 (8)

and

xxx
2
1

x
2
1

)x(w 22
 (9)

The eq. (7) to (9) represent the new analytical ex-
pression of concentration of species for all values of

Figure 2 : Normalized steady-state concentration v. The con-
centrations were computed using eq. (8) for various values of
the dimensionless parameter . (-) denotes eq. (8) and (+)
denotes the numerical simulation

Figure 1 : Normalized steady-state concentration u. The con-
centrations were computed using eq.(7) for various values of
the dimensionless parameter . (-) denotes eq. (7) and (+)
denotes the numerical simulation
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dimensionless parameter. The reaction rate q is given
by



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
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uvq

2

22

(10)

Numerical simulation

The nonlinear differential eq. (2-4) are also solved
by numerical methods. The function bvp4c in MATLAB
software which is a function of solving two-point bound-
ary value problems (BVPs) for ordinary differential
equations are used to solve these equations. Its numerical
solution is compared with Homotopy Perturbation
method and it gives a satisfactory agreement (Figure 1-
6). The MATLAB program is also given in appendix B.

DISCUSSION

Figure 1 represents the normalized steady-state con-
centration u(x) for different values of dimensionless pa-
rameter  = 0.0001, 0.001, 0.01. From this figure, it is
evident that the values of the concentration decreases
when dimensionless parameter  increases for  = 1.6,
 = 0.8 and  = 0.01. Figure 2 shows the normalized
steady-state concentration v(x) versus the dimension-
less distance x for various values of dimensionless pa-
rameter . From this figure, it is obvious that the values
of the concentration increases when dimensionless pa-

rameter  decreases for = 1.6,  = 0.8 and  = 0.01.
The normalized steady-state concentration w(x) versus
the dimensionless distance x for various values of di-
mensionless parameter  is plotted in figuer 3. In this
figure, it is inferred that the value of the concentration
decreases when the diffusion parameter  decreases.
Figure 4, 5 and 6 show the dimensionless reaction rate
q using eq. (10) for all values of . Thus, it is concluded
that there is a simultaneous increase in the values of the
reaction rate as well as in  for the fixed value of   =
1.6,  = 0.8  and  = 0.01.

CONCLUSIONS

The time independent non-linear reaction-diffu-
sion equation in membrane has been formulated and
solved analytically and numerically. Analytical expres-
sions for the concentrations are derived by using the
HPM. The primary result of this work is simple ap-
proximate calculations of concentration for all values
of dimensionless parameter . The HPM is an ex-
tremely simple method and it is also a promising method
to solve other non-linear equations. This method can
be easily extended to find the solution of all other non-
linear equations.
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APPENDIXES

Appendix A

In this Appendix, we indicate how eqns. (7), (8)
and (9) in this paper are derived. To find the solution of
eqns. (2), (3) and (4), it can be simplified to (Ariel,
2010)

0uwuv
dx

ud
2

2

 (A1)

0uv
dx

vd
2

2

 (A2)

0uvuw
dx

wd
2

2

 (A3)

Now the boundary conditions becomes

x = 0, u = , 0
dx
dv

 , w =  (A4)

x = 1, 0
dx
du

 , v =, 0
dx
dw

 (A5)

We construct the Homotopy as follows

0uwuv
dx

ud
p

dx

ud
)p1(
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2

2
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
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
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 (A6)
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
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




 (A8)

The approximate solution of (A1) and (A2) and
(A3) is,
u = u

0
 + pu

1
 + p2u

2
 + �.. (A9)

v = v
0
 + pv

1
 + p2v

2
 + �.. (A10)

w = w
0
 + pw

1
 + p2w

2
 + �.. (A11)

The initial approximations are as follows
u

0
(0) =  and u

0,x
(1) = 0 (A12)

u
i
(0) = 0 and u

i,x
(1) = 0, i = 1,2� (A13)

v
0
(0) =  and v

0,x
(0) = 0 (A14)

v
i
(1) = 0 and v

1,x
(0) = 0, i = 1,2� (A15)

w
0
(0) =  and w

0,x
(0) = 0 (A16)

w
i
(0) = 0 and w

i,x
(1) = 0 (A17)

Substituting eq. (A9) to (A11) into eq. (A6) to (A8)
we have
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Figure 6 : Dimensionless reaction rate q versus the dimen-
sionless distance x for the value of dimensionless parameter
 = 109, when  = 1.6,  = 0.8,  = 0.01

Figure 5 : Dimensionless reaction rate q versus the dimen-
sionless distance x for the value of dimensionless parameter
 = 106, when  = 1.6,  = 0.8,  = 0.01
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Comparing the coefficients of like powers of p in
eq. (A18) we get

0
dx

ud
:p

2
0

2
0  (A21)

0wuvu
dx

ud
:p 00002

1
2

1  (A22)

Comparing the coefficients of like powers of p in
eq. (A19) we obtain

0
dx
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2
0

2
0  (A23)

0vu
dx

vd
:p 002

1
2

1
 (A24)

comparing the coefficients of like poser of p in eqn.
(A20) we have

0
dx

wd
:p

2
0

2
0  (A25)

0wuvu
dx

wd
:p 00002

1
2

1  (A26)

Solving the eq. (A21)-(A26) and using the bound-
ary conditions (A12)-(A17), we can find the following
results:
u

0
 =  (A27)

xxx
2
1

x
2
1

u 22
1  (A28)

v
0
 =  (A29)


2
1

x
2
1

v 2
1 (A30)

w
0
 =  (A31)

xxx
2
1

x
2
1

w 22
1  (A32)

According to the HPM, we can conclude that

10
1p

uu)x(ulimu 
 (A33)

10
1p

vv)x(vlimv 
 (A34)

10
1p

ww)x(wlimw 
 (A35)

After putting eq. (A27) and (A28) into eq. (A33)
and eq. (A29) and (A30) into eq. (A34) and eq. (A31)
and (A32) into eq. (A35), we obtain the equations (7),
(8) and (9) in the text.

Appendix B

function pdex4
m = 0;
x = linspace(0,1);
t=linspace(0,100000);
sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3=sol(:,:,3);
Figure
plot(x, u1(end,:))
title(�u

1
(x, t)�)

xlabel(�Distance x�)
ylabel(�u

1
(x, 2)�)

%
Figure
plot(x, u

2
(end,:))

title(�u
2
(x, t)�)

xlabel(�Distance x��)
ylabel(�u

2
(x, 2)�)

%
Figure
plot(x, u

3
(end,:))

title(�Solution at t = 2�)
xlabel(�Distance x�)
ylabel(�u

3
(x, 2)�)

%
function [c, f, s] = pdex4pde(x, t, u, DuDx)
c = [1; 1; 1];
f = [1; 1; 1] .* DuDx;
y = u(1) * u(2);
y

1
=u(1)*u(3);

=1.6;
=0.01;
=0.8;

lamta=0.0001; % parameters
F =(-lamta*y-y1);
F

1
=(-lamta*y); % non linear terms

F
2
=(lamta*y-y

1
);

s=[F; F
1
; F

2
];

%
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function u
0
 = pdex4ic(x);

%create a initial conditions
u

0
 = [0; 1; 0];

%
Function [pl, ql, pr, qr] =pdex4bc(x

l
, u

1
, x

r
, u

r
, t)

%create a boundary conditions
p

l
 = [u

1
(1)-1.6; 0; u

1
(3)-0.01];

q
l
 =[0; 1; 0];

p
r
 = [0; u

r
(2)-0.8; 0];

q
r
 = [1; 0; 1];

Appendix C
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Nomenclature

Symbol Meaning 

u Concentration of the chemical species A 

V Concentration of the chemical species B 

w Concentration of the chemical species C 

 Dimensionless parameter 

X Dimensionless distance 

 Fixed concentration of the specie A 

 Fixed concentration of the specie B 

 Fixed concentration of the specie C 

q Dimensionless reaction rate 


