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ABSTRACT

Analytical expression of current in rapid photolytic processes at a planar
electrode is derived. The model is based on non stationary diffusion
equation containing a non-linear term related to flash photolytic pro-
cesses. Thederivationisgiven for aplanar electrode. An excellent agree-

ment with the previous analytical results is noted.
© 2007 Trade Sciencelnc. - INDIA

INTRODUCTION

Nor+linear reection-diffuson mode sand their sudy
ariseinvariouscontexts. Among them mention may be
made of polymer modified ultramicroe ectrodes?, ho-
mogeneous mediated enzyme catd yzed reaction’, dec-
trodes modified with multi layered enzyme system®®,
€l ectrodes modified with nanostructure porousfilmi4,
and rapid photolytic processes®>™ etc. Thereforethese
mode shave been thesubject of intensetheoreticd, nu-
merica and experimental study over the past decades.
Intheaboved | fidds, thedimensionlessnon-linear re-
actiondiffusonequationis

C
Z—T =V?C-¢(C) o
where C representsthe dimens onless concentration of
theelectro active species, T representsthedimension-
lesstime and ¢(C) representsthe homogeneousreac-
tion term generaly polynomial in the concentrations
(whichisnon-linear in concentration). Most non-linear
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differentia equationsaredifficult to solveindaosedform.
Itisvery difficult to obtain the exact solution to most
non-linear differential equation. Moreover, even when
closed-form solutionisknown, it may be so compli-
cated that itsqualitative propertiesare obscured. Thus,
for most non-linear differentia equationsitisnecessary
to haverdiabletechniquesto determinethe approxi-
mate behavior solutions.

InMichadis-Mentenkinetics, thenon-linear termis

KC

9(C)= 110G 2

When o«cC<1, non-linear termin the above equa-
tionsisapproximately equal to KC. When ««C<1, the
non-linear term can bewritten asK/o.. Thismodel is
compl etely discussed in*89, We have discussed!®19
someof thereaction diffusion equationswhen
9(C)=a,C 3

In photolytic process”, the non-linear reaction
termis
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9(C) = a,C? 4
In Birk - Perone system® (rapid photolytic pro-

cesses) thereactionsare

A+e—B

2A - prod

Chronoamperometry has been employed as a
method for monitoring intermediatesgenerated by flash
photolysig51113 and has been applied successfully to
the determinations of several photochemica mecha-
nismg*3%4. The application of € ectro-chemical tech-
niquesfor thestudy of trans ent photolytic reactionswas
prompted by the observation that most photochemical
processes appear to involve free radical and other
electroactiveintermediates™. Furthermore, it appeared
that many photol ytically-induced chemica processes
weresimilar to electrolytic dly-induced chemical pro-
cessed*¥. Thus, not only could electrochemical tech-
niques beapplied to the study of photol ytic intermedi-
ates, but their quditative characterization couldbesm-
plified by purely e ectrochemica studiesof thechemi-
cal processesin question. Furthermore, € ectrochemi-
cal measurements have severa analytical advantages
for photolysisstudies: sensitivity isavailablefor dilute
concentrations of awiderange of compounds; nearly
thesamedetection limit existsfor dl eectroactive com-
pounds, since response depends primarily on mass
transfer; and time-resol ution in the microsecond range
isavailabll,

Most pertinent to thework reported herearethe
studiesof Berg*® who hasapplied polarized el ectrode
techniquestothe study of flash photolytic processesin
solution. Berg’s approach has been primarily explor-
atory and hasinvolved conventional polarographicin-
Strumentation and technique. Inaddition, hehasreported
the observation of transient photo-product currents
during thedrop-lifeof individua dropsat thedropping
mercury electrode. Thus, hisstudiesof rapid kinetics
haveinvolved anadysisof current-timebehavior a indi-
vidua expanding mercury drops. Thisquantitative ap-
proach wasadmittedly inaccurateand insengitive, how-
ever, because of thegenera difficulty in developing
theory for kinetic currents at the dropping el ectrode,
and becauseof theadditional complicationsof handling
second-order kinetic processes.

Both Berg and Schweiss™™ and Peroneand Birk®

©)
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havedemongrated thegenerd gpplicability of dectroana
lytical techniquesto the study of photol ytic processes.
Quditativeinformation hasbeen obtained from current-
potentid plotswith thepolarographictechniqueusing con-
tinuousirradiation™, and with the stati onary-electrode
potentiostatic technique using flashirradiation. Rate
datahave been obtained by avariety of techniqueswhich
haveincluded time-delayed potentiostatic andysis'Y,
classicd kingticandys§*¥, and theoreticd eectrochemi-
cd kinetic-diffusonstudies?.

Anandytica solutionfor thisproblemwasfirst a-
tempted by Birk and Perone®™, who however oversm-
plified their assumption™. But thisresult wasincorrect
and waslater corrected by Britz and Kastening®®. Britz
and Kastening® presented arigorousderivation of the
solution to the problem for various el ectrode geom-
etriesintheform of infinite series. The purposeof this
communicationisto deriveaclosed formof andytica
expression of current at planar electrodefor theelec-
trochemica monitoring of asecond order decay of radi-
casgenerated by flash photolysisor pulseradiolysis.

Mathematical for mulation of theproblem

Mathematicaly, thesituationinvolving kineticsand
diffuson at aplanar dectrode can bedescribed by Fick’s
lavg®

ac(x,t) _ D620(x,t)
ot ox?

Here x isthedistancefrom the electrode, tisthe
timeafter Aisinitialy produced around the el ectrode,
whichisbeing held at constant potential and k isthe
rate congtant of thehomogeneouschemicd reactionand
c(x, t) isthe concentration of A at x and t. Britz and
K asteningP presented aconci se discussion of the math-
ematical formulation of thisproblem for planar elec-
trodewhichissummarized briefly herefor complete-
ness. Theinitia and boundary conditionsare

—2kc?(x,t) (6)

c(x,0)=c* x>0
c(0,t)=0 t>0 7
lim,_,, c(x,t)=c* /(1+ 2ktc*)

Therequired expression of thecurrent i

oC
i, =nFAD| — 8
k=" (axjx_o ®

where 1 is the number of moles of electrodesinvolved in the
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Figurel: Current at planar electrodefor variousvalues
of z(z=0to0 z=0.9091)

oxidation or reduction of one moleof theradical, Fisthe Fara-
day constant, A isthe area of the electrode and D isthe diffu-

sion coefficient. Normalizing al the variables as usual, the
non-linear diffusion egn. (6) becomes

oC(X,T) _ 9°C(X,T)

-KC3(X,T 9
o PV (X,T) ©)
where K=2kc*t. Now the initial and boundary conditions are
C(X,00=1

limy 0 C(X,T)= (1+KT)™t

Birk and Perone® was found the solution of this
problemfirst time and themorerigorous solutions (cur-

rent only) wasfound to be®®

i 0
=Y a7 (1)
k=0 n=0
i,_o =NFADC,/~/nDt (12)
9=2kc*t=KT and z=0/(1+0) (13)
o = 1,0 = -0.72676,a, = —0.18997, a5 = —0.05434,
oy = —0.01731, 05 = —0.00622, aug = —0.00254,
a7 = -0.00117, 0 = —0.00061, a9 = —0.00034, (14)

a10 = —0.00021, 0114 = —0.00053

Usngthefirst seventermsof theegn. (11), thePade
approximant(seeappendix A) can easily be constructed
as

i 2 3
'« _[Po+PiZ+pyz°+pgz
ikco | 14012+ 0,2% +q3Z°

(15)

Thenumerical vauesof p-p,andg,-q, arep =1, p,=-1.9767,
p,=1.1853, p,=-0.2086 0, =-1.2499, ¢, 0.4669 and q,=-0.0524.
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Figure2: Current at planar electrodefor variousvalues
of z(z=0.9524 10 z=0.9901)

Consequently

i, |1-1.9767z+1.1853z° - 0.20862°
1-1.24997 + 0.4669z2 — 0.0524z°

. (16)
lk=0
Thisisasmpleclosed formof andyticd expresson
of the current for photolytic reaction at aplanar elec-
trode. Theaccuracy of the Padegpproximetion egn. (16)
wastested by comparison with rigorousegn.(11) and
other andyticd results(Refer figure Landfigure2). which
was computed for awiderangeof zvalues.

RESULT AND DISCUSSION

Much work has been carried out on the electro-
chemical observation of asecond order decay of radi-
calsgenerated by flash photolysisor pulseradiolysis.
Birk and Perone® derived an approximate expression
of current (Egn (17)) at aplanar electrode

i1 1 1
i_o 1+2kcot 1+kt 1+0 )
=1-z

Egn. (17) involvesthe assumption that the current
at the electrodeis smaller than the current in the ab-
sence of decay by the samefactor asthat by whichthe
bulk concentration hasdecreased in the solution!®. Britz
and Kastening® obtai ned therigorous derivation of the
current (Egn. (11)) inform of infinite series. Britzand
Kastening!® al so reported the gpproximate expression
(Egn. (18)) for current at aplanar electrode.

P 1 1z
i, 1+0.726809 1-0.2732z

(18)
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TABLE 1: Current at planar dectrodefor different valuesof z

i 16] i 6]
y4 Brelazn.e(tlil). Pade appro. egn.(16) (upto%trhl tf;tm%léqn. (11) Eqn.(17) Eqgn.(18)

0 0 1.00000 1.0000 1.00000 1.0000 1.0000
0.5 0.3333 0.734412 0.734391 0.734413 0.6667 0.7335
1.0 0.5 0.581006 0.580968 0.581019 0.5000 0.5791
5.0 0.8333 0.218699 0.218634 0.219339 0.1667 0.2158
10.0 0.9091 0.123056 0.12301 0.124352 0.0909 0.1209
20.0 0.9524 0.06566 0.065635 0.067563 0.0476 0.0644
30.0 0.9677 0.044859 0.044842 0.047032 0.0323 0.0439
40.0 0.9756 0.034008 0.033995 0.036333 0.0244 0.0333
50.0 0.9804 0.027377 0.027367 0.029800 0.0196 0.0268
60.0 0.9836 0.022941 0.022932 0.025430 0.0164 0.0224
70.0 0.9859 0.019744 0.019737 0.022283 0.0141 0.0193
80.0 0.9877 0.017238 0.017231 0.019815 0.0123 0.0169
90.0 0.9890 0.015425 0.015419 0.018031 0.011 0.0151
100.0 0.9901 0.013889 0.013884 0.01652 0.0099 0.0136

Theaveragerelative error between the Britz and
Kastening’s infinite series expansion and the eqn.(18)
(Birk and Perone®) is 1.61% where astherelative er-
ror between the egn.(11) and egn.(17) is 21.76%.
Among the above three approximations egn.(16),
eqgn.(17), egn.(18), our Pade approximationisagood
approximation to therigorousinfiniteseriesegn.(11).

CONCLUSION

Pade approximants aretypically used when there
aresomeunknown coefficientsinthefunction f(z) egn.
(11). Britz and K astening!® have computed the coeffi-
cientsof current function egn.(11) by laborious math-
ematical technique. Pade approximation can be con-
structed using thefirst few coefficientsin the power se-
riesexpans on, but they arenot necessarily getting smal,
and we have no ideawhere(or whether) the power se-
riesisconvergent. Here the Pade approximant coeffi-
cients(p,-p,,9,-d,(upto 7terms)) areeasily calculated
from the seven coefficients(a,-a,) of power seriesex-
pansion (seeappendix A).

In the TABLE 1 we have compared the Padé ap-
6
proximation and the seven termsLnZ%)“nZ”J of theequa-

tion(11) with complete power seriesexpansonegn. (11).
Theaveragerdativeerror between our Pade gpproximant
and Britz and Kastening’s'® infinite series expansion
egn.(11) is0.029% where asthe averagere ative error
between Britz and Kastening’s® infinite series

6
expansion(Eqgn.(11)) and upto 7" term [%ﬂnznj of the

seriesis 7.09%. Notethat both theva uesderived from
thesameseven origind coefficient(a-a,) vaues. Hence
thefirst seventerms, converted to aPade approximant,
gives aremarkable good representation of the whole
current functionfor dl valuesof z. Hence Pade approxi-
mation isaclosed, an accurateand apowerful butinthe
end till mysteriousmathematica technique. By aproper
transcription of variables, the methodol ogy will beex-
tended to agtationary sphere, expanding planeand drop-
ping mercury electrode®.

Appendix-A

A Padeapproximant isarational function approxi-
mati on whose power seriesexpansion agreeswiththe
giveninfinite power seriesto thehighest possibleor-
der*”. Let

f(2)=Y o7 (AD)
i=0

beaformal given power series. Let mbeanon-nega

tiveinteger. Thelm/m] Pade approximant of f(z) isthe

uniquerationd functionsR(z),

Po+P1Z+PZ% + . +p,z" ] 2

R(z)= 5
1401240952 + e +0,Z

Noticethat inegn. (A2), thereare m+1 unknown
numerator coefficientsand munknown denominator co-
efficients. In order tofind the coefficientsp and g, we
may write:

A Tndéan W
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R(2) ~f(2),
Po+P1Z+PoZ% + o+ Pz = (L+ Q12+ 2% + ... + qz™) (A3)
(a0+alz+a222+ ...... )

Equating the coefficients of corresponding powers
of Z (i=m+1to2m) wefind

010m + 001+ 0g0m_2 + -t Oy =0

o0y +Aalm_1 +%40m_2 + -+ O =0
%20m + %3Gm-1 % %4Gm-2 m+2 (Ad)

OmOm + Oy 1Gm-1 + Om 20m-_2 + -+ 0oy 10y + 0oy, =0

Theabove set of m equations (Egn. (A5)) can be
writtenas

Qm Om Qm - Oy °[} Om+1

Om+1 Om+1 Olmsg . Om+1 || Q2 Om+2
B N 7

Wom-1 Oom-2 Oom-3 - Qm Om Oom

_ — qar _

a1 On Ompq Omo - Og Olm+1

a2 On+1 Oy Omg ... O Om+2
(A6)

Am Oom-1 Oym-2 ®2m-3 -+ Om ®om

Fromwhichwe can ca culatethevaluesof ¢’s(i=1
tom).Thedenominator coefficientsp, p, ~ p, follow
fromegn.(A3) by equatingthecoefficients 1, z, 7%,..., z™

Po=0ag

P1=0ad1+a;
P2=0gq2+a1q; +az
P3=0agdz+aqz +axq; +ag

(A7)

Pm =000m + 10m_1 +Aqm_2 + ...+ Oy

Thusfrom egns.(A6) and (A7) wedeterminethe
Pade numerator and denominator and these equations
are called the Pade equations. We have obtained an
[m/m] Pade approximant which agreeswith egn.(A1)
through order z™™.
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