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INTRODUCTION

Non-linear reaction-diffusion models and their study
arise in various contexts. Among them mention may be
made of polymer modified ultramicroelectrodes[1], ho-
mogeneous mediated enzyme catalyzed reaction[2], elec-
trodes modified with multi layered enzyme system[3],
electrodes modified with nanostructure porous film[4],
and rapid photolytic processes[5-7] etc. Therefore these
models have been the subject of intense theoretical, nu-
merical and experimental study over the past decades.
In the above all fields, the dimensionless non-linear re-
action diffusion equation is

)C(C
T
C 2
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where C represents the dimensionless concentration of
the electro active species, T represents the dimension-
less time and (C) represents the homogeneous reac-
tion term generally polynomial in the concentrations
(which is non-linear in concentration). Most non-linear
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ABSTRACT

Analytical expression of current in rapid photolytic processes at a planar
electrode is derived. The model is based on non stationary diffusion
equation containing a non-linear term related to flash photolytic pro-
cesses. The derivation is given for a planar electrode. An excellent agree-
ment with the previous analytical results is noted.
 2007 Trade Science Inc. - INDIA

differential equations are difficult to solve in closed form.
It is very difficult to obtain the exact solution to most
non-linear differential equation. Moreover, even when
closed-form solution is known, it may be so compli-
cated that its qualitative properties are obscured. Thus,
for most non-linear differential equations it is necessary
to have reliable techniques to determine the approxi-
mate behavior solutions.

In Michaelis-Menten kinetics, the non-linear term is

    
C1

KC
)C(


 (2)

When C<1, non-linear term in the above equa-
tions is approximately equal to KC. When C<1, the
non-linear term can be written as K/. This model is
completely discussed in[18,19]. We have discussed[8-10]

some of the reaction diffusion equations when
C)C( 1 (3)

In photolytic process[7], the non-linear reaction
term is
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2C)C(  (4)

In Birk - Perone system[5] (rapid photolytic pro-
cesses) the reactions are

prodA2

BeA


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(5)

Chronoamperometry has been employed as a
method for monitoring intermediates generated by flash
photolysis[5,11,12] and has been applied successfully to
the determinations of several photochemical mecha-
nisms[13,14]. The application of electro-chemical tech-
niques for the study of transient photolytic reactions was
prompted by the observation that most photochemical
processes appear to involve free radical and other
electroactive intermediates[11]. Furthermore, it appeared
that many photolytically-induced chemical processes
were similar to electrolytic ally-induced chemical pro-
cesses[11]. Thus, not only could electrochemical tech-
niques be applied to the study of photolytic intermedi-
ates, but their qualitative characterization could be sim-
plified by purely electrochemical studies of the chemi-
cal processes in question. Furthermore, electrochemi-
cal measurements have several analytical advantages
for photolysis studies: sensitivity is available for dilute
concentrations of a wide range of compounds; nearly
the same detection limit exists for all electroactive com-
pounds, since response depends primarily on mass
transfer; and time-resolution in the microsecond range
is available[11].

Most pertinent to the work reported here are the
studies of Berg[15] who has applied polarized electrode
techniques to the study of flash photolytic processes in
solution. Berg�s approach has been primarily explor-

atory and has involved conventional polarographic in-
strumentation and technique. In addition, he has reported
the observation of transient photo-product currents
during the drop-life of individual drops at the dropping
mercury electrode. Thus, his studies of rapid kinetics
have involved analysis of current-time behavior at indi-
vidual expanding mercury drops. This quantitative ap-
proach was admittedly inaccurate and insensitive, how-
ever, because of the general difficulty in developing
theory for kinetic currents at the dropping electrode,
and because of the additional complications of handling
second-order kinetic processes.

Both Berg and Schweiss[15] and Perone and Birk[5]

have demonstrated the general applicability of electroana-
lytical techniques to the study of photolytic processes.
Qualitative information has been obtained from current-
potential plots with the polarographic technique using con-
tinuous irradiation[11], and with the stationary-electrode
potentiostatic technique using flash irradiation[11]. Rate
data have been obtained by a variety of techniques which
have included time-delayed potentiostatic analysis[11],
classical kinetic analysis[15], and theoretical electrochemi-
cal kinetic-diffusion studies[3].

An analytical solution for this problem was first at-
tempted by Birk and Perone[5], who however oversim-
plified their assumption[7]. But this result was incorrect
and was later corrected by Britz and Kastening[6]. Britz
and Kastening[6] presented a rigorous derivation of the
solution to the problem for various electrode geom-
etries in the form of infinite series. The purpose of this
communication is to derive a closed form of analytical
expression of current at planar electrode for the elec-
trochemical monitoring of a second order decay of radi-
cals generated by flash photolysis or pulse radiolysis.

Mathematical formulation of the problem

Mathematically, the situation involving kinetics and
diffusion at a planar electrode can be described by Fick�s
laws[6]
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Here x is the distance from the electrode, t is the
time after A is initially produced around the electrode,
which is being held at constant potential and k is the
rate constant of the homogeneous chemical reaction and
c(x, t) is the concentration of A at x and t. Britz and
Kastening6 presented a concise discussion of the math-
ematical formulation of this problem for planar elec-
trode which is summarized briefly here for complete-
ness. The initial and boundary conditions are

*)ktc21/(*c)t,x(c lim
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The required expression of the current is[6]
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where  is the number of moles of electrodes involved in the
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oxidation or reduction of one mole of the radical, Fis the Fara-
day constant, A is the area of the electrode and D is the diffu-
sion coefficient. Normalizing all the variables as usual, the

non-linear diffusion eqn. (6) becomes
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where K=2kc*t. Now the initial and boundary conditions are

1
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Birk and Perone[5] was found the solution of this
problem first time and the more rigorous solutions (cur-
rent only) was found to be[6]
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Using the first seven terms of the eqn. (11), the Pade
approximant(see appendix A) can easily be constructed
as
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The numerical values of p
0
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3
 and q

1
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3
 are p

0
=1, p

1
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p
2
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3
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2=
0.4669 and q

3
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This is a simple closed form of analytical expression
of the current for photolytic reaction at a planar elec-
trode. The accuracy of the Pade approximation eqn. (16)
was tested by comparison with rigorous eqn.(11) and
other analytical results (Refer figure 1 and figure 2). which
was computed for a wide range of z values.

RESULT AND DISCUSSION

Much work has been carried out on the electro-
chemical observation of a second order decay of radi-
cals generated by flash photolysis or pulse radiolysis.
Birk and Perone[5] derived an approximate expression
of current (Eqn (17)) at a planar electrode
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Eqn. (17) involves the assumption that the current
at the electrode is smaller than the current in the ab-
sence of decay by the same factor as that by which the
bulk concentration has decreased in the solution[6]. Britz
and Kastening[6] obtained the rigorous derivation of the
current (Eqn. (11)) in form of infinite series. Britz and
Kastening[6] also reported the approximate expression
(Eqn. (18)) for current at a planar electrode.
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Figure 2 : Current at planar electrode for various values
of z (z =0.9524 to z=0.9901)

Figure 1 : Current at planar electrode for various values
of z (z=0 to z =0.9091)
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The average relative error between the Britz and
Kastening�s infinite series expansion and the eqn.(18)

(Birk and Perone[5]) is 1.61% where as the relative er-
ror between the eqn.(11) and eqn.(17) is 21.76%.
Among the above three approximations eqn.(16),
eqn.(17), eqn.(18), our Pade approximation is a good
approximation to the rigorous infinite series eqn.(11).

 CONCLUSION

Pade approximants are typically used when there
are some unknown coefficients in the function f(z) eqn.
(11). Britz and Kastening[6] have computed the coeffi-
cients of current function eqn.(11) by laborious math-
ematical technique. Pade approximation can be con-
structed using the first few coefficients in the power se-
ries expansion, but they are not necessarily getting small,
and we have no idea where(or whether) the power se-
ries is convergent. Here the Pade approximant coeffi-
cients (p

0
-p

3
,q

1
-q

3
(up to 7 terms)) are easily calculated

from the seven coefficients(a
0
-a

6
) of power series ex-

pansion (see appendix A).
    In the TABLE 1 we have compared the Padé ap-
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tion(11) with complete power series expansion eqn. (11).
The average relative error between our Pade approximant
and Britz and Kastening�s[6] infinite series expansion
eqn.(11) is 0.029% where as the average relative error
between Britz and Kastening�s[6] infinite series

expansion(Eqn.(11)) and up to 7th term 
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series is 7.09%. Note that both the values derived from
the same seven original coefficient(a

0
-a

6
) values. Hence

the first seven terms, converted to a Pade approximant,
gives a remarkable good representation of the whole
current function for all values of z. Hence Pade approxi-
mation is a closed, an accurate and a powerful but in the
end still mysterious mathematical technique. By a proper
transcription of variables, the methodology will be ex-
tended to a stationary sphere, expanding plane and drop-
ping mercury electrode[6].

Appendix-A

A Pade approximant is a rational function approxi-
mation whose power series expansion agrees with the
given infinite power series to the highest possible or-
der[17]. Let

i
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be a formal given power series. Let m be a non-nega-
tive integer. The[m/m] Pade approximant of f(z) is the
unique rational functions R(z),
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Notice that in eqn. (A2), there are m+1 unknown
numerator coefficients and m unknown denominator co-
efficients. In order to find the coefficients p

i
 and q

i
 we

may write:

TABLE 1 : Current at planar electrode for different values of z

 z Britz et al.[6] 
eqn.(11) Pade appro. eqn.(16) Britz et al.[6]  

(upto 7th  term)eqn.(11) Eqn.(17) Eqn.(18) 

0 0 1.00000 1.0000 1.00000 1.0000 1.0000 
0.5 0.3333 0.734412 0.734391 0.734413 0.6667 0.7335 
1.0 0.5 0.581006 0.580968 0.581019 0.5000 0.5791 
5.0 0.8333 0.218699 0.218634 0.219339 0.1667 0.2158 
10.0 0.9091 0.123056 0.12301 0.124352 0.0909 0.1209 
20.0 0.9524 0.06566 0.065635 0.067563 0.0476 0.0644 
30.0 0.9677 0.044859 0.044842 0.047032 0.0323 0.0439 
40.0 0.9756 0.034008 0.033995 0.036333 0.0244 0.0333 
50.0 0.9804 0.027377 0.027367 0.029800 0.0196 0.0268 
60.0 0.9836 0.022941 0.022932 0.025430 0.0164 0.0224 
70.0 0.9859 0.019744 0.019737 0.022283 0.0141 0.0193 
80.0 0.9877 0.017238 0.017231 0.019815 0.0123 0.0169 
90.0 0.9890 0.015425 0.015419 0.018031 0.011 0.0151 

100.0 0.9901 0.013889 0.013884 0.01652 0.0099 0.0136 
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Equating the coefficients of corresponding powers
of zi (i=m+1 to 2m) we find
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The above set of m equations (Eqn. (A5)) can be
written as
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From which we can calculate the values of q
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to m).The denominator coefficients p
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from eqn.(A3) by equating the coefficients 1, z, z2,..., zm:
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Thus from eqns.(A6) and (A7) we determine the
Pade numerator and denominator and these equations
are called the Pade equations. We have obtained an
[m/m] Pade approximant which agrees with eqn.(A1)
through order zm+m.


