An improved total synthesis of (-)-Hyrtiosal from (-)-Sclareol

Jing Wang, Xi-Bo Chen, Si-Kai Hua, Qian-Jia Yuan, Jiangmeng Ren*, Bu-Bing Zeng Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, (CHINA)
E-mail : renjm@ecust.edu.cn; zengbb@ecust.edu.cn
Received: $12^{\text {th }}$ January, 2012 ; Accepted: $\mathbf{6}^{\text {th }}$ February, 2012

Abstract

An efficient total synthesis of (-)-hyrtiosal was accomplished in linear 10 steps from commercially available (-)-sclareol. An acid-catalyzed cyclization of α, β-unsaturated amide successfully constructed the key intermediate Weinreb amide 4 b with bulky N, O-dimethylhydroxylamine group, which benefited the stereoselectivity in the epoxidation of 5 . One-pot reaction involved the rearrangement of epoxide 5 and the thiol protection of aldehyde 6 catalyzed by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was developed to give a 74% yield. This practical synthetic route provided (-)-hyrtiosal on grams scale. © 2012 Trade Science Inc. - INDIA

KEYUORDS

Total synthesis;
(-)-Hyrtiosal;
Acid-catalyzed cyclization;
Weinreb amide; (-)-Sclareol.

INTRODUCTION

(-)-Hyrtiosal 1, embodying the unique structure of hyrtiosane skeleton, was firstly isolated from the Okinawan Marine sponge Hyrios erectus by Iguchi et. al. in $1992^{[1]}$. It also existed in extracts of various sponges ${ }^{[2]}$. The stereochemistry of (-)-hyrtiosal was verified by X-ray crystallography ${ }^{[2 d]}$ and its absolute configuration was confirmed by the sample provided from total synthesis ${ }^{[3 a]}$.

Preliminary pharmacological studies demonstrated that (-)-hyrtiosal had significant cytotoxic activities against KB, Hela and PC12 cell lines ${ }^{[1,2 f]}$. Recently, (-)-hyrtiosal was reported to be a competitive inhibitor of PTP1B $\left(\mathrm{IC}_{50}=42 \mu \mathrm{M}\right){ }^{[4]}$ and HIV-1 intergrase $\left(\mathrm{IC}_{50}\right.$ $=9.6 \mu \mathrm{M})^{[5]}$.

The first total synthesis of (-)-hyrtiosal reported 9 steps ${ }^{[3]}$ from methyl isoanticopalate, which was synthesized from (-)-sclareol in 8 steps ${ }^{[6]}$. Lunardi group also succeeded in synthesizing $(-) /(+)$-hyrtiosal and their C -

16 epimers starting from copalic acid, however, with low $e e$ value ${ }^{[7]}$.

In current research, we developed a concise route to synthesize (-)-hyrtiosal in linear 10 steps from (-)-sclareol. As a key intermediate, compound 4b was synthesized from (-)-sclareol in 4 steps which could be applied in the synthesis of various marine natural diterpene products with a broad spectrum of bioactivity.

Weinreb amide 4 b acted as the key intermediate had several other reasons as well. The introduction of N, O-dimethylhydroxylamine group could improve the stereoselectivity of 5 in epoxidation as well as the Weinreb amide could be directly reduced to the corresponding aldehyde with lithium aluminum hydride (LAH) or diisobutylaluminum hydride (DIBAL-H). Compared with the classic method, this new developed synthetic route has the benefits of shorter reaction sequence as well as the better overall yields.

『й৷ Рарвг

EXPERIMENTALSECTION

General information

Commercially available reagents were used without further purification unless otherwise noted. All the reactions were carried out in oven-dried glass flasks under N_{2} atmosphere at room temperature unless otherwise noted. The following solvents were distilled before used: tetrahydrofuran (THF) was distilled from Na , dichloromethane and toluene were distilled from CaH_{2}. The reaction monitoring was accomplished by TLC on silica gel polygram SILG/UV 254 plates. All yields refer to isolated products. NMR spectra were recorded for ${ }^{1} \mathrm{H}$ NMR at 400 MHz and ${ }^{13} \mathrm{C}$ NMR at 100 MHz using TMS as internal standard on a Bruker AVANCE 400 MHz spectrometer.

N-methoxyl- N-methyl-enantio-labdiene-8(9), 13, 15-saeure-amide (3b)

The solution of diethyl (N-methoxy- N -methylcarbamoyl-methyl) phosphonate ($67.1 \mathrm{~g}, 286$ $\mathrm{mmol})$ in THF (150 mL) was added dropwise to the solution of $\mathrm{NaH}(12.6 \mathrm{~g}, 60 \%$ in mineral oil, 315 mmol) in THF (300 mL) at $0^{\circ} \mathrm{C}$. After it was warmed to room temperature and stirred for 1 h , the reaction was cooled to $0^{\circ} \mathrm{C}$ again and $2(29.5 \mathrm{~g}, 113 \mathrm{mmol})$ in THF (100 mL) was added dropwise. The reaction was quenched with water $(100 \mathrm{~mL})$ after the starting material was consumed. Then, THF was removed under reduced pressure and the residue was extracted with EtOAc (3 $\times 100 \mathrm{~mL}$). The organic layer was washed with brine, dried over MgSO 4 , filtered and concentrated under reduced pressure. Purification of the resulting dark yellow oil by flash chromatography gave $\mathbf{3}$ as a yellow oil ($34.0 \mathrm{~g}, 92 \%$). $[\alpha]^{\mathrm{D}}{ }_{26}=-73.1\left(\mathrm{c} \mathrm{1.88}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{pm}: 6.14$ (s, 1 H), 3.69 (s, 3 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 2.21-2.19 (m, 2H), 2.17 (d, $J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.16-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.99$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86-1.83 (dt, $J=2.5,11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.48(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.97$ (s, $3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta \mathrm{ppm}: 168.3,139.7,128.5,122.6,113.3$, $61.3,51.9,41.9,41.8,39.1,37.0,33.6,33.3,26.5$, 21.7, 20.1, 19.5, 19.0, 18.8; IR (KBr) vcm ${ }^{-1}$: 2939,

1656, 1408, 1099, 997; HRMS m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{2}(\mathrm{M}+1)^{+} 348.2903$, found 348.2902.

N -methoxyl-N-methyl-isocopalamide (4b)

The solution of $\mathbf{3}(9.2 \mathrm{~g}, 2.65 \mathrm{mmol})$ in formic acid $(100 \mathrm{~mL})$ was heated to $80^{\circ} \mathrm{C}$ and stirred for 6 h . Then, the formic acid was removed under reduced pressure and the residue was diluted with EtOAc (100 mL). The organic layer was washed with saturated NaHCO_{3} and brine successively. It was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. Purification of the resulting dark yellow oil by flash chromatography and recrystallized to give 4 b as a white crystal ($6.0 \mathrm{~g}, 65 \%$). $[\alpha]^{\mathrm{D}}{ }_{25}=-29.7(\mathrm{c} 1.06$, CHCl_{3}) $\mathrm{mp}: 111-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) סppm: $5.52(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 3.21$ (s, 3H), 1.97 (bs, 2H), $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 4 \mathrm{H})$, $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$, 0.87 (s, 4H), $0.82(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right)$ дppm: 174.1, 130.1, 123.7, 61.0, 56.7, 55.5, 54.8, 41.9, 41.1, 39.9, 37.7, 37.5, 33.5, 33.2, 31.9, 22.9, 21.7, 21.3, 18.6, 18.5, 15.7, 15.5; IR (KBr) vcm^{-1} : 2927, 1658, 1378, 1005, 863; HRMS m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{2}(\mathrm{M})^{+} 347.2824$, found 347.2822.

N-methoxyl - N - methyl - 12 $\alpha, 13 \alpha$ - epoxy isoanticopal -15-amide (5)

m-CPBA ($8.7 \mathrm{~g}, 80 \%, 40.3 \mathrm{mmol}$) was added to the solution of $4 \mathrm{~b}(7.0 \mathrm{~g}, 20.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250$ mL) at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ after the starting material was consumed. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ $\times 60 \mathrm{~mL}$) and the organic layer was washed with saturated NaHCO_{3} and brine successively. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 30 min , filtered and concentrated under reduced pressure. Further purification with flash chromatography gave 5 as a white solid ($6.6 \mathrm{~g}, 90 \%$). $[\alpha]^{\mathrm{D}}{ }_{26}=5.4\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}$: $70-72{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.00$ (dd, $J=15.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{q}, J=12.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.53(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.32(\mathrm{t}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, 1.05-1.01 (m, 2H), 0.95-0.90 (m, 2H), $0.85(\mathrm{~s}, 3 \mathrm{H})$,
0.78 (s, 3H), 0.75 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta \mathrm{ppm}: 173.4,61.6,60.5,57.7,56.4,55.6$, $51.3,41.8,39.5,39.2,37.2,36.7,33.4,33.1,31.9$, $22.3,21.8,21.7,18.3,18.2,15.7,15.4$; IR (KBr) vcm^{-1} : 2947, 1662, 1408, 1176, 1003; HRMS m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3}(\mathrm{M}+1)^{+} 364.2852$, found 364.2853.

N -methoxyl- N -methyl-13S-11(12 \rightarrow 13)-abeo-12-ethylenedithiaisoanticopal-15-amide (7)

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to the solution of 5 $(1.37 \mathrm{~g}, 3.77 \mathrm{mmol})$ in toluene (50 mL) dropwise at 0 ${ }^{\circ} \mathrm{C}$ under N_{2}. Then the mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 2 h . Upon cooling, 1,2-ethanedithiol ($0.47 \mathrm{~mL}, 5.50 \mathrm{mmol}$) was added to the mixture. After the solution was stirred for 12 h at room temperature, aqueous NaHCO_{3} was added to quench the reaction and the aqueous layer was extracted with $\mathrm{EtOAc}(3 \times$ 20 mL). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to gain yellow oil. Further purification with flash chromatography gave 7 as a yellow oil ($1.22 \mathrm{~g}, 74 \%$). $[\alpha]^{\mathrm{D}}{ }_{26}=-8.9\left(\mathrm{c} 1.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) δ ppm: 4.77 (s, 1H), 3.72 (s, 3H), 3.28-3.16 (m, 8H), 1.76 (dd, $J=11.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.40$ $(\mathrm{s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.99-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}$, $6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$: $173.8,68.8,61.2,60.4,57.6,56.9,49.5,47.8,42.5$, $41.3,40.3,39.0,38.6,37.0,36.7,33.5,33.1,27.1$, 21.3, 19.1, 18.3, 17.3, 15.8; HRMS m/z: calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{~S}_{2}(\mathrm{M}+1)^{+} 440.2657$, found 440.2661 .

13S-11 (12 \rightarrow 13)-abeo-12-ethylenedithia-15isoanticopalal (8)

The solution of LiAlH_{4} ($192 \mathrm{mg}, 5.05 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$ was added to the solution of $7(1.1 \mathrm{~g}, 2.51$ $\mathrm{mmol})$ in THF (10 mL) at $-10^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred until the starting material disappeared. Quenching the reaction with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and the solid substance was removed by filtration. The filtrate was concentrated and purified by flash chromatography to give 8 as a white solid (644 $\mathrm{mg}, 67 \%) \cdot[\alpha]^{\mathrm{D}}{ }_{26}=+22.3$ (c 1.13, CHCl_{3}); mp: 129-
$130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 9.95$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 4 \mathrm{H})$, $2.23(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{q}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, $1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, $1.00-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.84$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 205.9$, 68.1, 67.9, 59.7, 57.3, 47.9, 47.8, 42.4, 40.7, 40.1, $39.2,38.7,37.8,37.0,33.5,33.1,26.1,21.3,18.5$, 18.2, 17.6, 15.8; IR (KBr) vcm ${ }^{-1}$: 2924, 1711, 1449, 1388; HRMS m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{OS}_{2}(\mathrm{M}+1)^{+}$ 381.2286, found 381.2290.

15a-homo-13S-11(12 \rightarrow 13)-abeo-12-ethylenedithia-15-isoanticopalal (9)

The solution of LiHMDS (28.8 mmol) in THF (20 mL) was added to the suspension of metheoxy methyltriphenyl-phosphonium chloride $(6.57 \mathrm{~g}, 19.2$ $\mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under N_{2}. After stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$ the solution of $\mathbf{8}(2.23 \mathrm{~g}, 5.87$ $\mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added. Stirring for another 2 h and aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction. After the THF was removed under reduced pressure, it was diluted with EtOAc (80 mL). Extraction and concentration of the organic layer gave a yellow oil. To the solution of the yellow oil in acetone (50 mL) was added $p-\mathrm{TsOH}(300 \mathrm{mg})$. After stirring for 6 h at room temperature, aqueous NaHCO_{3} was added to quench the reaction. After the acetone was removed, the residue was diluted with EtOAc (50 mL). Upon separation, the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give a white gel. Further purification of the gel by flash chromatography gave $\mathbf{9}$ as a white solid ($2.20 \mathrm{~g}, 96 \%$). $[\alpha]^{\mathrm{D}}{ }_{26}=-27.3\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}: 9.73(\mathrm{dd}, J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}$, $1 \mathrm{H}), 3.28-3.15$ (m, 4H), 2.66 (ddd, $J=15.7,5.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.45-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76(\mathrm{dd}, J=12.3 \mathrm{~Hz}, 5.8,1 \mathrm{H}), 1.63(\mathrm{dt}, J=10.9$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.41$ (s, 2H), $1.38(\mathrm{~s}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 4 \mathrm{H}), 0.98$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90$ (dd, $J=12.4,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $0.86(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 203.3,68.1$, 59.4, 57.5, 53.7, 64.4, 45.5, 42.5, 42.4, 40.9, 40.1, 39.1, 38.4, 36.7, 36.4, 33.4, 33.1, 24.2, 21.2, 18.8,

Fuld Pappor

18.3, 16.4, 15.9; IR (KBr) vcm ${ }^{-1}$: 2922, 1721, 1460 , 1387; HRMS m/z: calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{OS}_{2}(\mathrm{M})^{+}$ 394.2364, found 394.2360.

13S, 16R-19, 25-epoxy-17(25), 18-diene-16-hydroxyhyrtiosan-12-al (1) and 13S, 16S-19, 25-epoxy-17(25), 18-diene-16-hydroxyhyrtiosan-12-al (10)

To a solution of 3-bromofuran ($0.22 \mathrm{~mL}, 2.45$ $\mathrm{mmol})$ in THF (15 mL) was added $n-\mathrm{BuLi}(0.90 \mathrm{~mL}$, 2.5 M in hexane, 2.25 mmol) at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. After stirring for 15 min , the solution of $9(590 \mathrm{mg}$, 1.50 mmol) in THF (10 mL) was added to the mixture. The reaction was stirred for another 2 h before quenching with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. THF was removed under reduced pressure and the residue was diluted with EtOAc (20 mL). Extraction and concentration to get a yellow oil. The yellow oil was resolved with THF at room temperature and CaCO_{3} ($179 \mathrm{mg}, 1.79 \mathrm{mmol}$) with $\mathrm{HgClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(1.02 \mathrm{~g}$, 2.25 mmol) was added successively. After stirred for 15 min , the mixture was filtered through a short pad of silica gel. Concentration and further purification with flash chromatography gave (-)-hyrtiosal 1 (150 $\mathrm{mg}, \mathbf{2 6 \%}$) and its epimer $10(180 \mathrm{mg}, 31 \%)$ as white solid. $[\alpha]^{\mathrm{D}}{ }_{26}=-73.1\left(\mathrm{c} \mathrm{1.14}, \mathrm{CHCl}_{3}\right) ; \mathrm{mp}: 143-144$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 9.49(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{~s}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.75 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (m, 4H), 1.42-1.38 $(\mathrm{m}, 7 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 205.8,143.2$, $138.8,108.5,64.3,60.4,57.5,52.9,48.1,44.6$,
42.4, 40.3, 40.2, 36.8, 33.7, 33.6, 33.5, 33.1, 21.2, $19.2,18.8,18.3,16.6,15.7$; IR (KBr) vcm ${ }^{-1}$: 3540, 3447, 3129, 2918, 2864, 1708, 1387, 1022, 874; HRMS m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$ 409.2719, found 409.2714.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) $\mathrm{ppm}: 9.34(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=$ $8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.48-$ $1.36(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.18-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 205.0,143.6,140.1,108.0$, 65.5, 60.4, 57.4, 52.3, 50.4, 44.7, 42.4, 41.2, 36.8, $33.8,33.5,33.4,33.1,21.2,19.0,18.8,18.3,16.5$, 15.7.

RESULTS/DISCUSSION

Using the reported process, 4a was synthesized first. However, all tentative efforts failed to directly transform 4 a to amide $4 b$ with known procedures ${ }^{[8]}$. Therefore, a modified strategy was applied to obtain 4 b starting from 2. The Emmon-Horner Wittig reaction of 2 with diethyl (N -methoxy- N - methylcarbamoylmethy 1) phosphonate ${ }^{[10]}$. using sodium hydride as base offered the expected α, β-unsaturated amide 3 in excellent yield. Because of the high stereoselectivity of $3(\mathrm{E} /$ $\mathrm{Z}=15: 1$) the cyclization in anhydrous formic acid lead to 4 b (mp. 111.0-113.0 C) as a single conformation with moderate yield. The configuration of 4 b was further confirmed by the X-ray crystallographic analysis ${ }^{[11]}$. (Scheme 1, Figure 1)

Scheme 1 : Synthesis of key intermediate 4b
4b

m-CPBA

Full Pa@cr

Scheme 2 : Synthesis of (-)-Hyrtiosal

Figure 1 : X-ray structure of compound 4b.

Figure 2 : X-ray structure of compound 6.

After 4 b was obtained, the synthesis of aldehydes 8 and 9 were performed as shown in Scheme 2. Owing to the existence of the bulky N, O-dimethyl hydroxylamine group, epoxidation of Weinreb amide 4 b only occurred from the less-hindered endo face to furnish the sole compound 5 as a waxy solid. The next rearrangement of epoxide 5 , catalyzed by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, successfully provided compound 6 and its configuration of C-13 was determined by X-ray study (Figure 2) ${ }^{[11]}$. As the thiol protection could also be promoted by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, one-pot method was developed to directly gain compound 7 from 5 in 74% yield as an oil. The redection of amide 7 with LAH directly gave aldehyde 8 with 68% isolated yield. The aldehyde 8 was then treated with (methoxymethyl)-triphenylphosphonium chloride using LiHMDS as base to give the corresponding enol ether, which could be transformed to aldehyde 9 in the presence of catalytic amount of p-toluenesulfonic acid (Scheme 2).

With aldehyde 9 in hand, Urones' procedure was used to gain (-)-hyrtiosal in 26% yield as a white solid and its $\mathrm{C}-16$ epimer in 31% yield as white solid (sepa-

Fula Papro

rated by flash column chromatography) ${ }^{[3 a]}$. The NMR date of 1 and 10 were identical to those previously reported, as well as the optical rotation data and X-ray of $1^{[11]}$.

CONCLUSION

In summary, a practical total synthesis of (-)hyrtiosal involving the construction of amide 4 b , which has the advantages of improving the stereoselectivity in epoxidation and reducing the reaction steps, together with the Lewis-acid mediated rearrangement of epoxide 5 as key steps has been achieved over 10 steps from commercially available (-)-sclareol. This synthetic strategy can provide gram scale of (-)-hyrtiosal which can be used in the biological studies.

ACKNOWLEDGEMENT

This work was financially supported by the National '863' Project of China (2006AA609Z447), the Science \& Technology Commission of Shanghai Municipality (09JC1404200) and the Fundamental Research Funds for the Central Universities (WY1113007).

SUPPLEMENTARY DATE

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound $1,4 \mathrm{~b}, 5,6,8,9,10,11$ and the X-ray of compound 1 , $4 b$ and 6 can be found in online version at...

REFERENCES AND NOTES

[1] K.Iguchi, Y.Shimada, Y.H.Yamada; J.Org.Chem., 57, 522-524 (1992).
[2] (a) R.Davis, R.J.Capon; Aust.J.Chem., 46, 12951299 (1993); (b) Y.Doi, H.Shigemori, M.Ishibashi, F.Mizobe, A.Kawashima, S.Nakaike, J.Kobayashi;

Chem.Pharm.Bull., 41, 2190-2191 (1993); (c) D.T.A.Youssef, R.K.Yamaki, M.Kelly, P.J.Scheuer; J.Nat.Prod., 65, 2-6 (2002); (d) Z.G.Yu. K.S.Bi, Y.W.Guo; Z.Kristallogr.NCS., 219, 415-416 (2004);
(e) Y.Qiu, Z.Deng, Y.Pei, H.Fu, J.Li, P.Proksch, W.Lin; J.Nat.Prod., 67, 921-924 (2004); (f) H.F.Dai, W.L.Mei, P.Proksch, W.H.Lin; Chin.J.Mar.Drugs, 5, 1-5 (2006); (g) C.Mahidol, H.Prawat, S.Sangpetsiripan, S.Ruchirawat; J.Nat.Prod., 72, 1870-1874 (2009).
[3] (a) P.Basabe, A.Diego, D.Diez, I.S.Marcos, J.G.Urones; Synlett., 1807-1809 (2000); (b) P.Basabe, A.Diego, D.Díez, I.S.Marcos, F.Mollinedo, J.G.Urones; Synthesis, 1523-1529 (2002).
[4] T.Sun, Q.Wang, Z.Yu, Y.Zhang, Y.Guo, K.Chen, X.Shen, H.Jiang; Chem.Bio.Chem., 8, 187-193 (2007).
[5] L.Du, L.L.Shen, Z.G.Yu, J.Chen, Y.W.Guo, Y.Tang, X.Shen, H.L.Jiang; Chem.Med.Chem., 3, 173-180 (2008).
[6] J.G.Urones, I.S.Marcos, P.Basabe, A.Gomez, A.Estrella, A.M.Lithgow; Nat.Prod.Lett., 5, 217220 (1994).
[7] I.Lunardi, G.M.P.Santiago, P.M.Imamura; Tetrahedron Lett., 43, 3609-3611 (2002).
[8] (a) J.C.S.Woo, E.Fenster, G.R.Dake; J.Org.Chem., 69, 8984-8986 (2004); (b) C.Ribes, E.Falomir, M.Carda, J.A.Marco; J.Org.Chem., 73, 7779-7782 (2008).
[9] C.A.Gray, M.T.Davies-Coleman, D.E.A.Rivett; Tetrahedron, 59, 165-173 (2003).
[10] D.F.Netz, J.L.Seidel; Tetrahedron Lett., 33, 19571958 (1992).
[11] Crystallographic Dates (Excluding Structures Factors) for The Structures in This Paper Have Been Deposited with The Cambridge Crystallographic Date Center as Supplementary Publication No.CCDC 789808, CCDC 789809, CCDC 789810. Copies of The Date Can be Obtained, Free of Charge, on Application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.

