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ABSTRACT 

Using the gapless second-order theory, the excitation energies and dynamics of the collective 
excitation for a partially condensed harmonic trapped quasi two dimensional bosonic gas has been studied. 
Our evaluated result for temperature dependent mean-energies show that the Kohn theorem is quite 
accurately satisfied for temperature T < 0.8 Tc. 
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INTRODUCTION 

The partially Bose-Einstein condensate trapped atomic gases provide an excellent 
test bench for developing finite temperature quantum theories. These weakly interacting 
systems can be modeled from first principles, and the experiments yield accurate and 
detailed information for comparison. Especially, the energies and decay rates of low-energy 
collective excitations have been measured tests for theoretical models. 

For dilute condensates at temperature much lower than the condensate temperature 
Tc’ the Bogoliubov approximation consisting of the Gross-Pitaevskii (GP) equation for the 
condensate wave function and the Bogoliubov equations for the quasi-particle excitations 
has proven to be accurate in describing the collective modes of the system. For higher 
temperatures one has to take into account the effects of the thermal gas component. 
Developing a theory that is computationally feasible and correctly models the system at 
temperature approaching Tc is a challenging task. The most commonly used finite-
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temperature theory is the Hartree-Fock-Bogoliubov-Popov (HFB-Popov) approximation. It 
neglects the dynamics of the thermal gas and the modifications in particle correlation 
induced by the condensate, but predicts quasi-particle energies in fair agreement with the 
experiment1. The energy of the quadruple modes having azimuthal angular momentum 
quantum number qθ = ± 2 deviates from the theoretical prediction for temperature above     
0.6 Tc, but lately this deviation has been interpreted to mainly arise from improper modeling 
of the time dependent external potential used in the experiments to excite the collective 
modes2. 

In order to take into account the leading order quasi-particle interactions and the 
correlation induced by the condensate in the inhomogeneous case, several theoretical 
approaches have been suggested3-10. The dynamics of the condensate and the thermal gas has 
also been studied using various kinetic theories11-15. The second-order theory for 
inhomogeneous, partially condensate gases were reported earlier9,10. Uses systematic 
perturbation theory to take into account the interaction terms in the Hamiltonian. Recently, 
this theory was extended to take into account the time-dependent external perturbation used 
to drive the system in the experiments, leading to an agreement with the measured energies 
and the damping rates of the collective modes2,16. 

The second-order theories are computationally challenging, and there have been only 
a few numerical investigations of their prediction2,17,18. In this paper, we have calculated the 
spectral distributions of the quasi-particle energies for a partially condensed Bose-Einstein 
Condensate (BEC) and compare the quasi-particle energies to the HFB-Popov results as 
function of temperature. Especially, we analyze the quasi-particle dynamics implied by the 
spectral distributions, observing that some collective modes should exhibit notable collapse 
and revival effects in trapped condensates. The possible existence of this phenomenon has 
been pointed out previously9,10, but it has not been studied in detail before. The collapse and 
revival of the excitations indicate that the energies and the damping rates alone do not 
suffice to describe the dynamics of these modes, i.e., the commonly used damped sinusoidal 
fit to the experimental data may be sufficient to describe the longer term dynamics of some 
modes19-24. 

Mathematical formulae used in the evaluation    

Second-order theory 

In this section, one have present the second-order formalism for calculating the 
quasi-particle spectral distributions for a partially condensed, dilute, trapped BEC at finite 
temperature. The starting point is the usual second-quantized Hamiltonian for structure less 
bosons 
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and the dominant s-wave scattering at low temperature can be modeled by the effective low 
energy interaction potential  

( ) ( )24 a r
V r

m
π δ

=
h

 

where a is the scattering length and m the atomic mass. This effective potential is 
inapplicable at high energies and leads to ultraviolet divergences in the theory which have to 
be renormalized in a proper way. 

We choose to use canonical ensemble with fixed total number of particles N. By 
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and ˆ ˆ ˆ
ex exN Nδ = −  is the number fluctuation operator of the non-condensate particles. The 

symmetries elements of the two-particle interaction potential V(r) are defined as  
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Where the average number of atoms in the condensate state is given by 

0
ˆ

exN N N= − . Above the average {…} refer to quantum expectation values and H.c. for 

Hermitian conjugate. 

In the zeroth-order approximation, one solves the ground state 0  of 0Ĥ  alone, 

which makes the linear Hamiltonian 1
ˆ 1H  vanish. The excitations are found in lowest order 

by diagonalizing 2Ĥ  and the number of the condensed particle 0N  has to be tuned such that 

the total number of particles satisfies 0 exN N N ⋅= +  

It is convenient the use an orthonormal single-particle basis ( )i r r iζ = for all i = 0, 

1…, where ( )0 rζ  is the condensate wave function given by the Gross-Pitaevskii equation 
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We express the particle operators in terms of the quasi-particle operators, yielding 
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One finds the perturbative Hamiltonian 
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Where the nonquadratic term  Ĥ3 and Ĥ4 are to be calculated using the improved 
condensate wave function. Note that our notation ΔĤi differs somewhat from earlier 
reported9,10. 

The perturbation term ΔĤ0 is just a real number and can be easily taken into account. 
In addition to it, in first-order perturbation theory only the terms ΔĤ2 and Ĥ4 containing even 
numbers of quasi-particle operators contribute to the energy shift. 
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where s  is a quasi-particle occupation number eigenstate. In second-order 

perturbation theory, one can in fact neglect the terms ΔĤ2 and Ĥ4 because it turns out that 
their contribution is of the same order as the contribution of the other terms in third-order 
perturbation theory9,10. Thus, one needs to calculate only  
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The quasi-particle energies are calculated as total energy changes in the system 
which the corresponding quasi-particle occupation number by 1, while the total number of 
particles is held constant. This yields the corrected excitation energy 

( ) ( )4 3
p p p P

P P shapeE Z E E E E Zλ′ ′=∈ +Δ + Δ + Δ + Δ  

where the Δ terms are given in Eqs. and the complex energy parameter z΄ should not 
be mixed with the fugacity. Calculating the excitation energies as function of z΄ yields the 
dynamics of the excitations in the following way. The time evolution operator Û(t) of the 
system may be written in terms of the Fourier transform of the resolvent operator 
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−
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π
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Numerical methods 

One considers a pancake-shaped system in a harmonic potential 

( ) 2 2 2 2 2 21 1 1
2 2 2trap x y zV r m x m y m zω ω ω= + +  

where the trapping frequencies are r x yω ω ω= =  and zω with z rω ω>> . For sufficiently 

strong trapping potential in the z direction, the condensate wave function and the thermo-
dynamically relevant quasi-particle amplitude can be approximated to be in cylindrical 
coordinates (r, θ, z) of the factorized form 
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where ( ) ( )2 2/2 2 1/2/zz a
zz e aσ π−

is a Gaussian profile and /i ia mω= h  are the 

harmonic oscillator lengths of the trap. 
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RESULTS AND DISCUSSION 

In this paper, we have evaluated the temperature dependent mean energies of 
excitation of Bose-Einstein Condensate. For numerical estimation, we have taken a model of 
pancake – shaped cloud consisting of N = 200023. Na atoms trapped with trapping frequency 
ωc = 25 x 350 Hz. The radial trapping frequency ωr = ωx = ωy may be chosen freely with only 
the constraint ωz > ωr. The parameters are chosen from earlier report23. We have taken the 
theoretical formalism of M. Mottene, S.M.M. Virtaken and M.M. Salomara25. 

Table 1: An Evaluated results of temperature dependent mean energies of the 
excitation modes using second order theory and also with HFB-Popov 
(Hartree-Fock-Bogoliubov) theory. The exact energy ħωr of the Kohn modes  

E/ħωr 
T/Tc 

Second-order Theory HFB-Popov Theory Energy of Kohn Theory 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

2.058 
2.092 
2.145 
2.181 
2.226 
2.274 
2.345 
2.378 
2.455 
2.481 
2.550 

2.153 
2.224 
2.278 
2.324 
2.359 
2.396 
2.438 
2.473 
2.524 
2.545 
2.607 

1.079 
1.082 
1.097 
1.116 
1.132 
1.138 
1.142 
1.145 
1.154 
1.166 
1.178 

We have shown the evaluated results of temperature dependent mean energies of the 
excitation using second order theory together with HFB-Popov theory and exact energy of 
Kohn modes. Kohn modes are also called center of mass oscillation modes26. According to 
Kohn thorem27 a system of harmonically trapped interacting particle in any eigenstate of the 
Hamiltonoian has an eigenstate with the amount ħωi . The Bogoliubov theory, in which the 
thermal gas components is neglected, implies Kohn modes to have this exact energy. In 
higher order theories, the dynamics of the thermal gas and its interaction with the condensate 
have to be taken into account accurately obtained results in agreement with the Kohn 
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theorem. In our calculation, it is shown that within the second order theory, the energy of the 
Kohn mode is very close to ħωr for temperature T < 0.8 Tc. 
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