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ABSTRACT 

We have evaluated ratio of super fluid density to the total density (ρs/ρ), Quasi Particle 
Contribution (ρF

n/ρ) and Fluctuation Contribution (ρB
n/ρ) as a Function of (T/Tc) for three limits BCS, 

Pseudo gap and BEC. These results are quite useful in the study of dynamical properties in the BCS- BEC 
crossover region at finite temperature. 
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INTRODUCTION 

In earlier paper1, we have studied the BCS-BEC crossover physics and evaluated 
energy gap parameter ∆/EF and chemical potential μ/EF from BCS theory. In this paper, we 
have evaluated the super fluid density (ρs/ρ), quasi particle contribution (ρF

n/ρ) and 
fluctuation contribution (ρB

n/ρ) as a function of (T/Tc) for BCS limit [(KF as)-1 = - 2.0], 
pseudo gap limit [(KF as)-1 = 0.0] and BEC limit [(KF as)-1 = 2.0]. Here, KF is Fermi wave 
vector and as is the s-wave scattering length. 

As we know that in a Fermi gas with a Feshbach resonance (FR), one can tune the 
strength of the paring interaction by adjusting the threshold energy of FR2. The BCS-BEC 
crossover has been realized by using this unique property3,4. Here, if one increases the 
strength of the paring interaction, the character of super fluidity continuously changes from 
weak coupling BCS type to strong coupling BEC type of tightly bound cooper pairs5,6. In the 
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super fluid phase, the super fluid density ρs is the most fundamental quantities. The value of 
ρs is always equal to the total carrier density ρ at T = 0, while it vanishes at the super fluid 
phase transition Tc. These properties are satisfied in both; Fermi and Bose super fluids, 
irrespective of the strength of the pairing interactions7. But there is a crucial difference 
between ρs in a Fermi super fluid and that in a Bose super fluid. In a mean field BCS theory, 
ρs (T > 0) originates from the thermal dissociation of Cooper pairs. The resulting normal 
fluid density ρn = ρ - ρs is determined by quasi particle excitations. On the other hand, ρn in 
the Bose super fluid is dominated by Bogoliubov collective excitation7. Therefore, it is a 
very interesting problem to see as to how ρs in a Fermi super fluid changes into ρs in a Bose 
super fluid in BCS-BEC crossover. 

In this paper, taking theoretical formalism of Ohashi8 and Ohashi & Griffin9,10, We 
have theoretically evaluated the super fluid density in the BCS-BEC crossover. These 
authors have taken an uniform super fluid Fermi gas at finite temperature and extended the 
strong coupling Gaussian fluctuation theory for Tc developed by Nozieres and Schmitt-
Rink (N.S.R.)4,5 to super fluid phase below Tc. They self-consistently determined ∆ and μ. 
We have used their formalism to calculate (ρs/ρ), (ρF

n/ρ) and (ρB
n/ρ) for BCS-BEC 

crossover. 

Mathematical formulae used in the evaluation: 

One starts with the BCS Hamiltonian in Nambau representation - 

2

3 1 1, 1, 2, 2,[ ] [ ]
4
UH

U
ξ ψ ξ τ τ ψ ρ ρ ρ ρ+

− −
Δ

= + − Δ − +∑ ∑ ∑p p p p q q q q
p p q

 …(1) 

Here, one assumes two atomic hyperfine states described by pseudo-spin σ =↑,↓. 

Ψp
+ = (Cp↑

+, C-p↓) is a Nambau field operator. Cpσ
+ is the creation operator of a Fermi 

atom and τj are the Pauli matrices (j = 1,2,3), which act on the particle-hole space. 

 ξp = εp – μ = ( p2 /2 m – μ ) is the atomic kinetic energy measured from the chemical 
potential μ. U is the tunable pairing interaction associated with FR. 

                                   
, ( 1,2)j j jρ ψ τ ψ

−
= × =∑ +

q q qp+ pp 2 2
 …(2) 

ρjq represents the generalized density operator. ρ1q and ρ2q describe the amplitude and 
phase fluctuations of  the order parameter  ∆, respectively. In equation (1) the interaction is 
described by the sum of the interaction between amplitude fluctuations (ρ1q ρ1-q) and the 
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phase fluctuations (ρ2q ρ2-q). 

In the NSR theory6, Tc is described by the Thouless criterion in the t-matrix 
approximation. The resulting equation for Tc has the same form as the mean-field BCS gap 
equation with ∆ → 0. However, in contrast to the weak- coupling BCS theory (where μ is 
equal to the Fermi energy EF), μ remarkably deviates from EF in the BCS –BEC crossover 
regime due to strong pairing fluctuations. The NSR theory includes the strong-coupling 
effect by solving the equation of state within the Gaussian fluctuation approximation6,7 in 
terms of pairing fluctuation - 

Now one extends the NSR theory to the super-fluid phase below Tc. To calculate ∆, 
one uses the BCS gap equation. 

                                 
2

tanh(        )
4 11 [ ]

2 2

F
s

E
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m E

β
π

ξ
−

= −∑
p p p

 …(3) 

Where Ep =[ (εp  -μ)2 + ∆2 ]1/2 is the single particle excitation spectrum. In equation 
(3), one eliminates the well known ultraviolet divergence by employing a two-body 
scattering length as. 
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Where, as is two body scattering length. 

To calculate μ, one considers the thermodynamic potential Ω density is given by – 

                                                     
ρ

μ
−∂Ω

=
∂

 …(5) 

Fluctuation contribution to Ω (= ∂ Ω) is calculated from relevant Feynman diagrams.  

Now summing up these diagrams, one obtains9 total densities 

0
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ρF
0 is the number of  Fermi atoms in the mean field approximation. In equation (6), 

the second term describes the fluctuation contribution. Ξ(q, i ωm) is the matrix correlation 
function. Πij is the generalized density correlation function. νn is the boson Matsubara 
frequency. ωm is the fermion-Matsubara frequency. Super fluid density in the BCS-BEC 
cross-over is determined as - 

                                                    ρs = ρ − ρn …(8) 

ρ is the total carrier density and it is given by – 

3
,

11 [ ( )]
m

m
p p

Tr    G  p i,
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where 

1) 3 1( , m mG i iω ω δε τ τ− = − + Δpp  …(11) 

G0 (p, iωm) is the matrix single particle thermal Green’s function. Σ is the self-energy, 
which involves corrections to Go. ρn is the well known BCS normal fluid density. ρn is 
calculated for both; boson and fermion. 

,

2 [ ( ( , )] 0
m

F
n z m

p
p Tr Gso G i QQ

ω

ρ ω
β
− ∂= →∂∑ p  …(12) 

Here G0 is replaced by Gs0. Super current state is described11 by order parameter - 

( ) ( )z exp iQzΔ = Δ  

Super fluid velocity Vs = Q/2 m 

Gs is the matrix single particle Green’s function in the super current state. 

                                
1

3 1( )2
pz

m
QGso i mω ε τ τ− = − − + Δp  ...(13) 



Int. J. Chem. Sci.: 9(3), 2011 1089

                                           

2 (  )2
3

F
n

f E
p

m E
ρ

∂−
=

∂∑ p

p p

 …(14) 

Where f(E) is the Fermi-Dirac distribution function. Boson normal density 
(fluctuation correction) is given by – 

,
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In the weak-coupling BCS regime (KF as)-1 << - 1, pairing fluctuation are weak and 
one finds that ρn ≈ F

nρ or ρs =  F
nρ − ρ . In this regime, equation (12) shows that ρn is dominated 

by the quasi-particle excitations with excitation gap Δ. In the BCS – BEC crossover regime, 
the chemical potential deviates from the Fermi energy EF and becomes negative in the strong 
coupling BEC regime4-6. One can calculate the chemical potential μ in the BEC limit, where 
(KFas)−1 >> 1. Using equation (3), μ is calculated as – 

                                                     
2

1
2 sma

μ
−

=   …(16) 

In BEC regime, the chemical potential μ  works as a large expectation gap and 

therefore, quasi particle excitation as well as F
nρ  are suppressed. This shows that Cooper 

pair do not dissociate in the Fermi atoms due to large binding energy. 

From equation (15), one can calculate the fluctuation contribution 
B
nρ . This is the 

dominant term in the strong coupling regime BEC. From (15), one obtains B
nρ  as – 

                                           

2 (    )2
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M E
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where nB (E) is the Bose distribution function. M = 2 m is the molecular mass 
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B
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q qE
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ν  ϕ= +  …(18) 

Equation (18) is the Bogoliubov phonon spectrum in a dilute molecular Bose gas 
with a repulsive interaction νB = 4π (2as)/M and the BCS order parameter ϕ  = (as/8 π mΔ)1/2. 
In the BEC regime the normal fluid density is dominated by Bogoliubov collective 
excitations in a molecular Bose super-fluid.  
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RESULTS AND DISCUSSION  

In this paper, we have presented the method of evaluation of ratio of super fluid 
density and total density (    )sρ

ρ  
as a function of (    )

c

T
T  for BCS limit 1[( ) 2]F sK a − = − , pseudo 

gap limit 1[( ) 0]F sK a − = and BEC limit [(KFas)−1 = 2]. Our theoretical results indicate that 

(    )sρ
ρ  is larger in BEC limit and smaller in BCS limit as a function of (    )

c

T
T . (    )sρ

ρ  decreases 

with (    )
c

T
T  for all three cases. The results are shown in Table 1. In Table 2; We have 

presented the method of evaluation of quasi particle contribution (    )n
Fρ

ρ  as a function of (    )
c

T
T  

for all the three limits. Our theoretical results indicate that (    )n
Fρ

ρ  is larger for BCS limit and 

smaller in pseudo gap limit. In Table 3; we have shown the evaluated results of fluctuation 

contribution (    )n
Bρ

ρ  as a function of (    )
c

T
T  for the above three limits. Our evaluated results show 

that fluctuation contribution (    )n
Bρ

ρ  is smaller for BCS limit [(KFas)−1 = −2] and larger for BEC 

limit [(KFas)−1 = 2]. 

Table 1: An evaluated result of (    )sρ
ρ  as a function of (    )

c

T
T  for BCS limit [(KFas)−1 = −2], 

pseudo gap [(KFas)−1 = 0] and BEC limit [(KFas)−1 = 2] 

(    )sρ
ρ  

(    )
c

T
T  

BCS [(KFas)−1 = −2] Pseudo gap [(KFas)−1 = 0] BEC [(KFas)−1 = 2] 

0.0 1.0 1.0 1.0 

0.1 0.975 0.982 0.995 

0.2 0.956 0.967 0.977 

0.3 0.932 0.955 0.964 

0.4 0.897 0.902 0.912 

0.5 0.824 0.855 0.866 

0.6 0.746 0.797 0.805 

Cont… 
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(    )sρ
ρ  

(    )
c

T
T  

BCS [(KFas)−1 = −2] Pseudo gap [(KFas)−1 = 0] BEC [(KFas)−1 = 2] 

0.7 0.618 0.639 0.652 

0.8 0.546 0.568 0.574 

0.9 0.348 0.382 0.403 

0.95 0.226 0.267 0.288 

1.00 0.059 0.122 0.147 

1.05 0.002 0.097 0.106 

Table 2: An evaluated results of quasi particle contribution (    )n
Fρ

ρ  as a function of (    )
c

T
T  for 

BCS limit [(KFas)−1 = −2], pseudo gap [(KFas)−1 = 0] and BEC limit [(KFas)−1 = 2] 

(    )n
Fρ

ρ  
(    )

c

T
T  

BCS [(KFas)−1 = −2] Pseudo gap [(KFas)−1 = 0] BEC [(KFas)−1 = 2] 

0.2 0.004 0.002 0.0 

0.4 0.098 0.008 0.0 

0.6 0.185 0.086 0.0 

0.8 0.274 0.105 0.0 

1.0 0.456 0.126 0.0 

1.2 0.684 0.149 0.0 

1.4 0.756 0.185 0.0 

1.5 0.889 0.225 0.0 

1.6 0.954 0.246 0.0 

1.7 1.038 0.278 0.0 

1.8 1.176 0.304 0.0 
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Table 3: An evaluated results of quasi particle contribution (    )n
Bρ

ρ  as a function of for (    )
c

T
T  

BCS limit [(KFas)−1 = −2], pseudo gape [(KFas)−1 = 0] and BEC limit [(KFas)−1 = 2]  

(    )n
Bρ

ρ  
(    )

c

T
T  

BCS [(KFas)−1 = −2] Pseudo gap [(KFas)−1 = 0] BEC [(KFas)−1 = 2] 

0.2 0.002 0.004 0.056 

0.4 0.006 0.016 0.089 

0.6 0.009 0.108 0.126 

0.8 0.012 0.148 0.248 

1.0 0.122 0.288 0.336 

1.2 0.142 0.326 0.409 

1.4 0.167 0.449 0.526 

1.5 0.198 0.567 0.678 

1.6 0.207 0.659 0.776 

1.7 0.226 0.787 0.892 

1.8 0.245 0.896 0.967 

2.0 0.268 1.052 1.122 

From the above calculation, one observes that if one increases the strength of the 
pairing interaction, BCS –type normal fluid density dominated by quasi – particle excitation 
changes into BEC type normal fluid density dominated by Bogoliubov collective excitations. 
As ρs plays an important role in two fluid hydrodynamics; these results would be useful in 
study of dynamical properties in the BCS-BEC crossover region at finite temperature12-15. 
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