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ABSTRACT 

Using theoretical formalism of Chung-In Um et al. the radial distribution function g (r) for two-
dimensional liquid 3He interacting with Aziz potential has been evaluated for various densities. Our 
theoretical result indicates that g (r) increases with r and attains some maximum value and then becomes 
almost constant. Our theoretical results are good agreement with other workers. 
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INTRODUCTION   

For many years, physicist have used hyper netted chain (HNC) and Fermi hyper 
netted chain (FHNC) theories to investigate the properties of highly correlated interacting 
boson and fermion systems such as liquid 4He and normal liquid 3He1,2. The HNC/FHNC 
equations with Jastrow ground-state wave functions treat consistently both long and short 
range correlations of the system and give agreements to some degree with experimental 
results. In spite of qualitative successes of the Jastrow ground-state function, there exist 
quantitative differences between HNC/FHNC results and experimental ones, especially the 
equilibrium ground-state energy, and this fact leads one to consider the contributions arising 
from the three-body correlation functions. It is well known that the three-body correlations 
do not affect seriously the structural properties of ground states, such as the radial 
distribution function and liquid structure function, but contribute significantly to the ground-
state energy. Since liquid 3He system is less dense than liquid 4He, that is, the equilibrium 
density of the former is 0.0166 Å-3 while that of the latter is 0.02185 Å-3 in a three-
dimensional system, effects of three-body correlations in 3He are rather small compared to 
those in 4He. At equilibrium density, they make up about half the difference between the 
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Jastrow results and experimental energy in a liquid 3He system and lower the Jastrow 
ground-state energy by about 10 % in liquid 3He3. 

A trial ground-state wave function including three-body correlation functions in 
addition to two-body correlation effects can be constructed in the form. 
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Where f2 (rij) is the two-body correlation function which describes spatial 
correlations and depends only upon the spatial distance rij between two particle f3 (rij, rjk, rki) 
is a three-body correlation function, and φ  is the anti symmetric product of non-interacting 

single-particle plane waves normalized in the system's area Ω with N fermions, which 
becomes simply unity for boson systems. 

In addition to the three-body correlation functions in the ground-state wave function, 
one should take into account the contributions coming from the elementary diagrams as 
well as effects of the HNC/FHNC equations to obtain better results. Unfortunately, there 
does not exist a general closed expression for the elementary diagrams and therefore one 
must calculate each diagram individually, which is very time consuming. During the last 
two decades, two approximations for the estimation of the elementary diagrams have been 
developed. One is known as the scaling approximation4 and the other is the interpolating 
equation approximation5 .Both techniques have shown their efficiency for central two-body 
correlations, providing similar results for the total ground-state energy to those of the 
variational Monte Carlo simulation. The scaling approximation uses the fact that successive 
contributions of the five, six and higher order elementary diagrams are approximately 
proportional to and have very similar spatial behavior to the four-body elementary diagrams, 
so that one can represent the total elementary diagram contribution by means of the readily 
calculable four-body elementary diagrams. The interpolating equation approximation 
determines a parameter such that it gives the same value for the classical isothermal 
compressibility obtained from both the HNC/FHNC equations and Percus-Yevick5 
equations using the classical pressure derivative or the compressibility integral. In this 
paper, one uses the scaling approximation to calculate the contribution of the elementary 
diagrams. 

Many workers have been reported regarding the properties of three-dimensional 4He 
and 3He systems using the variational HNC/FHNC methods, the variational Monte Carlo 
method6 and the Green's function Monte Carlo method (GFMC)7 there are few papers on 
two-dimensional systems. Using the Jastrow wave functions and solving an Euler-Lagrange 
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equation within the HNC approximation. Hatzikonstinou8 studied the ground-state of two-
dimensional liquid 4He interacting through a Lennard-Jones potential and explained the 
long-range and short-range behaviors of the correlation function to a certain extent. However, 
since he ignored the effects of the three-body correlation and elementary diagrams. His 
results give ground state energies too high compared to the GFMC9 and diffusion Monte 
Carlo (DMC) results10. Chang calculated the ground-state energy and structure functions of 
two-dimensional 4He in liquid density ranges11 by taking the same potential as an 
interatomic potential and using a self-consistent paired-phonon analysis. He included the 
effects of the three-body correlation in the ground-state wave function, but did not consider 
the elementary diagrams at all. Therefore, though he obtained very optimized liquid 
structure functions and radial distribution functions, his results for the ground state energy 
are still higher and the equilibrium density is lower than those of the GFMC and D M C 
calculations. 

For the 3He system, Novaco and Campbell12 obtained theoretically the ground-state 
energy of quasi-two-dimensional helium absorbed on graphite by introducing a trial wave 
function which has only two-body correlations, finite extent orthogonal to the substrate, and 
the same translational symmetry as the substrate. Furthermore, they considered the effects of 
Fermi Dirac statistics to only the lowest-order correction, which is the energy of the Fermi 
Sea. Using a variational calculation and the quantum theorem of corresponding states, Miller 
and Nosanow13 analyzed properties of the two-dimensional 3He system. Recently Brami et 
al.14 investigated two-dimensional 3He system absorbed on graphite through variational 
Monte Carlo calculations considering a one-body wave function to describe a z-
delocalization of helium atoms in addition to planar correlations in the total wave function 
which has only two-body terms.  

2.0 Mathematical formulae used in the evaluation 

The Hamiltonian for the considered system is given by – 

H = T + V = ( )∑∑∑∑
<<
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Where V(r) is the interatomic interaction. A popular potential used in theoretical 
investigations is that of Lennard-Jones, which has two parameters, i.e., the hard-core radius 
and the well depth, and can be written as – 

VLJ (r) = 4ε ,
612
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However, VLJ (r) includes only the dipole-dipole interaction and does not take into 
account multiple interactions. A more physically realistic potential which accounts for the 
self-consistent field Hartree-Fock repulsion and multiple interactions is the HFDHE2 
potential of Aziz et al.15 presented as – 

VLJ (r) = ε* ,)(exp
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The values of the constants are - 

A = 0.54485 × 106, 8.10
*

=
Bk
ε

 

α = 13.353384,  C6 = 1.3732412 

C8 = 0.4253785, C10 = 0.178100 

D = 1.241314,  rm = 2.9673 Å 

It is well known from the Green's function Monte Carlo simulations and other 
variational calculations that the Aziz potential gives closer results to experiments than VLJ in 
three dimensions. One uses both potentials and compare the results with those in two 
dimensions. 

The n-particle distribution function is represented as – 

Pn = ( )n1 r,...r vr
 = VnN (N–1)…(N–1) 

ψψ
r...d rd )r,...r(ψ )r,...r(ψ N1nn1n1∫ +++

×
rrrrrr
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Where  denotes the spatial coordinates of the i th particle and v is the spin 
degeneracy of the system (2 for this system). In the homogeneous system, as N → ∞ and Ω 
→ ∞, the single-particle distribution function reduces to the density of the system so that the 
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radial distribution function can be expressed in terms of the density and two-particle 
distribution function P2(r) as – 

g(r) = =(r)P
ρ
1
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One uses the FHNC approximation to sum the diagrams arising from the cluster 
properties of g(r). In this scheme, g(r) can be decomposed as – 

g(r) = gdd (rij) + 2gde (rji) + gee (rij)  …(7) 

where dd, de and ee represent terms in which both i and j are not exchanged, only j is 
exchanged and both i and j are exchanged, respectively. The components of are given 
by – 

gdd (rij) = exp [u2 (rij) + Ndd (rij) + Edd (rij)] 

gde (rij) = gdd (rij) [Ndd (rij) + Edd (rij)] 

gde (rij) = gdd (rij) ⎥
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Where 

L (rij) = –1 (kFrij) + v (Nee (rij) + Eed (rij)) …(9) 

1 (x) = 
x
(x)2 j1  …(10) 

kF is the Fermi momentum of the system, and j1 (x) is the Bessel's function of the 
first kind of order 1. Nmm represent sums of the nodal diagrams and Enm sums of the 
elementary diagrams. The equation gee denotes the terms in which both i and j are 
exchanged in an incomplete exchange loop, and Nee (rij) and Eee (rij) are sums of the nodal 
diagrams and the elementary diagrams in which i and j belong to the same permutation 
loop, respectively. 
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The sums of nodal diagrams are given by the following integral equation: 

Ndd (rij) = r2 [(gdd + gde – Ndd – Nde – 1)ik, (gdd – 1)ik] + r2[(gdd – Ndd – 1)1k, (gde)1k,] 

Nde(rij) = r2[(gdd + gde–Ndd – Nde – 1)ik, (gde – 1)kj] + r2[(gdd – Ndd – 1)1k, (gee)1k,]  …(11) 

Ndd(rij) = r2[(gde + gee–Nde – Nee – 1)ik, (gde)kj] + r2[(gde – Nde – 1)1k, (gee)1k,] 
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Where Г [xik, ykj] is the convolution in integral of xik and ykj and defined as – 

Г2 (xik, ykj) = ρ ∫ d3 rkx (rik)y (rik) …(13) 

Where the sum over each is over all allowed combination of x, y, z, z', y' and z' 
which form proper exchange, and the sums of the Abe contributions in the FHNC 
approximation are neglected. The Abe contributions will be taken into consideration when 
we include the elementary diagrams through the scaling approximation. To include three 
body correlation effects, one replace Nnm (rij) + Enm (rij) in Eqs. (7) and (8) by Nnm (rij) + Enm 
(rij) Cmn (rij). Here Cmn (rij) are diagrams dressed with chains due to the three body 
correlation functions, represented as – 

Cdd = Г3 [(gdd – 2gde)ik, (gdd)kj] 

Cde = Г 3 [(gee – gde)ik, (gdd)ik + r3 (gde)kj, (gde)ik] 

Cde = Г3 [(2 gde – gde)ik, (gdd)ik] 

Cee = Г3 [(gee)ik, (gee)ik] 

Where 

Г3 (xik, ykj) = ρ ∫ d3 rk [f3
2 (rik, rjk, rki) – 1] x (rik)y (rki) 

For numerical calculations, one adopt the McMillan type function as a trial two body 
correlation function, which is widely used in variational and Monte Carlo calculations for 
liquid and solid helium systems: 

u3 (rij, rjk, rki) = ∑
cyc

)r̂r̂( )( )ηη(r ikijikij r  …(20)  

Where 
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Where cyc denotes the cyclic permutation among the three particle coordinates, i, j 
and k and ijr̂  is a unit vector along the line connecting particles i and j. Since it was first used 

in a variational Monte Carlo calculations12, this form for the three body correlations is 
generally used in variational HNC/FHNC methods16. The above parameters λ1, r1 and ω1 can 
be determined through a variational procedure also. In the three dimensional calculations, 
the value of the parameters from the Monte Carlo simulations are used, but one should 
determine these parameters for a two dimensional system through a variational procedure 
and HNC scheme because they are different in the two systems and the Monte Carlo results 
do not exist in two dimensions. They depend very weakly on the density, so that one use 
values at the equilibrium density for all density ranges.  

RESULTS AND DISCUSSION 

In this paper, we have evaluated the radial distribution function g (r) as a function of 
r for two dimensional liquid 3He interacting through Aziz potential at various densities. The 
evaluation has been performed with the help of Chung-In-Um et al.17 formalism. Our 
theoretical calculation indicates that g(r) increases with r and attains some maximum value 
at some value of r and thereafter it becomes almost a constant value. This behavior is 
something different from g(r) of liquid 4He in which g(r) increases and attains some maxim 
value and then decreases. We repeated our calculation for four densities ρ = 0.01A0-2, ρ = 
0.015A0-2, ρ = 0.02A0-2 and ρ = 0.025A0-2. The trend is same for all four densities. However 
the values of g(r) is large for ρ = 0.01A0-2. The results are shown in Table 1. Some recent 
results18-20 also confirm the above facts. 

Table 1: An evaluated results of radial distribution function g(r) as a function of r 
interacting through Aziz potential at various densities. 

g(r) 
r(A0) 

ρ = 0.01A0-2 ρ = 0.015A0-2 ρ = 0.020A0-2 ρ = 0.025A0-2 
2.0 0.825 0.804 0.786 0.774 
2.5 0.917 0.827 0.800 0.785 
3.0 0.958 0.846 0.829 0.794 

Cont… 
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g(r) 
r(A0) 

ρ = 0.01A0-2 ρ = 0.015A0-2 ρ = 0.020A0-2 ρ = 0.025A0-2 

3.5 0.974 0.855 0.843 0.816 

4.0 0.902 0.864 0.855 0.833 

4.5 0.874 0.843 0.867 0.854 

5.0 0.843 0.825 0.822 0.867 

5.5 0.827 0.806 0.805 0.845 

6.0 0.806 0.795 0.783 0.812 

6.5 0.835 0.822 0.812 0.807 

7.0 0.867 0.854 0.843 0.842 

7.5 0.892 0.866 0.866 0.862 

8.0 0.905 0.873 0.870 0.885 

9.0 0.923 0.885 0.882 0.892 

10.0 0.946 0.897 0.894 0.899 
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