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ABSTRACT

Water is an important natural fluid that plays significant roles in many
processes. Consequently, knowledge of the thermodynamic properties of
water is necessary for the interpretation of physical and chemical pro-
cesses. In this work a new method based on artificial neural network
(ANN) for prediction of water thermodynamic properties such as specific
volume, entropy and enthalpy for both superheated and saturated re-
gions has been proposed. The needed data is taken from steam
tables[Perry�s Chemical Engineering Handbook]. The accuracy and trend
stability of the trained networks, were tested against unseen data their.
Different training schemes for the back-propagation learning algorithm,
such as; scaled conjugate gradient (SCG), Levenberg-Marquardt (LM),
gradient descent with momentum (GDM), variable learning rate back propa-
gation (GDA) and resilient back propagation (RP) methods were used.
The SCG algorithm with seven neurons in the hidden layer shows to be
the best suitable algorithm with the minimum mean square error (MSE) of
0.0001517. The ANN�s capability to predict the water thermodynamic prop-
erties is one of the best estimating method with high performance.
 2008 Trade Science Inc. - INDIA

INTRODUCTION

Water is an important natural fluid that plays signifi-
cant roles in many processes, such as mineral deposits,
hydrothermal venting, geothermal evolution, petroleum
and natural gas formation, migration, and waste dis-
posal, etc. The thermodynamic properties of water are
important factor to study the mentioned processes[1].
Besides the high costs of the experimental work it is
difficult if not impossible, to get a clear picture of the

condition and possible problems of the work. There-
fore a model based on some experimental results is pro-
posed to predict the required data instead of doing more
experiments. The major processes in the chemical en-
gineering are unfortunately nonlinear. ANN is a model
that attempts to mimic simple biological learning pro-
cesses and simulate specific functions of human ner-
vous system. This model creates a connection between
input and output variables and keeps the underlying
complexity of the process inside the system. The ability
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to learn the behavior of the data generated by a system
is the neural network�s versatility and privilege[2]. Fast
response, simplicity, and capacity to learn are the ad-
vantages of ANN compared to classical methods. This
model has been widely applied to predict the physical
and thermodynamic properties of chemical compounds.
ANN has recently been used to predict some pure sub-
stances and petroleum fraction�s properties[3], activity
coefficients of isobaric binary systems[4], thermodynamic
properties of refrigerants[5,6,7], and activity coefficient
ratio of electrolytes in amino acid�s solutions[8], etc. To
the best of our knowledge no attempt has been made
to model the thermodynamic properties of water by
artificial neural network. Defining the ANN and select-
ing the best ANN predictor to predict the thermody-
namic properties of saturated and superheated water
instead of approximate and complex analytical equa-
tions are the main focus of this work. In the following
sections after ANN introduction, the best ANN pre-
dictor is chosen. Finally results of the ANN model is
evaluated against with the unseen data and then com-
pared with the experimental work.

Artificial neural networks

In order to find relationship between the input and
output data derived from experimental work, a more
powerful method than the traditional ones are neces-
sary. ANN is an especially efficient algorithm to ap-
proximate any function with finite number of
discontinuities by learning the relationships between in-
put and output vectors[3,9]. These algorithms can learn
from the experiments, and also are fault tolerant in the
sense that they are able to handle noisy and incomplete
data. The ANNs are able to deal with non-linear prob-
lems, and once trained can perform prediction and gen-
eralization rapidly[10]. They have been used to solve
complex problems that are difficult to be solved if not
impossible by the conventional approaches, such as
control, optimization, pattern recognition, classification,
and so on. Specially if it is desired to have the minimum
difference between the predicted and observed (ac-
tual) outputs[11]. Artificial neural networks are biologi-
cal inspirations based on the various brain functionality
characteristics. They are composed of many simple el-
ements called neurons that are interconnected by links
and act like axons to determine an empirical relation-

ship between the inputs and outputs of a given system.
Multiple layers arrangement of a typical interconnected
neural network is shown in figure 1. It consists of an
input layer, an output layer, and one hidden layer with
different roles. Each connecting line has an associated
weight. Artificial neural networks are trained by adjust-
ing these input weights (connection weights), so that
the calculated outputs may be approximated by the
desired values. The output from a given neuron is cal-
culated by applying a transfer function to a weighted
summation of its input to give an output, which can serve
as input to other neurons, as follows[12].
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Where 
jk
 is neuron j�s output from k�s layer 

jk
 is the bias

weight for neuron j in layer k. The model fitting parameters w
ijk

are the connection weights. The nonlinear activation transfer
functions f

k 
may have many different forms. The classical ones

are threshold, sigmoid, Gaussian and linear function, etc�[13],
for more details of various activation functions see Bulsari[14].

The training process requires a set of examples of
proper network behavior; network input (I

i
) and target

output (t
i
). During training the weights and biases of the

network are iteratively adjusted to minimize the net-
work performance function[15]. The typical performance
function that is used for training feed forward neural
networks is the Mean Squares of the network Errors
(MSE) Eq. 2.
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There are many different types of neural networks,
differing by their network topology and/or learning al-
gorithm. In this paper the back propagation learning

Figure 1 : Schematic of typical multi-layer neural
network model
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algorithm, which is one of the most commonly used al-
gorithms is designed to predict the thermodynamic prop-
erties of water. Back propagation is a multilayer feed-
forward network with hidden layers between the input
and output[16]. The simplest implementation of back
propagation learning is the network weights and biases
updates in the direction of the negative gradient that the
performance function decreases most rapidly. An itera-
tion of this algorithm can be written as follows[12].

kkk1k glxx  (3)

The details of this process are shown by a flow-
chart as figure (2) for finding the optimal model. There
are various back propagation algorithms. Scaled con-
jugate gradient (SCG), Levenberg-Marquardt (LM),
gradient descent with momentum (GDM), variable
learning rate back propagation (GDA) and resilient
backpropagation (RP) are many types of them. LM is
the fastest training algorithm for networks of moderate
size and it has memory reduction feature for use when
the training set is large. SCG is one of the most impor-
tant back propagation training algorithms that is very
good general purpose algorithm training[15,13].

The neural nets learn to recognize the patterns of
the data sets during the training process. Neural nets
teach themselves the patterns of the data set letting the
analyst to perform more interesting flexible work in a
changing environment. Although neural network may
take some time to learn a sudden drastic change, but it
is excellent to adapt constantly changing information.
However the programmed systems are constrained by
the designed situation and they are not valid otherwise.
Neural networks build informative models whereas the
more conventional models fail to do so. Because of
handling very complex interactions, the neural networks
can easily model data, which are too difficult to model
traditionally (inferential statistics or programming logic).
Performance of neural networks is at least as good as
classical statistical modeling, and even better in most
cases[16]. The neural networks built models are more
reflective of the data structure and are significantly faster.

Neural networks now operate well with modest
computer hardware. Although neural networks are
computationally intensive, the routines have been opti-
mized to the point that they can now run in reasonable
time on personal computers. They do not require
supercomputers as they did in the early days of neural
network research.

EXPERIMENTAL

TABLE 1 lists the range of data that are used to
model the water properties (taken from Perry�s Chemical
Engineering Handbook Steam tables[17]). The network
inputs are temperature and quality in the case of vapor-
liquid equilibrium (VLE) while the outputs are the pres-
sure, specific volume, enthalpy and entropy. Similarly,

TABLE 1: Minimum and maximum of data used to train the
neural network[14]

Saturated vapor-liquid region Superheated vapor region 
Properties min max Properties min max 

Temperature 
(0C) 

5 370 Temperature 
(0C) 

50 1300 

Vapor 
quality 

0 1 Vapor 
quality 

- - 

Pressure 
(kPa) 

0.8721 21028 Pressure 
(kPa) 

10 50000 

Specific 
volume 
(m3/kg) 

0.001 147.118 
Specific 
volume 
(m3/kg) 

0.001503 72.6025 

Enthalpy 
(kJ/kg) 

20.98 2804.14 Enthalpy 
(kJ/kg) 

1699.51 5409.7 

Entropy 
(kJ/kg K) 

0.0761 9.0257 Entropy 
(kJ/kg K) 

3.714 11.581 

Figure 2 : A training process flowchart
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for the superheated vapor the inputs are the tempera-
ture and pressure while outputs are the specific vol-
ume, enthalpy and entropy.

Neural network model development

Developing the neural network model to accurately
predict thermodynamic properties of water requires its
exposure to a large data set during the training phase.

The back propagation method with SCG, LM, RP
and GDA learning algorithm has been used in feed for-
ward, single hidden layer network. Input layer neurons
have no transfer functions. The neurons in the hidden
layer perform two tasks: summing the weighted inputs
connected to them and passing the result through a non
linear activation function to the output or adjacent neu-
rons of the corresponding hidden layer. The computer
program has been developed under MATLAB. Two
thirds of data set is used to train each ANN and the rest
have been used to evaluate their accuracy and trend
stability. The number of the hidden layer neurons is sys-
tematically varied to obtain a good estimate of the trained
data. The selection criterion is the net output MSE. The

MSE of various hidden layer neurons are shown in
figure 3. As it can be seen the optimum number of hid-
den layer neurons is determined to be seven for mini-
mum MSE.

Similarly the MSE of various training algorithms are
calculated and listed in TABLE 2 for the obtained seven
hidden layer neurons. As TABLE 2 shows the
Levenberg-Marquardt (LM) and Scaled Conjugate
Gradient (SCG) algorithms have the minimum MSE.

Now the trained ANN models are ready to be
tested and evaluated against the new data. TABLE 3
lists the various MSE of the network testing. According

Figure 3: Determining the optimum number of neurons
for some algorithms; Saturated region (a) superheated
region (b) Networks

Figure 4: The relative errors between predicted data by
ANN and Experimental data; Saturated water (a) Super-
heated water (b)

TABLE 2: MSE comparison between different algorithms for
the training of ANN

Saturated vapor-liquid 
region 

Superheated vapor region 

Algorithm 
MSE of network 

training Algorithm 
MSE of network 

training 
Trainlm Trainlm 
Trainscg Trainscg 
Trainrp Trainrp 

Traingda Traingda 
Traingdm 

0.0000482 
0.0001571 
0.0009469 
0.005305 
0.02839 Traingdm 

0.005835 
0.005668 
0.007897 
0.008218 
0.008806 

(a)

(b)

(a)

(b)
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to this TABLE the scaled conjugate gradient (SCG)
algorithm is the most suitable algorithm with the mini-
mum MSE.

Consequently, SCG provides the best average mini-
mum error for both training and testing of network. The
fluctuations of relative error between experimental data
and simulation by SCG algorithm are shown in figure 4
for both saturated and superheated.

A scatter plot of typically measured experimental
data against the ANN model predictions was shown in
figure 5. It is obvious from this figure that the ANN
provides results very close to process measurements.

TABLE 3: MSE comparison between different algorithms for
the testing of ANN

Saturated vapor-liquid 
region Superheated vapor region 

Algorithm 
MSE of 
network 
testing 

Algorithm 
MSE of 
network 
testing 

Trainlm Trainlm 
Trainscg Trainscg 
Trainrp Trainrp 

Traingda Traingda 
Traingdm 

0.0932 
0.0005795 
0.001208 
0.01194 
0.02451 Traingdm 

0.02752 
0.00006794 

0.011063 
0.00729 
0.001149 

(a)

(b)

Figure 5 : Evaluation of ANN performance; A scatter plot
of typically measured experimental data against the ANN
model for unseen data; Saturated (a) and superheated wa-
ter properties (b)

Figure 6: A Comparison between ANN and experimental
data for saturated liquid-vapor region
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Figure 7: A Comparison between ANN and experimental data for superheated vapor region

The predictions which match measured values should
fall on the diagonal line. Almost all data lay on this line,
which confirms the accuracy of the ANN model. ANN�s
results showed acceptable estimation performance for
prediction of the water properties.

Results evaluation

The results show that the ANN predicts water prop-
erties very close to the experimentally measured ones.
Figures 6 and 7 show the scatter diagrams that com-
pare the experimental data versus the computed neural
network data over the full range of operating condi-
tions. As it may be seen, a tight cloud of points about
the 45o line is obtained for the new data points. This

Figure 9 : The comparison between predicted data by ANN
and experimental data ( The variation of entropy with pres-
sure and temperature for superheated vapor phase)

Figure 8: The comparison between predicted data by ANN
and experimental data (The variation of enthalpy with pres-
sure and temperature for superheated vapor phase)

Figure 10: The comparison between predicted data by ANN
and experimental data (The variation of specific volume with
pressure and temperature for superheated vapor phase)
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indicates an excellent agreement between the experi-

Figure 12: The comparison between predicted data by ANN
and experimental data (The variation of entropy with tem-
perature and vapor quality for saturated liquid-vapor phase)

Figure 11: The comparison between predicted data by ANN
and experimental data (The variation of enthalpy with tem-
perature and vapor quality for saturated liquid-vapor phase)

Figure13: The comparison between predicted data by ANN
and experimental data (The variation of specific volume
with temperature and vapor quality for saturated liquid-
vapor phase)

mental and the calculated data.
Figures (8-10) illustrate comparison between ANN

simulation and experimental data for change of enthalpy,
entropy and specific volume against temperature and
pressure in superheated vapor region. It is clear that
the neural networks can give a very accurate represen-
tation of the experimental data over the full range of
operating condition and indicates the good accuracy of
the neural network to represent thermodynamic prop-
erties of water.

In figures (11-14), the variance of the enthalpy, en-
tropy, specific volume and pressure versus tempera-
ture and vapor quality for saturated region have been
shown.

List of symbols

e- Difference between target data and simulation ; F- Transfer
function; g- Gradient; I- Input data; l- Learning rate; N- Num-
ber of data; t- Target data; x- Vector of weights; w- Connection
weights ; - Output of neuron;  Bias weight

CONCLUSION

The ability of ANN with MLP neural network to
model and predict saturated and superheated water
properties have been investigated in this work. The MSE
based analysis of the results, are used to verify the sug-
gested approach. The results show a good agreement
between experimental data and those predicted by
ANN. An important feature of the model is that it
doesn�t require any theoretical knowledge or human

Figure 14: The comparison between predicted data by ANN
and experimental data (The variation of pressure with tem-
perature and vapor quality for saturated liquid-vapor phase)
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experience during the training process. It has been
clearly shown that of the ANN calculates the water ther-
modynamic properties based on the experimental data
only. Therefore it is not necessary to use approximate
and complex analytical equations to calculate water ther-
modynamic properties. Also this new method can be
applied in computational engineering software.
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