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ABSTRACT

Water is an important natural fluid that plays significant roles in many
processes. Consequently, knowledge of the thermodynamic properties of
water is necessary for the interpretation of physical and chemical pro-
cesses. In this work a new method based on artificial neural network
(ANN) for prediction of water thermodynamic properties such as specific
volume, entropy and enthalpy for both superheated and saturated re-
gions has been proposed. The needed data is taken from steam
tableg] Perry’s Chemical Engineering Handbook]. The accuracy and trend
stability of the trained networks, were tested against unseen data their.
Different training schemes for the back-propagation learning algorithm,
such as; scaled conjugate gradient (SCG), Levenberg-Marquardt (LM),
gradient descent with momentum (GDM), variablelearning rate back propa-
gation (GDA) and resilient back propagation (RP) methods were used.
The SCG agorithm with seven neurons in the hidden layer shows to be
the best suitabl e algorithm with the minimum mean square error (M SE) of
0.0001517. TheANN’scapability to predict the water thermodynamic prop-
ertiesis one of the best estimating method with high performance.
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INTRODUCTION

Water isanimportant naturd fluid that playssignifi-
cant rolesin many processes, suchasminera deposits,
hydrotherma venting, geothermal evolution, petroleum
and natural gasformation, migration, and wastedis-
posd, etc. Thethermodynamic propertiesof water are
important factor to study the mentioned processes'¥l.
Besidesthe high costs of the experimental work itis
difficult if notimpossible, to get aclear pictureof the

condition and possible problemsof thework. There-
foreamodel based on someexperimenta resultsispro-
posed to predict therequired datainstead of doingmore
experiments. Themagjor processesinthechemica en-
gineering areunfortunately nonlinear. ANN isamodel
that attemptsto mimic smplebiological learning pro-
cesses and simul ate specific functions of human ner-
voussystem. Thismodel creates aconnection between
input and output variables and keepsthe underlying
complexity of the processinsdethesystem. Theability
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tolearn thebehavior of the datagenerated by asystem
istheneural network’sversatility and privilege?. Fast
response, ssmplicity, and capacity tolearn arethe ad-
vantages of ANN compared to classical methods. This
model hasbeen widely applied to predict the physical
and thermodynamic propertiesof chemica compounds.
ANN hasrecently been used to predict some pure sub-
stances and petroleum fraction’s propertiesd, activity
coefficientsof isobaric binary systemd4, thermodynamic
properties of refrigerantd®®7, and activity coefficient
ratio of electrolytesinamino acid’ssolutiong®, etc. To
the best of our knowledge no attempt has been made
to model the thermodynamic properties of water by
artificid neura network. DefiningtheANN and sl ect-
ing thebest ANN predictor to predict the thermody-
namic properties of saturated and superheated water
instead of approximate and complex anaytical equa-
tionsarethemain focusof thiswork. Inthefollowing
sections after ANN introduction, the best ANN pre-
dictor ischosen. Finally resultsof theANN model is
evaluated against with the unseen dataand then com-
pared with the experimental work.

Artificial neural networks

In order to find rel ationship between theinput and
output dataderived from experimental work, amore
powerful method than the traditional onesare neces-
sary. ANN isan especialy efficient algorithm to ap-
proximate any function with finite number of
discontinuitiesby learning therel ati onships betweenin-
put and output vectors®9. Theseagorithmscanlearn
fromthe experiments, and al'so arefault tolerant inthe
sensethat they areableto handlenoisy and incomplete
data. TheANNsareableto ded with non-linear prob-
lems, and oncetrained can perform predictionand gen-
eraization rapidly™®. They have been used to solve
complex problemsthat aredifficult to be solved if not
impossi ble by the conventional approaches, such as
control, optimization, pattern recognition, classification,
andsoon. Specidly if itisdesiredto havethe minimum
difference between the predicted and observed (ac-
tual) outputs™. Artificial neurd networksarebiologi-
ca inspirationsbased onthevariousbrainfunctiondity
characteristics. They arecomposed of many smpled-
ementscalled neuronsthat areinterconnected by links
and act like axonsto determinean empirical relation-
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Figure 1 : Schematic of typical multi-layer neural
network model

ship between theinputsand outputsof agiven system.
Multiplelayersarrangement of atypica interconnected
neural network isshowninfigure 1. It consistsof an
input layer, an output layer, and one hidden layer with
different roles. Each connecting line hasan associated
weight. Artificid neura networksaretrained by adjust-
ing these input weights (connection weights), so that
the calculated outputs may be approximated by the
desired values. Theoutput from agiven neuroniscal-
culated by applying atransfer function to aweighted
summation of itsinput to givean output, which can serve
asinput to other neurons, asfollowg*2.
Ny

o =F|<(ZWijkai(k—1)+Bjk) @
o1

Where 0t is neuron j’s output from k’s layer By is the bias
weight for neuronj inlayer k. Themodel fitting parametersw,,
are the connection weights. The nonlinear activation transfer
functionsf, may have many different forms. Theclassical ones
arethreshold, sigmoid, Gaussian and linear function, etc...[*3,
for more details of various activation functions see Bulsarit4.

Thetraining processrequires aset of examplesof
proper network behavior; network input (1)) and target
output (t). Duringtrainingthewe ghtsand biasesof the
network areiteratively adjusted to minimizethe net-
work performancefunction®. Thetypica performance
function that isused for training feed forward neura
networksisthe Mean Squares of the network Errors
(MSE) Eq. 2.
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2 2
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Therearemany different types of neural networks,
differing by their network topology and/or learning al-
gorithm. Inthis paper the back propagation learning
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TABLE 1: Minimum and maximum of dataused totrain the
neur al networ k4

Saturated vapor-liguid region Super heated vapor region

Properties min max  Properties min max
Temperature Temperature
) 5 370 ) 50 1300
Vapor Vapor
quality quality
Pressure Pressure
(kPa) 0.8721 21028 (kPa) 10 50000
Specific Specific
volume 0001 147.118 volume 0.00150372.6025
(m°/kg) (m°/kg)
Enthal py Enthal py
(kJ/kg) 20.98 2804.14 (kJ/kg) 1699.51 5409.7
Entropy Entropy
(kdlkg K) 0.0761 9.0257 (kdlkg K) 3714 11581
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Figure?2: Atraining processflowchart

agorithm, whichisoneof themost commonly used a-
gorithmsisdesignedto predict thethermodynamic prop-
erties of water. Back propagationisamultilayer feed-
forward network with hidden layers between theinput
and output!*®l, The simplest implementation of back
propageationlearningisthe network weightsand biases
updatesinthedirection of the negative gradient that the
performancefunction decreasesmost rapidly. Anitera:
tion of thisa gorithm can bewritten asfollows*2.

X1 =X = IOk ©)]

The details of this process are shown by aflow-
chart asfigure(2) for finding the optima modd. There
arevariousback propagation agorithms. Scaled con-
jugate gradient (SCG), Levenberg-Marquardt (LM),
gradient descent with momentum (GDM), variable
learning rate back propagation (GDA) and resilient
backpropagation (RP) are many typesof them. LM is
thefastest training algorithm for networks of moderate
sizeand it hasmemory reduction featurefor usewhen
thetraining setislarge. SCGisoneof themaost impor-
tant back propagation training agorithmsthat isvery
good genera purposea gorithm training*>13,

Theneura netslearn to recognize the patterns of
the datasets during thetraining process. Neural nets
teach themselvesthepatterns of thedataset letting the
analyst to performmoreinteresting flexiblework ina
changing environment. Although neural network may
take sometimeto learn asudden drastic change, but it
isexcellent to adapt constantly changing information.
However the programmed systemsare constrained by
the designed situation and they arenot valid otherwise.
Neura networksbuildinformative model swhereasthe
more conventional modelsfail to do so. Because of
handling very complex interactions, theneura networks
can easily model data, which aretoo difficult to modd
treditiondly (inferentid statisticsor programminglogic).
Performance of neural networksisat least asgood as
classical gatistical modeling, and even better in most
cases®, Theneural networksbuilt modelsare more
reflectiveof thedatastructureand aresgnificantly fagter.

Neural networks now operate well with modest
computer hardware. Although neural networks are
computationaly intensive, theroutineshave been opti-
mized to the point that they can now runin reasonable
time on personal computers. They do not require
supercomputersasthey didinthe early days of neura
network research.

EXPERIMENTAL

TABLE 1 liststhe range of datathat are used to
model thewater properties(takenfrom Perry’sChemica
Engineering Handbook Steam tables'™). The network
inputsaretemperatureand quality in the case of vapor-
liquid equilibrium (VLE) whiletheoutputsarethepres-
sure, specific volume, enthal py and entropy. Similarly,
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for the superheated vapor theinputsare the tempera-
ture and pressure while outputs are the specific vol-
ume, enthal py and entropy.

Neural network mode development

Developingtheneura network modd to accurately
predict thermodynamic properties of water requiresits
exposureto alarge dataset during thetraining phase.

Theback propagation method with SCG LM, RP
and GDA learning dgorithm hasbeen usedinfeed for-
ward, singlehidden layer network. Input layer neurons
have no transfer functions. The neuronsin the hidden
layer perform two tasks: summing theweighted inputs
connected to them and passing theresult through anon
linear activation function to the output or adjacent neu-
ronsof the corresponding hidden layer. The computer
program has been devel oped under MATLAB. Two
thirdsof datasetisusedto traineach ANN and therest
have been used to evaluate their accuracy and trend
gability. Thenumber of thehiddenlayer neuronsissys-
teméticaly varied to obtain agood estimate of thetrained
data. Thesdectioncriterionisthenet output MSE. The
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Figure4: Therelativeerrorsbetween predicted data by

ANN and Experimental data; Saturated water (a) Super -
heated water (b)

TABLE 2: M SE compar ison between different algorithmsfor
thetraining of ANN

Saturated vapor-liquid

Superheated vapor region

region
Algorithm M Si%:ﬁ;\’ork Algorithm M SEtrc;fi :iitévork
Trainlm 0.0000482 Trainlm 0.005835
Trainscg 0.0001571 Trainscg 0.005668
Trainrp 0.0009469 Trainrp 0.007897
Traingda 0.005305 Traingda 0.008218
Traingdm 0.02839 Traingdm 0.008806

M SE of various hidden layer neurons are shown in
figure 3. Asit can be seen the optimum number of hid-
den layer neuronsis determined to be seven for mini-
mumMSE.

Similarly theM SE of varioustraining dgorithmsare
caculated and listedin TABLE 2 for the obtained seven
hidden layer neurons. As TABLE 2 shows the
Levenberg-Marquardt (LM) and Scaled Conjugate
Gradient (SCG) algorithmshavetheminimum M SE.

Now the trained ANN models are ready to be
tested and evaluated against the new data. TABLE 3
liststhevariousM SE of the network testing. According
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TABLE 3: M SE compar ison between different algorithmsfor
thetesting of ANN

Satur ated vapor-liquid

Super heated vapor region

region
M SE of M SE of
Algorithm networ k Algorithm networ k
testing testing
Trainlm 0.0932 Trainlm 0.02752
Trainscg 0.0005795 Trainscg 0.00006794
Trainrp 0.001208 Tranrp 0.011063
Traingda 0.01194 Traingda 0.00729
Trai ngdm 0.02451 Trai ngdm 0.001149
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Figure5: Evaluation of ANN performance; A scatter plot
of typically measured experimental data against theANN
model for unseen data; Saturated (a) and super heated wa-
ter properties(b)

to this TABLE the scaled conjugate gradient (SCG)
agorithmisthemost suitable a gorithm with themini-
mumMSE.

Consequently, SCG providesthe best averagemini-
mum error for both training and testing of network. The
fluctuationsof relaiveerror between experimentd data
and smulaionby SCGdgorithmareshowninfigure4
for both saturated and superheated.

A scatter plot of typically measured experimental
dataagainst theANN modd predictionswasshownin
figure5. Itisobvious from thisfigure that the ANN
providesresultsvery closeto process measurements.
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Figure10: Thecomparison between predicted databy ANN
and experimental data(Thevariation of specificvolumewith
pressureand temper atur efor superheated vapor phase)
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The predictionswhich match measured va ues should
fal onthediagond line. Almost al datalay onthisline,
which confirmstheaccuracy of theANN modd. ANN’s
results showed acceptabl e estimation performancefor
prediction of thewater properties.

Entropy (kJf<g K

Resultsevaluation

Theresultsshow that theANN predictswater prop-
ertiesvery closeto the experimentally measured ones.
;g P kPe) Figures 6 and 7 show the scatter diagramsthat com-
_ 3 _ _ paretheexperimentd dataversusthecomputed neura
Figure9: Thecomparison between predicted databy ANN  network data over the full range of operating condi-
and experimental data (Thevariation of entropy with pres ;¢ A it may be seen, atight cloud of pointsabout
sureand temper atur efor super heated vapor phase) .. . y . .
the45° lineisobtained for the new datapoints. This
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Figurel2: Thecomparison between predicted databy ANN
and experimental data(Thevariation of entropy with tem-
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Figurel3: Thecomparison between predicted databy ANN
and experimental data (Thevariation of specific volume
with temper atureand vapor quality for saturated liquid-
vapor phas)

indicates an excellent agreement between the experi-
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Figurel4: Thecomparison between predicted databy ANN
and experimental data (Thevariation of pressurewith tem-
peratureand vapor quality for saturated liquid-vapor phase)

mental and the cal cul ated data.

Figures(8-10) illustrate comparison between ANN
smulation and experimentd datafor changeof enthdpy,
entropy and specific volume against temperature and
pressure in superheated vapor region. It isclear that
theneura networks can giveavery accurate represen-
tation of the experimental dataover thefull range of
operating condition and indi catesthe good accuracy of
theneura network to represent thermodynamic prop-
ertiesof water.

Infigures(11-14), thevariance of theentha py, en-
tropy, specific volume and pressure versustempera-
tureand vapor quality for saturated region have been
shown.

List of symbols

e- Difference between target dataand simulation ; F- Transfer
function; g- Gradient; |- Input data; |- Learning rate; N- Num-
ber of data; t- Target data; x- Vector of weights; w- Connection
weights ; a- Output of neuron; B— Bias weight

CONCLUSION

Theability of ANN with MLPneura network to
model and predict saturated and superheated water
propertieshavebeeninvestigated inthiswork. TheM SE
based analysisof theresults, are used to verify the sug-
gested approach. The results show agood agreement
between experimental data and those predicted by
ANN. An important feature of the model is that it
doesn’t require any theoretical knowledge or human
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