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INTRODUCTION

When an engineering student normally learns about the
�captured� 2-body problem[1-3], there are several restrictive
assumptions for the analysis. One basic assumption is that
there is a large difference between the weights of the two
bodies. Moreover, the larger body, say the Earth is im-
movable and the second lighter body moves similar to a
small satellite in orbit around the Earth. These solutions
result in an orbit that is defined as either a circular, ellipti-
cal, or a hyperbolic orbit depending upon the satellite�s
kinetic energy and initial conditions. Accuracy for these
problems is rather straightforward and results are satis-
factory to predict satellite orbits with these assumptions.
Changes to the analytical solution for the satellite-Earth
problem can be varied to consider more detailed infor-
mation regarding the characterization of the gravitational
effects on the Earth. For example, the sphere of  the Earth
can consider mass density variations that result in changes
in the gravitational attraction due to the presence of a
mountain range, an iron ore deposit, the ocean or other
effects as a function of the surface location on a spherical
model.
The problem of concern is to evaluate effects within a
binary pulsar. Based upon an analysis by Murad[4], a tabu-
lation was formulated that provided information about
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The �captured� 2-body Kepler problem usually requires bodies that have a large difference
between their separate masses. The larger body is usually assumed centrally located that
influences a smaller satellite body. In binary pulsar orbits, the two bodies may have similar
masses as �free� bodies to generate separate orbits. These bodies with similar weights that may
produce highly elliptical trajectories while other pulsar binaries with different weights pro-
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of  trajectories as well as a function of  the neutron star�s rotation rate. If  this is the case, there
is a possibility that angular momentum may play a role in gravitation.
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performance on several binary pulsar orbits. These binary
pulsars usually have a neutron star and a companion body
or another neutron star that results in separate distinctive
elliptical or circular orbits. The problem is that the two
bodies have relatively similar masses that travel in differ-
ent or disconcerting orbits that may be centered about a
common point of  the elliptical orbit�s foci points. Clearly
this makes the �free� celestial mechanics problem more
complicated. Based upon the knowledge of the first prob-
lem, the uneducated would make an initial assumption
that the pole or focal point of the elliptical orbit must
have another gravitational effect or possibly contain a third
body. The effort in this paper is to explain how to gain
some important insights about the orbits and find a rela-
tionship between the masses of  the body, rotation rate of
the neutron star and the resulting trajectories or their ec-
centricities.

DISCUSSION

Based upon the masses of the neutron star and its com-
panion in a binary pulsar, astronomers made some judg-
ments about such orbits. However, their judgments may
be counter intuitive in that when the masses are the same
as the two bodies, one would expect that the orbits would
be circular and when the masses are greatly different, they
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would expect it to be highly elliptical, parabolic or even
hyperbolic. In reality, they are found most likely highly
elliptical orbits for nearly equal masses in lieu of produc-
ing circular orbits while bodies with mass differences pro-
duce near circular orbits.
These consequences based upon the conventional wisdom
are contrary or counterintuitive toward these expectations.
A possible rationale for these differences is that gravity, in
addition to having a Newtonian attraction, might have an
impact upon angular momentum per Jefimenko[5,6], as well
as the notions from Winterberg[4] that suggests highly ro-
tating rates of  a body, for example a neutron star, could
reduce gravitation. These significances suggest that there is
a coupling effect between the rotation rate of the neutron
star and the masses between the two bodies to explain
these differences in their orbits. This analysis obviously as-
sumes that the initial masses are correct. Thus, there has to
be a balance within the neutron star�s high rotation rate
and these trajectories. Neutron stars can rotate at speeds
from  values of 10 to 600 revolutions per second using
masses that are anywhere from a mass that is 1 to 1.4
times greater than our own sun. Interestingly, the sun ro-
tates about once a month that is extremely slow by com-
parison to these values.

ANALYSIS

Before looking at specific orbits and orientations, several
notions are required. Trajectories dependent upon several
bodies seem to obey a particular law in lieu of resulting in
significant collisions. For example, in looking at two orbits
where the bodies are close to each other, say one orbit is
clockwise while the other is counter clockwise, it becomes
obvious that the two bodies should be attracted in a col-
lision. Thus there has to be some assumptions for this
analysis.
An initial assumption will be that both orbits are in the
same motion plane so that the problem can be reduced to
a two-dimensional analysis. One major assumption is based
upon the notion that if gravity does not have only a gravi-
tational attraction but produces angular momentum by
considering that both orbits must be either clockwise or
both counter-clockwise.
If this does not occur, the momentum at each orbit re-
sults in both a radial and azimuthal force based upon the
gravitation from the other body. This becomes a difficult
geometric situation that results in motion that would leave
the orbits ending in a collision. These assumptions are dis-
cussed in this section.

Standard terminology

The basic problem of the �captured� two-body model is
that one body is relatively light in terms of  mass while the

other body has a significant mass in the same plane. With
this premise[1-3], the body with the larger mass is assumed
to be immovable compared to the first body. The issue is
to determine the initial momentum conditions and energy
conservation problem essentially based upon the premise
that the lighter body performs the dynamics that are of
interest since the larger body is assumed stationary. The
coordinate system uses a polar coordinate system where a
unique point is determined based upon a vector length
that has a distance and an angular orientation to completely
specify the coordinate location related to a reference coor-
dinate origin. The distance between the two bodies is from
a center of the reference coordinate system that includes a
focal point on the smaller mass� orbit. The center of this
reference coordinate system is assumed to also be some
negligible distance from the center of  the larger body. In
reality, there is some small distance treated as inconsequen-
tial between the actual locations for the barycenter.
The radial and angular momentum equation is defined as:
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The subscripts in the LHS are not derivatives but actually
the radial and azimuthal force directions respectively. De-
rivatives are functions of time. The radial force is based
upon the gravitational attraction between the two bodies.
Moreover, the second equation assumes the azimuthal force
vanishes for each of  these bodies.
In this problem, the radial dimension is changed as the
difference between the distances to the two objects. The
problem can be reduced to one dimension with some
definitions where µ is the total mass of both bodies (G
(m

1
+m

2
)). This is considered as the gravitational attraction

for this problem as follows:
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Clearly the azimuthal gravitation disappears with a con-
stant, h, that is the angular momentum per unit mass used
to satisfy this equation for the azimuthal acceleration. Thus
the second equation vanishes. At this point, a variable is
selected based upon an inverse function of the radius to
simplify the problem and removing the time derivatives
with substitutions from the problem. This results in:
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When these are substituted into the above equation for the
radial momentum, the results are:
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Or with some simplifications:

22

2

h
u

d

ud 



(5)

The solution of this ordinary differential equation consid-
ering a geometric length l and eccentricity e is:
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The importance of this equation is that the eccentricity e
plays a significant role. Basically the smaller body rotates
about the larger body with a circular orbit (if e is zero) or
if the eccentricity is positive and less than 1.0, the orbit is
an elliptical orbit with the major body located at one of
the focal points in the elliptical orbit. If eccentricity is greater
than 1.0, the orbit is hyperbolic and it leaves or escapes the
gravitational pull of  the larger body. Obviously, this result
depends upon initial velocity conditions and kinetic en-
ergy before the interaction.

�Free� body orbits

Let us do some tutorial thinking for two sections. The con-
cern is that the mass fractions between the bodies are so
different, what occurs if the masses or weights are com-
parable and how does that impact the trajectories of both
bodies? Figure 1 shows a typical situation that if it were
possible, the two bodies would have to include an azi-
muthal gravitational force. The only allowable situation
would be if the bodies were moving away from each other
at high enough speed but even here, the final orbit would
also become questionable. The other possibility is that a
larger third body may exist at the central focal point. The
concern is to define some conditions about stable orbits.

ology or require considerable complications where the
problem is no longer solvable. For example, let us as-
sume two bodies that move in separate elliptical orbits.
Under these circumstances, the bodies would be as in
Figure 1 and potentially change these elliptical orbits to
result in a collision. When crossing orbits, the probability
increases for a collision as well as orbital changes due to
gravitational overload that traverses on one side of the
elliptical orbit over the other. The fact that the rotation
rate is the same using rotation of the line between the
two bodies also implies that there is some possibility
that angular momentum is a component of gravitation.
This is specified by Jefimenko and an effort by
Lavrentiev et al[7] that suggests all of  the moons in the
solar system operate in the same rotational direction that
face the same portion of the moon toward their main
planets. Thus, we only see the same side of  the Moon
while on the Earth. This is true throughout the solar sys-
tem. Moreover, it is highly probable that the rotation of
each mass can be established in a binary pulsar system.
The counter-argument is that each of these moons has a
gravitational offset that allows this phenomenon.
Let us look at what might appear to be a reasonable stable
situation. Let us place both orbits at the same azimuth
orientation as shown in Figure 1. An unstable situation
may occur if the bodies are in an orientation that depends
upon the separation distance as r

1
- r

2
 that results in the

simplest form of  the radial direction in a simple form:
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And in the simplest form of  the azimuthal direction:
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In these equations, the h values are no longer constants but
rather complex geometric relations. However, let us just
examine the radial terms. These radial equations reveal that
if the satellites can cross each other or asymptotically
reaches the same radius length, the gravitational attraction

Figure 1 : If the two bodies are oriented at these orbits, they
will undergo azimuthal acceleration toward each other. Here
the desire of the bodies may leave the orbits and directly
move toward each body possibly resulting in a collision.

Unstable orbits

There are several things that could destroy this method-
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when the bodies approach each other will become a sin-
gularity or infinite gravitation that results in a possible col-
lision. This obviously is an unstable orbit.

Stable orbits

Let us assume that both bodies will move in the same
rotation direction simultaneously either as clockwise or
counter-clockwise. This assumes that Jefimenko is prob-
ably correct that gravity has a radial attraction similar as
Newton as well as produces angular momentum. We will
also assume that both bodies move with mixed orbits as
described in Figure 2 where one is circular and the other is
elliptic. Moreover, the focus is at the closest point to the
orbit at its closest approach (e.g., perigee).

(a) The barycenter requirement

The issue is if a line between the two bodies at the

barycenter coincides with a focal point or not. Obvi-
ously this determines the types of  orbits. In the initial
problem of the captured 2-body problem, the barycenter
is located close to the focal point of  the orbit. For this
issue, can a mixed orbit exist where you have one body
in an elliptical orbit and the second body at a circular
orbit as seen in Figure 2? The mathematics for the latter
are greatly simplified but if they exist, the aerial area per
Kepler�s law might be violated. This raises another set
of conditions if you have elliptical orbits where their
long axis are, say 45 or 90 degrees apart as shown in
Figure 1. In this case, the bodies at specific locations
would require excessive speed to meet these requirements.
Looking at Figure 3, the intuitive wisdom is that the
heavier body should be located at the central location or
have a smaller radius as it asymptotically approaches the
captured 2-body problem.

Figure 3 : These are representative stable orbits for different orientations. Stability occurs if the line joining the two bodies
is joined by a focal point that is common to each orbit. In the second case, an unstable orbit occurs at the stars closest to
each other and if  each axis is not collinear.

Let us assume that there are two masses alone in the Uni-
verse. They form a system with a center of  mass. That
center of mass is without acceleration and moves uni-
formly along some velocity vector � an unchanging ve-
locity vector. We can choose our coordinate inertial sys-
tem to have its origin anywhere as long as it moves uni-
formly without any acceleration that moves with constant
velocity. We can, therefore, choose our inertial system�s
origin at one of the two bodies and have that inertial-
frame origin move at exactly the constant velocity of that
body at a particular instant of time. That velocity vector and
the observer (sitting on the chosen mass) at that instant of
time define a plane (from geometry a point and a line de-

fines a plane � the line being the instantaneous velocity
vector in this particular case). The usual idea is to select the
center of mass, CM, of the two masses (barycenter) that
acts as the center of coordinates or origin of the coordi-
nate system. Thus a three dimensional framework to a
single two-dimensional plane is collapsed. We are in a two-
dimensional plane inertial framework that is moving uni-
formly alone in the Universe. In essence, the binary orbits
remain in one inertial plane moving without rotation and
with constant velocity through the universe. There are no
other external forces to move any mass out of that plane.
If  the observer is on a mass (of  any value relative to the
other mass) then this mass exerts a gravitational force on

Figure 2 : This involves an elliptical and circular orbit combination. Both orbits use common focal point. If the bodies are
located in a and b, they are unstable because they can easily leave the orbits and lead to a collision. If, however, they are located
at say, a and c, or b and d, the two orbits may represent a stable set of  orbits but may violate the Kepler aerial area theorem.
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the other mass. The observer on this mass calculates the motion relative to the other body (mass) based upon the
inverse-square-law gravitational force and the initial condition (instantaneous velocity vector) of that other mass �-
this mass finds it to be a conic section as the solution to the classical two-body problem. This is the result based upon
the forces acting against the barycenter. Let us suppose they are at a distance r

1
 for m

1
 and r

2
 for m

2
. Again by definition

of the CM the distances must always maintain the same ratio that is: r
1
 / r

2
 = m

2
 / m

1
 and that is defines the CM defined

so that a large mass must be closer to the CM fulcrum than a small mass that is located further to maintain a balance.
And as time marches on we can watch the masses approach and receive from us in unison. Thus we have a simple 1D
linear coordinate system if no other forces are involved as shown in equations 1-6.
Thus the barycenter is an important constraint. Orbits would have to be orientated that fall in the same line for the long
axis of the elliptical orbits as well. If there are mixed orbits or elliptical orbits that are oriented at an angle, then there
is a strong possibility that the two bodies are influenced by either a third or fourth body(s), a region with unusual
gravitational fields representing a possible singularity, or that there are solar wind-like effects where particles shower the
two bodies in a specific directional bias. If  not, then these orbits will not be stable. Thus we shall assume that the
barycenter is unmovable without the presence of  other forces.

(b) Elliptical orbits

Let us place the bodies in a two-dimensional plane inertial framework that is moving uniformly alone in the Universe.
In essence, the pulsar binary orbits remain in one inertial plane moving without rotation and with constant velocity
throughout the universe. There are no other external forces to move any mass out of that plane. This reduces as in the
previous, a three-dimensional situation to a two-dimensional plane.
Let us assume that the two bodies move in the same rotational direction with two different elliptical orbits in the same
plane. Additionally, let us assume that there is a line between both bodies that also crosses through the focal point or
barycenter that is common to either elliptical or circular orbits. If  the line is such then the distance between both bodies
are equal to r

1 
+ r

2
 where the first radius is from the first body to the foci and the second radius is the second body to

the same foci which is collinear on the same line as the first body. Thus, the distance between the two bodies is easy to
establish. Let us assume that the angular orientation is at an azimuth angle at  for the first body where the orientation
for the second body is located at  + or 180 degrees further in a counter-clockwise direction as a perihelion. Let 

1

be G m
2
 and 

2
 be G m

1
 to account for the mass terms for gravity.

The governing radial and azimuthal equations for these two bodies under these conditions now become:
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These are nonlinear equations regarding radial momentum. On this basis, if there is a relationship between the two
bodies, whether they both move in elliptical or circular orbits, the common focal point must fall along the line between
the two points.
Using the above methodology in equations 1-6, the equations to be solved are as follows:
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With these equations, 
2
 is equal to 

1 
+ . In addition the rotation rates for both orbits are identical. This also influences

some relationships with h
1
 and h

2
.

Clearly these are coupled nonlinear equations where one orbit depends upon the second orbit and vice versa. The
solution has to have periodic initial and boundary conditions. Note that the angle for the second orbit simultaneously
includes 180 degrees. This is as follows:
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Obviously, these are complex nonlinear Volterra Integral equations. Assumptions can be made based upon the rela-
tionships between the two different distances and rotation rates that define the h terms based upon the mass fractions.
Moreover, the rotation rates should also be the same. The latter is a limiting assumption. These are:
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The second and third integrals should result in a constant term. The resulting problem is elliptical orbits about each
other:
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Adding some more changes results in:
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Note that a constant term appears for all of  the integral equations based upon the initial conditions for the two masses.
If we are dealing with a satellite moving about the Earth where µ

1
 is very small, the integral expressions for the first

orbit has a considerably different value for the multipliers of the second integral.
Integrating these terms using that the second angle is added by 180 degrees results in:
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The solution assuming that the initial angle is at zero degrees results in:
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Where the constant terms are defined for the initial radius at an angle at the initial angle as subscripts measured from the
coordinate reference system, the value of r is the initial distance and the subscript is for a particular orbit with:
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Combining these terms yields:
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Finally, the eccentricities for each of  these orbits are:
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Note that for situations where the mass fraction is almost the same, the result is driven by the differences in the initial
angles for the different orbits. This results in the two-body problem regarding elliptical, circular or hyperbolic trajecto-
ries but with two separately moving bodies. Astronomers only call out only a single eccentricity for both bodies in a
binary. There is no real reason why one would assume that especially if  the masses are not the same; hence, we are
showing two different values for each trajectory. If  these values are the same, one could have a direct relationship
ratioing the h values as a function of  the initial radius at each celestial body. Thus the second term shows that if  these
relationships were the same, they would only be true for the same mass fraction terms. Hence there should be different
eccentricity for each trajectory. In any extent, the normal convention would have never established these different
eccentricities in these trajectories unless a more complete trajectory evaluation is performed as here.

TABLE 1 : Pulsar information

Pulsar Eccentricity e P(ms) Mprimary Mcomp Rotation Rate Orbit Period 

8. PSR B1913+16 0.61713 37.904 1.4414 ± .0002 1.3867 ± .0002 26.3Hz .3229 

13. PSR J1903+0327 0.437 2.15 1.74 1.0 465Hz 95.17d 

RESULTS

The question is if there are any suitable results that could be established. Using a portion of the pulsar paper[4] by the
author, some data reveals binary pulsars as follows.
These are shown in Figure 4. The eccentricities of both of these binaries are elliptical and one should expect to see such
a trajectory. In a sketch of  the first, these orbits are clearly oriented along the long axis. Note that the first sketch shows
that the opposite bodies are directly opposite to each other. One would argue that the two bodies are fairly similar in
terms of  total mass. This tends to substantiate the values shown by looking at the length between the two bodies and
measuring the distance to the foci of  the elliptical orbits. The lengths are respectively µ

1
 and µ

2
. This value looks very

close to being about .40 or 40%.
In Figure 5, assuming that this is an adequate representation of the above shown in Figure 4, the µ value varies from
this graphic interpretation with no numerical information of  .367 to .38. The value here is .364 or about 0.83%
different or less than 1 percent. Obviously this result could be altered to reach a similar value. Also note the similar
point of  view that the longitudinal axis of  both orbits is collinear. Moreover, the larger body is located on the smaller
or inside trajectory. Note that this last binary is closer to obtaining circular motion. This also implies that when a highly
eccentricity orbit exists, it could represent an immature scheme in that the orbit did not �settle� down and was still in the
situation to make additional corrections. Moreover, neither of  these orbits has a trajectory that has a major axis at an
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rationale that demonstrates a correlation with gravity and
angular momentum.

CONCLUSIONS

The basic requirements to identify conditions for creating
a binary pulsar indicate that the two bodies will have a
common focal point at the barycenter, which is expected
under the conventional wisdom. Moreover, the orbits will
have the largest axis of an elliptical orbit that would be
collinear for both bodies. These bodies will rotate both in
the same direction either as clockwise or counter-clock-
wise that by itself implies some angular momentum com-
ponent as part of  gravity. A simple graphic solution indi-
cates that the mass ratio between the two bodies could be
established. These conclusions that support the counter
intuitive situation about the choice of masses for binary
pulsars may indeed be valid. Thus these general orbits
appear to be premature in most of these situations that
require the continuous need for normalization of  their
orbits with extensive time.
By using the approach defined above, separate orbits are
defined with separate eccentricities for each of  the bodies.
These results also indicate that there is a coupling between
the neutron star�s rotation rate and the type of  trajectory
that results based upon mass fraction. This was the origi-
nal intention of  this analysis. If  we look at this further, we
can only see causes but not the direct effects. If  these are
really mature orbits, then these masses may be incorrect
based upon angular momentum as a consequence of grav-
ity that is altered due to the spinning neutron star impact.
Thus we may never really measure these masses and their
effects since we cannot measure these causes.

NOMENCLATURE

a = Reference length
e = Eccentricity
F = Thrust or force

angle similar to what is shown in Figure 1 but like the
second drawing in Figure 3.
Early in the discussion, the point was raised about angular
momentum effects. In a previous reference[4], the author
used Winterberg�s ideas regarding the rotational effect of
the neutron star that would decrease its gravitational at-
traction to the companion. The approach would be to
alter the gravitational attraction that would include some
normalized quantity that includes a rotational rate term
(2) for the gravitational attraction to both bodies. In this
format, the trajectory definition, mass fraction and neu-
tron star rotation rate may provide some correlations di-
rectly to establish the value of  eccentricity. These inputs
will need:
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These terms for the mass fractions would be adjusted to
account for the normalization of  the angular rotation rate
of  the neutron star. Of  these values, G is the gravitational
constant, 

c 
is the gravitational density of the companion

and  is the rotational rate of  the neutron star. Note that
as the neutron star rotation rate will drive eccentricity go-
ing toward an asymptotical circular orbit. This may be the

Figure 4 : The orbits of  the binary pulsar 1913+16 and a comparison of  the orbits of  the pulsar J1903+0327 with its possible sun-
like companion star with the orbit of the Earth around the sun[11].

Figure 5 : This is a breakdown of the above with J1903+0327.
Look at the relations between the distances from the focal
point to the separate bodies and the total length between the
bodies to form a mass relationship of  the bodies.
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g = Gravity
G = Gravitational constant
m = Mass
r = Radial coordinate
t = Time

Symbols

 = Density
 = Rotation rate
 = True anomaly
 = Mass fraction

Subscripts

o = Initial value
1, 2 = Individual bodies
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