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A Finite element model based on the Euler-Bernoulli theory was developed
and used to investigate the dynamic behaviour of a C-shape piezoelectric
actuator subjected to sinusoidal voltage. The main goal of this study was
to develop and validate numerical analysis tools for semicircular shape
piezoelectric devices. Once validated for a simple configuration the results
can ultimately be extended for more complicated geometries and be helpful
in the optimization of the design of curved shape piezoelectric actuators.
The dynamic solutions for a free and forced undamped piezoelectric actua-
tor were obtained using a modal analysis method. For the verification of
finite element formulation, a MATLAB code was developed to aid in the
computation of the fundamental frequency and the corresponding normal
mode of a four elements model. The results have been validated by com-
paring them with published data. The general purpose Finite Element soft-
ware MSC Marc was also used to simulate the first 3 natural frequencies
and their respective mode shapes as well as locating the resonance points
for three actuators from three different substrate materials and for three
different substrate/Piezoceramic thickness ratios. Results show that an
increase of both substrate to piezoceramic thickness ratio and the elastic
modulus of the substrate contributed to raise the fundamental frequency
of the actuator. It was also found that an actuator with mild steel substrate
operated at higher frequencies compared with the aluminium and brass
substrates of the same thickness.  2011 Trade Science Inc. - INDIA

INTRODUCTION

Smart materials and structures

Smart structures, sometimes referred to as intelli-
gent structures, are structures with extraordinary abili-
ties. They are capable of self-correcting in order to
improve and enhance their performance.

A smart structure features a network of sensors and

actuators with real-time control capabilities and a host
structure (Figure 1).

These sensors and actuators are made from smart
materials. This is a group of materials that possess un-
usual properties. They produce certain responses upon
being subjected to certain types of external stimuli such
as electrical and magnetic fields, mechanical, chemical
and thermal energy. This group of materials includes:

id8878703 pdfMachine by Broadgun Software  - a great PDF writer!  - a great PDF creator! - http://www.pdfmachine.com  http://www.broadgun.com 

mailto:alexmtawa@yahoo.com;
mailto:wamwita2000@yahooc.om


Finite element for dynamic analysis of a C-shape piezoelectric actuator2

Full Paper
NSNTAIJ, 5(1) 2011

Nano Science and Nano Technology

An Indian Journal

Piezoelectric (PZT); Shape Memory Alloys (SMA),
ElectroRheological (ER) and MagnetoRheological
etc.[1,2].

Integration of smart materials in structures is among
the most promising technologies for improved reliabil-
ity of structures and systems. Understanding and con-
trol of material properties, geometry and improved con-
trol algorithms are among the ultimate objectives of re-
search in this field.

The need and expectation of smart materials for
engineering applications have increased enormously, and
the expectation of the technology to achieve them is
promising. The following are some of the expectations:
 High level of reliability, efficiency and sustainability

of structures and systems.
 High security of the infrastructures especially when

subjected to extreme and unstructured conditions-
Hazard free structures.

 Continuous health and integrity monitoring.
 Damage detection and self-recovery.
 Intelligent operational management system.

Application of smart structures

Examples of potential smart structural systems and
some mechanisms are air-craft (monitoring the state of
strains in key locations and giving warning to prevent
development and propagation of cracks), buildings
(earthquake damage resistance, smart windows, elec-
tronic windows that sense weather changes and human
activity and automatically adjust light and heat),
bridges(monitoring of strains, deflections and vibration
characteristics in order to warn of impeding failures),
ships (hulls and propulsion systems that detect and re-
move turbulence and prevent deflection),
machinery(tools chatter suppression, rotor critical speed
control), pipelines(monitoring of leakage and damage
in underground pipes of water, oil and gas), medical
devices (blood sugar sensors, insulin delivery pumps,

micro-motor capsules that unclog arteries, filters that
expand after insertion into vessels to trap blood clots)[1].

Piezoelectric materials

Piezoelectric (PZT), as one of smart materials, un-
dergo mechanical (dimensional or shape) change when
subjected to an electric field and vice versa (Figure 2a).
This characteristic makes them to be suitable for fabri-
cation of sensors and actuator applications. Energy
conversion of piezoelectric devices mainly depends
upon the applied voltage, piezoelectric material prop-
erties and the geometrical configuration of the actuator
or sensor device.

Improvement of actuator performance in terms of
displacement, force generation, reduced hysteresis, re-
sponse time and bandwidth are among the most signifi-
cant parameters to be studied.

Earlier PZT actuators were mainly used in static
operations such as precision positioning or machine,
adjustments, but recently PZT actuators are increas-
ingly being demanded for more complicated operations.
Dynamically actuated components such as valves and
fuel injection devices, together with applications in adap-
tive smart structures such as shape tuning, vibration ex-
citation, cancellation, and mode shape tuning noise re-
duction etc, are a few examples. For these operations,
fast responses, large displacement and force are issues
of concern. In certain applications, particularly in vi-
bration control, small actuators with minimum power
consumption, large displacement and force capable of
operating both at low and high frequencies are increas-
ingly under demand[3-5].

Curved piezoelectric actuators

Different geometric configurations of piezoelectric
sensors and actuators are in use today. Curved piezo-
electric actuators are increasingly used nowadays in ap-
plications such as vibration control, satellite control etc.

Control
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Figure 1 : Basic elements forming a smart structures
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Figure 2a : Energy conversion by piezoelectric materials
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A Better understanding of their dynamic behaviour
upon application of electric voltage can improve their
design and hence effective operation and control of
structures[6-8].

There is a wealth of dynamic analysis models de-
veloped by J. Moskalik and D. Brei[9] for the C shape
actuator configuration, but the focus of their work has
been on the analytical (exact) method. The analytical
approach is very challenging and involves a huge amount
of mathematical work particularly when complicated
boundary conditions are involved. The Finite Element
Method (FEM) is a widely accepted and powerful tool
for analyzing complex structures[10,11]. Also The Finite
Element Method lends itself to programming.

The influence of substrate material and the
piezoceramic material on the performance of the C ac-
tuator as well as the effect of the thickness ratios be-
tween the substrate and piezoceramic layers of the ac-
tuator under quasistatic condition have been well stud-
ied by Mtawa et al.[14,15 ].

The main focus of this study is to develop a simple
computation tool using Finite Element Method to be
used to analyze the behavior of the curved shape ac-
tuator under dynamic condition.

C-shape piezoelectric actuator

The C-shape piezoelectric actuator, which is a semi-
circular (curved) shell, is an invention of A.J. Moskalik
and Diann Brei in 1996[12]. When individual C-shape
actuators are combined in series and/or parallel it is
possible to generate displacement and force larger than
a comparable straight bender. The force produced by
an array of C- shape actuators is proportional to the
number of individual C-shape actuator elements in a

parallel arrangement, while the resulting displacement
equals the sum of displacements of individual blocks in
a series arrangement[13].

A unimorph individual C- shape piezoelectric ac-
tuator (Figure 2b) consists of three layers laminated to-
gether to form a semicircular shell i.e. one active layer
(piezoceramic) and passive layers (bonding and sub-
strate). The piezoceramic (PZT) layer is pre-plated with
electrode layers on its inner and outer surfaces. The
piezo-ceramic layer together with its electrode is bonded
on the outer surface of the substrate. Epoxy is used as
the bonding material and a strong bond is created be-
tween the piezo layer and the substrate. This ensures
that all loads applied by the active layer are transmitted
fully to the passive layer. With the unimorph actuator,
when the piezoelectric layer expands/contracts in the
radial direction the strain in the plane normal to the pol-
ing direction (i.e. in the circumferential direction) un-
dergoes a contraction/expansion.

Finite element formulation

Selection/determination of finite elements

The C-shape piezoelectric actuator is obviously a
curved shape. For simplicity and for computational
economy, flat (straight arc) elements can be used to
approximate a curved structure[16,17]. A straight arc ele-
ment is assumed to undergo both extensional and bend-
ing deformations provided that the deformations are
small. A straight arc element is obtained by superposing
the standard two degrees of freedom (d.o.f) bar ele-
ment to account for axial displacement with the four
d.o.f. beam element to account for lateral and rota-
tional displacements[18] (Figure 3a and 3b). This is partly
what contributes to the originality of this paper.

In the present formulation the following assump-
tions are applied: that the piezoelectric actuator layers
are perfectly bonded together (thus continuous strain
across the bond is guaranteed, and also shear stresses
in the interfaces are ignored. Material behaviour is lim-
ited within the linear elastic range (small displacements
and strains). The C shape actuator is assumed to be a
thin structure/beam, the Euler- Bernoulli model was
considered for the finite element analysis of the struc-
ture, that is, the effect of transverse shear forces is ne-
glected, cross-sections remain plane and normal to the
deformed longitudinal (neutral) axis, the rotational de-

Figure 2b : Unimorph C-shape actuator
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formation is due to bending alone[19-23].

Kinematics

The model presented in this paper is based on the
Euler-Bernoulli theory wherein a multilayered structure
is reduced to kinematically equivalent single layer,
thereby a 3D problem is reduced to an equivalent 1D
problem[24,25]. Each element is bound with two nodes,
it consist of the piezoelectric, bonding and substrate
layers (Figure 4a and 4b), this means the laminate be-
haves as a �single� layer with �special� properties.

Each node has three degrees of freedom, that is
axial, lateral and rotational displacements. The nodal
displacements of the beam element in a local coordi-
nate for an element are given by:
() = {u

1
 w

1
 

1
 u

2
 w

2
 

2
}T (1)

where u
1
, w

1
, 

1
 and u

2
, w

2
, 

2 are the respective ap-
proximate values of the tangential displacement, lateral
displacement and rotation at node 1 and node 2 re-
spectively.
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If the characteristics of the chord may be repre-
sented by the corresponding straight arch element with
the same cross-section properties as those of the arc,
the assumed displacement field equation would be:
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These equations can also be rewritten as:
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Combining equations 4 and 5 we can write:
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Actuator equations

The general linear piezoelectric actuator for the con-
verse piezoelectric effect can be described in a stress
form as follows[26]:
 = [Q]E {}-{}T {E}

 = [Q]E ({}-[d]T {E}) (7)

where  = Mechanical Strain,  = Mechanical stress,
d= piezoelectric coupling coefficients for strain- charge
form, QE = Elastic modulus at fixed electric field, e =
piezoelectric coupling coefficients for stress-Charge
form, E = Applied electric field and {e} = [d][Q]
NB. Superscript T implies matrix transpose.

Strain energy

The strain energy associated with the extension can
be given by:

 
v

T
ext dv}{}{

2
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U (8)

From constitutive relationship we can write:

     


n

1p

1

0
ppp

T
pext dxAQ

2
1

U (9)

where p = 1,2�n is the number of layers. A = the cross-
section area. Q = Young�s modulus of elasticity

Figure 3a = Straight arc element subjected to both exten-
sional and bending deformations

Figure 3b : Straight arc element assemblage used to model an
arc
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Eq. (9) can also be written as:
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But from mechanics of materials, the bending mo-
ment is given by
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where Q and I are the Young�s modulus of the material

and the second moment of area of a cross section about
the neutral axis respectively.

Substituting equation 12 into equation 11 and after
some rearrangement, the instantaneous strain energy due
to bending becomes:
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w  is the matrix describing the re-

lationship between lateral displacement and the bend-
ing strain.

Strain energy related to piezoelectric induced strain
can be calculated using the following equation:
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Substituting eq. (7) into eq. (14) we obtain:
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The total strain energy for the actuator is now given
by the summation of bending, extension and induced
piezoelectric strains:
U = U
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where: [k
e
] = Stiffness matrix of an element in a local

coordinate system given by,
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The elemental stiffness in a global reference system
becomes:
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 = cos

i
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 is an angle defining

orientation of the ith element with respect to global co-

Figure 4a : Straight arc element

Figure 4b : The laminated beam (from bottom to top: sub-
strate, bond and piezoceramic layer)
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ordinate system.

Kinetic energy

The kinetic energy of an element is given by:
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where 
p
 is the mass density per unit length of the pth

layer. A
p 
The cross section area of the pth layer.

Taking into consideration the assumption that there
is a perfect bond between the layers, it implies that all
points on the actuator cross-section will move with the
same velocities in the respective directions. The kinetic
energy of an element eq. (20) becomes:
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where, [m
e
] =Is a local mass matrix of an element given

by,
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where N= shape functions (eq.6)
Similarly, using transformation matrix (eq. 19), the

elemental global mass matrix becomes:
[M

e
] = []T[m

e
][] (23)

The elemental mass and stiffness matrices are then
combined to obtain their respective global mass and
stiffness matrices [M] and [k] of the entire structure
(actuator) while the boundary conditions are imposed.
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where N
e is the number of elements in the entire struc-

ture (actuator).

Equations of motion

Equations of motion that governs the dynamic re-
sponse of the structure can be derived by requiring the
work of external forces to be equal to the work of in-
ternal, inertia and viscous damping forces for any small
motion that satisfies both compatibility and essential

boundary conditions(admissibility)[17]. Assuming no ex-
ternally applied mechanical load for a single element
the equation of motion becomes[27-29].

ePDeK
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where: M
e
 and K

e
 are global mass and stiffness matri-

ces of an element respectively.
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..
D A vector of nodal accelerations


.
D A vector of nodal velocities
D = A vector of nodal displacements
C

D
 = A matrix containing viscous damping terms.

P
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 = Piezoelectric load vector given by
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F and M are the induced actuator force and bending
moment respectively. a = Moment arm (a distance from
the neutral axis to the midline of the piezoceramic layer).
t
pe 

represent the thickness of the piezoceramic layer.
If the continuity at the inter-element nodes is im-

posed then the induced piezoelectric force and moments
are assumed to be applied at the free end tip of the
piezoelectric layer. This is due to the fact that there will
be force cancellations at these nodes.

Eq. (25) represents the dynamic behaviour of an
element. If equations of motion of all elements are as-
sembled and then followed by applying the appropriate
boundary conditions it yields the equation of motion of
the entire C-shape piezoelectric actuator.

Eq. (25) can be rewritten into the forced vibration
equation by assuming the displacements, forces, and
actuator voltages are harmonic variables with different
frequencies. If the right hand side is put equal to zero
the equation is then reduced to the eigenvalue problem.
From which eigenvalues 

i
 and the eigenvectors (u

i
, w

i

and 
i
) can be determined.

Frequency response analysis

Modal analysis method

The amplitude � frequency response problem can
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be solved using the modal analysis method. In this
method the expansion theorem is used where the dis-
placements of masses are expressed as a linear combi-
nation of the normal modes of the system. Assuming
that the system response is governed by �m� modes of

vibration, a set of �m� uncoupled differential equations

of second order is obtained. A solution of theses equa-
tions is equivalent to the solutions of equations of �m�
single degrees of freedom[30].

The solution of equation 25 using modal analysis
becomes,
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The nodal acceleration in terms of generalized co-
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Substituting eq. (29) into eq. (25) we obtain,

)t(P)t(
.
qXDC)t(qXK)t(

..
qXM  (30a)

Multiplying eq. (30a) by XT both sides,

)t(PXXCX)t(qXKXXMX T.
)t(qD

TT..
)t(q

T 

)t(Q)t(qDC)t(qK)t(
..
qM 

.
(30b)

where: XMXM T  = the generalized modal mass ma-

trix, XKXK T = the generalized modal stiffness ma-

trix, X
D

CTXDC   = the generalized modal damping

matrix.
Q(t) = XT P(t) = the generalized forces

Writing 2
iid 2C  , where 

i
 is a modal damping

factor, and if the modal vectors are normalized in such
a way that

)1(diagI
jifor1

jifor0
XMXM )i(T)i(











where I is the identity matrix, and

)(diag
jifor

jifor0
XKXK 2

i2
i

)i(T)i( 









where 
I is the eigenfrequency of the ith

 mode, then eq.
(7.29b) reduces to a set of decoupled equations of
motion given by,

)t(Q)t(
.
q22)t(q2)t(q 

..
(31)

Eq. (31) is a non homogeneous differential equa-
tion which ordinary methods can now be used to solve
for individual responses in the modal coordinate sys-
tem.

The ith decoupled equation of motion will be,

)t(Q)t(
.

i
q2

ii
2)t(

i
q2

i
)t(

i
q 
..

(32)

Modal solution

Eq. (32) has the same form as those describing the
dynamic response of a damped single degree of free-
dom harmonic oscillator whose complete solution is
given by,

 
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

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
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

d)t(sin)t(e)(Q
1

)0(qtsine
1

)0(qitsin
1

tcose)t(q

diii

t

0
i

di

.

di
tii

di

di5.02
i

i
di

tii
i

(33)

i = 1,2, ��..n

where 2
idi 1i   is a damped frequency..

q
i
 0 and 

i
 are constants (generalized displace-

ments and phase angles respectively) which must be
defined from the modal initial conditions.
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For i = 1, 2, ��n, is the number of degrees of

freedom
where  = the driving frequency.

The modal solutions obtained from eq. (33) are then
transformed back to obtain the solutions in the physical
coordinates by using relationship (29).

Eigenvalue problem

In order to solve the equation of motion (eq. 25)
using the modal analysis method it is necessary first to
solve the eigenvalue problem.

The natural frequencies 
i and the respective modes

of vibration X(i) of the piezoelectric actuator are ob-
tained from the nth order polynomial in 2

 by using eq.
(25) by assuming an undamped free vibration condition
i.e. all external mechanical and electric excitations are
assumed to be zero. This yields an eigenvalue problem
of the form:

det(-
2
M + K) = 0 (35)

The corresponding eigenvectors can be obtained
by applying the following equation,
(-w2

i
M + K)X(i) = 0, for i = 1, 2, ��n (36)

NUMERICAL EXAMPLES

Computation of eigen frequency with the aid of
MATLAB

In order to verify the validity of the finite element
formulation the dynamic solution for a free/forced pi-
ezoelectric actuator under sinusoidal excitation was ob-
tained using the modal analysis method. The curved
actuator was approximated (divided) into 4 equal ele-
ments (Figure 5). With the fixed-free boundary condi-
tions, the local and global stiffness and mass matrices
for each element (eq. 17, 18, 22, 23) and later for the
whole structure (eq. 24a, 24b) were determined. The
material and geometrical characteristics of a C-shape
piezoelectric actuator used in the analysis are shown in
TABLE 1.

The 3 lowest natural frequencies for the actuators
with aluminium, brass and mild steel substrates each of
three different thicknesses were computed with the aid
of MATLAB code developed for this purpose. The re-
sults were compared to those calculated using the ex-
perimentally validated formula (eq. 37) obtained from
reference[9]. The results show good agreement as indi-
cated in figure 6a-8a. An error of approximately 1.4%
was noted. Their corresponding frequency-amplitude
response curves are shown in figure 6b-8b.

TABLE 1 : Material properties and dimensions

Property and unit PZT26 Aluminium Brass Mild steel Epoxy 

External radius[mm] 10 8.82 8.82 8.82 9.0 

Thickness[mm] 1 
0.25, 0.31, 
0.5,1.0,2.0 

0.25, 0.31, 
0.5,1.0, 2.0 

0.25, 0.31, 
0.5,1.0, 2.0 

0.18 

Length[mm] 10 10 10 10 10 

Piezoelectric strain 
coefficient d31 [m/v] 

-1.3e-12 0 0 0 0 

Elastic modulus
2m

N
 76e09 7.0e10 1.10e11 1.90e11 5.2e09 

Density (kg/m3)  7.8e03 2.7e03 8.56e03 7.85e03 1.90e03

Maximum 
Voltage[VAC/mm] 

200 - - - - 

TABLE 2 : Electromechanical properties of the PZ6

Properties Value Unit 
E
11s  1.30e-11 

E
12s  -4.35e-12 

E
13s = E

23s  -7.05e-12 

E
44s = E

55s  3.32e-11 

E
66s  3.47e-11 

N
m 2

 

d31 -1.28e-10 

d32 3.28e-10 

d15 3.27e-10 
N

C
 

r,11

  1190 

r,22

  1190 

r,33

  1330 

 

Relative value to vacuum permittivity
m
F

1085.8 12
o


  

Figure 5 : C-shape piezoelectric actuator approximated with
four straight arc elements
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

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













4
na

2
i2

i R

D
(37)

where 
i 
= ith Natural frequency, D = Composite bending

stiffness[Nm2], 
i
 = ith

 Non- dimensional natural fre-
quency,  = mass per length [kg/m] and R

na
 = Radius

of neutral axis[m]

Dynamic analysis simulation using MSC aarc

Overview

A dynamic modal analysis was performed to ob-
tain the resonance modes of the actuator, and then a
harmonic analysis was performed to determine the dy-
namic response of the actuator to an alternating volt-
age. Displacements at a range of frequencies around
resonance points were determined. The dimensions and
material data for the models used in the simulation are
as shown in TABLE 1 and 2.

Resonance points for the C-shape piezoelectric ac-
tuator for 3 different substrate materials (i.e. Aluminium,
Brass and Mild Steel) were determined. For each ma-
terial three thicknesses (i.e. 0.25mm, 0.31mm, and
0.5mm) were analysed.

Boundary conditions

One electrode was placed on one node on the in-
ner surface of the piezoelectric ceramic to serve as
ground terminal, while another electrode was placed
on one node at the outer surface of piezoelectric ce-
ramic to serve the live terminal. In the model, these elec-
trodes are made by tying the potential degree of free-
dom of all nodes belonging to the respective surface to
one node, that is all nodes on the inner surface are tied
up to the ground terminal while the outer surface nodes
are tied up to the live terminal.

The left end tip was fixed while the right hand one

Figure 6b : Frequency - response curves for aluminium sub-
strate at an excitation voltage of 10V, damping coefficient = 0.707

Figure 6a : Comparison of values of fundamental frequency
for aluminium substrate

Figure7b : Frequency-response curves for brass substrate,
(excitation voltage=10V, damping coefficient =0.7071)

Figure 7a : Comparison of values of fundamental frequency
for brass substrate
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was left free to oscillate. Plane stress element type 160
was used for the piezoelectric material. This element is
mechanically equivalent to element 3 which was used
for the substrate materials. This element type has three
degrees of freedom; the first two are for the X_ and Y_
displacement, and the third is for the electric potential.

Modal analysis

Load cases and piezoelectric dynamic modal pa-
rameters set to search for eigenfrequencies were as fol-
lows:

The LANCZOS method was used, whereas a num-
ber of frequencies were set to 3. The frequencies ob-
tained are shown in figure 9-11 (appendix B).

Harmonic analysis

For the harmonic analysis, the same model built for
modal analysis was used. A new load case was set to suit
harmonic boundary conditions. The frequency range was

Figure 8a : Comparison of values of fundamental frequency
for mild steel substrate

selected to be around the first 2 natural frequencies, i.e.
from 1 kHz and 5 kHz into 50 steps. Results obtained
are shown in figure 12 through 14(Appendix B).

Figure 12 for example, shows the X-displacement
at frequencies 1053 Hz and 3276Hz which is close to
the first two resonant frequencies. The tip displacement
magnitude along the frequency range is plotted to show
the static solution (i.e. 0.676 Micrometer) at 0 Hz, and
the resonance around the first and second natural fre-
quencies.

For both modal and harmonic analysis simulation a
0.25mm substrate was used.

RESULTS AND DISCUSSION

Finite element models based on Euler Bernoulli
beam theory were used to perform the dynamic analy-
sis of C-shape actuator consisting of a three layer
unimorph laminated beam (Piezoceramic layer, adhe-
sive layer and metallic substrate) where the only defor-
mation impetus was an actuation strain induced in the
piezoelectric layer.

The Effect of thickness and substrate material on
the displacement and on the operating bandwidth is as
shown in figure 6b-8b for a 0.31mm substrates and
figure 12-14 (appendix B) for 0.25mm substrates. The
results show that an increase of both substrate/PZT
thickness ratio and the elastic modulus of the substrate
contribute to raise the fundamental frequency of the C-
shape actuator. This implies that with appropriate com-
bination of the thickness ratio and the elastic properties
of the actuator it can be possible to determine the loca-
tion of the fundamental frequency and thus set the range
over which the actuator can operate before reaching
resonance frequency. From the results obtained it can
also be concluded that an actuator with a mild steel
substrate can operate at higher frequencies compared
to aluminium and brass substrates of the same thick-
ness.

It can also be noted that, in this study the C- actua-
tor was approximated using one dimensional curved
actuator and more importantly only 4 finite elements
(Straight arc) were used. The results reported in sec-
tion 5.1 indicate that the predicted results and the re-
sults calculated using eq. (37) from reference[9] give an
error of approximately 1.4%. This is apparent that if

Figure 8b : Frequency-response curves for a mild steel sub-
strate (excitation voltage=10V, damping coefficient =0.7071)
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Figure 12 : the first two resonance points for a 0.25mm Alu-
minium substrate (i.e. at 1053 and 3276 Hz respectively )

Figure 13 : The first two resonance points for a 0.25mm mild
steel substrate (i.e. at 1100and 3360 Hz respectively)

Figure 14 : The first two resonance points for a 0.25mm brass
substrate

Figure 9 : First Mode shape for a 0.25mm Aluminium sub-
strate

Figure 10 : Second Mode shape for a 0.25mm Aluminium
substrate

Figure 11 : The third mode shape for a 0.25mm Aluminium
substrate

the number of elements is increased much more accu-
rate results could have been obtained. In view of this, it
can be concluded that the simplicity of the model can
remarkably reduce the computational time.
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