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ABSTRACT 

Using the theoretical model of E. A. Pashitskii et al., various semi-empirical potentials for 
interaction of helium atoms in real space have been studied. Theoretical evaluation of the Bogolyubov 
quasi particle spectrum in Bose liquid has been done and results were compared with inelastic neutron 
scattering experiments. Our theoretical results are in good match with the experimental data. 
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INTRODUCTION 

Although there are large numbers of calculations1-6 for the spectrum of elementary 
excitation in the super fluid (SF) 4He Bose liquid but there remains still some problem in this 
direction. There is an excellent agreement with experimental data in the region of the roton 
minimum obtained by Monte Carlo method making use of the shadow wave function1 and 
by the correlation basis function2. These calculations also employed the modern inter atomic 
potentials3-5 for 4He. There are some calculation using microscopic perturbation theory6-8 for 
long wave phonon part of the spectrum E(p) = C1p, where C1 is the speed of the first 
(hydrodynamic) sound in liquid 4He. These calculations face some principal difficulties 
because the non-renormalized perturbation theory gives rise to infrared divergence and are 
non-analytical9-12 at p → 0 and ε → 0. These difficulties have been removed by the 
application of combined variable techniques13. These variables reduces to hydrodynamic 
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variable of macroscopic quantum hydrodynamics14 in the long-wavelength limit (p → 0). On 
the other hand in the short wavelength domain, they correspond to the Bosonic quasi particle 
creation and annihilation operators. 

Neutron inelastic data15,16 and results in quantum evaporation of 4He atoms17 show 
that the maximal density ρ0 of the single particle BEC (Bose-Einstein Condensate) at T < Tλ  
does not exceed of the total density ρ of the liquid 4He, whereas the density of the SF 
component ρs → ρ at T → 0. This indicates that there is strong interaction between 4He 

atoms and the quantum structure of the super fluid condensate in He-II carry an excess 
density (ρs – ρ0) >> ρ0. This requires much more investigations. 

 In this paper, we have studied various semi-empirical potentials to study helium-
helium interaction. These potentials involve strong repulsion at small distances and weak 
Van der Waals attraction at large distances. We have also computed the Bogolyubov 
spectrum of a dilute quasi ideal Bose gas and compared our evaluated results with inelastic 
neutron scattering data. Our evaluated results are in good match with the experimental data. 

Mathematical formula used in this study 

In order to describe the interaction of He atoms in real space, one uses various semi-
empirical potentials. These potentials involve strong repulsion at small distances and weak 
Van der Waals attraction at large distances. However, most of those potentials are 
characterized by strong divergence at r → 0. For example, Lennard-Jones Potential18 -  
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∈ and σ are potential parameters, if one takes the Fourier transform of the potentials. 

V (p) = ∫d3rU (r) eip.r 

 = ∫
∞

0

4
p
π rU (r) Sin (pr) dr  …(2) 

One cannot use this potential for the description of pair interaction in momentum 
space as it is infinite, diverging as the lower limit. 

The other potential, which is used for the calculation of inter atomic interaction and 
of possible bond state is Aziz potential19. 
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UA (r) = A exp (–αr – βr2) – exp [– ((r0/r) – 1)2]
2

K = 0
∑ C2k + 6r−2k−6           r < r0   

= A exp (–αr – βr2) –
2

K = 0
∑ C2k + 6r−2k−6                                          r ≥ r0  …(3) 

Where, 

 A = 1.8443101 x 105 K 

 α = 10.43329537 Å–1 

 β = 2.27965105 Å–2 

 C6 = 1.36745214 K x Å–6 

 C8 = 0.42123807 K x Å–8 

 C10 = 0.17473318 K x Å–10 

Such potentials remain finite at r = 0 due to the non-analytic exponential dependence 
on r, which suppresses any power divergence at r → 0. The potential (3) is convenient for 
calculations in real space making use of Jastrow-like wave functions. But employing its 
Fourier component for solving nonlinear integral equations is technically difficult. The 
model potentials, which describes interaction of helium atoms in real space takes into 
account that the distance less than the quantum radius of the helium electron shell r0 = 1.22 
Å, the Coulomb repulsion between the nuclei sets in.  

Piashitskij et al.20 suggested a potential, which diverges as r–1 at r → 0  

U(r) = 4e
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From the conditions of continuity of the potential U (r) and its first derivatives at r = 
rc, one determines the value of the parameters rc = 2.38 Å and μ = 229 Å−1 for α = r0/2 = 0.61 
Å, ε = 10.8 K and σ = 2.642 Å. 

In many body problem, the quantum effects play an essential role and in that case, 
the two-body potential is irrelevant. For that, one should have a model potential with a 
simpler analytic expression. There is a model potential in the form of a Fermi type function 
in real space. 
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which at b = 0 degenerates into a state function at θ (a-r) with a finite height U0 at r < a. This 
model corresponds to a model of ‘soft’ sphere. Its Fourier component is expressed in terms 
of first order spherical Bessel function.21  

                        V (p) = V0 
j  (pa)

pa
1 , j1 (x) = 

Sin (x)  Cos( )
x
− x x

2  
…(6) 

where V0 = 3V (0) = 4π U0 a3. It is an oscillating sign changing function of momentum 
transfer p. The same oscillating Fourier component is characteristics of smooth potential V 
(r) in the form of Linhardt type function22 having an infinite negative derivatives at the 
inflection point r = a. 
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Formally this problem is an inverse to one of periodic oscillations of spin density in 
real space of the exchange interacting spins of electrons in metal. This is popularly known as 
RKKY (Ruderman-Kittel-Kaisuya-Yosida) oscillation23. The same behavior is characteris-
tics of the Fourier components of more realistic potentials diverging faster than r-1 at r = 0. It 
posses inflection points in the radial dependence at r = rc. The amplitude of the oscillation of 
the Fourier component of the Fermi type potential (5) at b ≠ 0 is falling off exponentially 
with the increase of the parameter b due to the decreasing absolute value of the negative 
derivative at the inflection point. 

If one substitutes the oscillating potential (6) into the Bogolyubov of a dilute quasi-
ideal Bose-gas24,25. 

                                  EB (p) = 
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RESULTS AND DISCUSSION  

In this paper, in order to describe the interaction of He atoms in real space, various 
empirical potentials are used, which involve strong repulsion at small distances and week 
Van der Waals attraction at large distances. Most of the potentials are characterized by a 
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strong divergence at r → 0. Among the various potential discussed, there is a repulsive 
potential in the frame work of ‘soft spheres model’. The Fourier component v(p) is an 
oscillating sign-changing function of momentum transfer p. It appears that in a certain 
region of momentum space at p ≠ 0, there is an effective attraction between Bosons v(p) < 0. 
This has nothing to do with Van der Waals forces and has a quantum mechanical diffraction 
nature. This attraction gets substantially enhanced due to the multi-particle effects of 
renormalization (screening) of the initial interaction28-30. 

We have theoretically compared the Bogolyubov quasi particle spectrum equation 
(8), with the oscillating Fourier component [v (p) = V0 Sin (pa)/pa] and also with 
experimental spectrum26,27. The results are in close appearance with the hard sphere potential 
(equation 6). The results are shown in Table 5. In Table 1, we have shown the evaluated 
radial dependent of potential (4) and Aziz potential (5), in Table 2, the two forms of finite 
potential (5) has been shown in real space (r/a) keeping b = 0 [I-form] and b = 0.5a [II-form]. 
In Table 3, we have given the (Lindhardt function potential [UL (r) / Uo] shown in equation 
(7) in real space (r/a). In Table 4, we have shown the momentum dependent of the Fourier 
component of the Fermi type potential (5) for b = 0 and potential (4). 

From these studies, it looks that the soft sphere model repulsive potential, which 
gives very good agreement between the theoretical quasi particle spectrum EB (p) and the 
experimental spectrum of elementary excitation in quantum Bose liquid 4He, is much 
smaller than the value of the Aziz-type potential at r → 0. It is a result of strong quantum 
diffraction effects in Bose liquids, because the average distance between particles is equal or 
less than the de Broglie wavelength for Bosons. 

Table 1: Evaluated results of radial dependence of potential (4) and Aziz potential (3) 

r (Å) Potential (4) U (r) (K) Aziz Potential UA (r) (K) 

2.5 105.2 110.8 

2.6 95.6 106.5 

2.7 84.3 98.2 

2.8 50.6 68.6 

2.9 16.7 23.2 

3.0 -12.2 -16.8 

Cont… 
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r (Å) Potential (4) U (r) (K) Aziz Potential UA (r) (K) 

3.1 -14.6 -15.6 

3.2 -10.4 -11.8 

3.3 -8.6 -9.9 

3.4 -6.5 -7.3 

3.5 -5.6 -6.8 

4.0 -4.32 -5.8 

4.5 -4.00 -3.8 

5.0 -0.08 -1.02 

Table 2: Evaluated results of the finite potential model (5) in real space (r/a). [I–form 
for b = 0] and [II–form for b = 0.5a.] 

r/a UF(r) / U0 for b = 0 UF(r) / U0 for b = 0.5a 

0.0 1.00 1.00 

0.1 1.00 0.998 

0.2 1.00 0.996 

0.3 1.00 0.987 

0.4 1.00 0.965 

0.5 1.00 0.928 

0.6 1.00 0.889 

0.7 1.00 0.793 

0.8 1.00 0.786 

0.9 1.00 0.684 

1.0 0.00 0.546 

1.1 0.00 0.253 

1.5 0.00 0.446 

1.6 0.00 0.054 
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Table 3: Evaluated results of the Lindhart function potential UL(r) / U0 equation (7) in 
real space r/a 

r/a UL(r) / U0 

0.0 1.00 
0.1 0.984 
0.2 0.975 
0.3 0.952 
0.4 0.886 
0.5 0.825 
0.6 0.795 
0.7 0.705 
0.8 0.659 
0.9 0.613 
1.0 0.526 
1.1 0.508 
1.2 0.432 
1.3 0.326 
1.4 0.286 
1.5 0.239 
1.6 0.187 
1.8 0.144 

Table 4: Evaluated results of the momentum dependence of the Fourier components of 
the Fermi type potential (5) for b = 0 and potential (4) 

V(p) / V(o) 
p (Å–1) 

Potential (5) Potential (4) 

0.0 1.0 1.0 

0.2 0.869 0.986 

0.4 0.792 0.924 

Cont… 
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V(p) / V(o) 
p (Å–1) 

Potential (5) Potential (4) 

0.5 0.607 0.885 
0.6 0.496 0.816 
0.8 0.288 0.774 
1.0 0.087 0.625 
1.5 -0.156 0.463 
2.0 -0.108 0.136 
2.5 -0.088 -0.115 
3.0 0.145 -0.056 
3.5 0.208 0.069 
4.0 0.125 0.145 
4.5 0.086 0.186 
5.0 -0.095 0.068 

Table 5: Evaluated results of Bogolyobov quasi particle spectrum (equation 8) with the 
oscillating Fourier component of the hard sphere potential equation (6) 

EB(p), K 
p (Å–1) Hard sphere potential 

eq. (6) 
Bogolyobov quasi particle

Spectrum eq. (8) 
0.0 0.052 0.046 
0.25 3.628 4.554 
0.50 6.836 7.397 
0.75 10.957 11.412 
1.00 14.254 15.350 
1.25 12.868 13.145 
1.50 10.296 11.254 
1.75 8.144 9.266 
2.00 9.686 10.052 
2.25 11.234 12.645 
2.50 16.286 17.128 
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