A Review on Freshwater fish diversity

Satish Kumar P*

Department of Pharmacology, CMR College of Pharmacy, Jawaharlal Nehru Technological University, Medchal, Hyderabad, Telangana-501401, India

*Corresponding author: Satish KP, Department of Pharmacology, CMR College of Pharmacy, Jawaharlal Nehru Technological University, Medchal, Hyderabad, Telangana-501401, India, Tel: 9705626825; E-Mail: shivajirudhranath123@outlook.com

Received: February 14, 2016; Accepted: February 28, 2017; Published: March 06, 2017

Abstract
It has been calculable that the full variety of all fishes is 32,500 species. Considering that fresh could represent but 0.3% of obtainable world water, it's exceptional that there are quite 15,000 seafood species. Whereas marine communities contain a lot of species in total, freshwaters are so much richer per unit volume of environs. Here, seafood species occur at one per fifteen km of water (cf. one per a 100,000 km³ of ocean water). This reflects the productivity, physiographic diversity and geographical isolation of fresh habitats comprising some twenty fifth of all vertebrates, fresh fishes are a crucial element of world multifariousness. Approximately 7,956 of all fish species (30%) are contained inside 6 of the 515 assortment families.

keywords: Fish; Food; Fresh water; Species; Saltwater

Introduction
There are 10,000 circumstances more saltwater in the seas than there is freshwater in the lakes and streams. In any case, just 58 percent of surviving fish species is saltwater. A lopsided 41 percent are freshwater angle (the staying one percent are anadromous) [1-11]. This differing quality in freshwater species is, maybe, not astounding, since a great many separate lake living spaces advance speciation.

Most maritime species (78 percent, or 44 percent of all fish species), live close to the shoreline. These seaside angles live on or over the generally shallow mainland rack. Just 13 percent of all fish species live in the vast sea, off the rack. Of these, 1 percent is epipelagic, 5 percent are pelagic, and 7 percent are profound water.

Fish are found in almost all normal amphibian situations. Most fish, regardless of whether by species tally or plenitude, live in hotter conditions with moderately stable temperatures. In any case, a few species survive temperatures up to 44.6°C (112.3 °F), while others adapt to colder waters; there are more than 200 finfish species south of the Antarctic Convergence. Some fish species endure salinities more than 10 percent.

A portion of the briefest lived species is gobies, which are little coral reef-abiding fish. A portion of the longest-lived is rockfish [12-31]. A portion of the cases of freshwater fishes are Black Basses, Temperate Basses, Crappie, Sunfishes, Carp...
and Minnows, etc., these incorporate ponders, for example, the Critically Endangered Mekong goliath catfish (*Pangasianodon gigas*) and the silver arowana (*Osteoglossum bicirrhosum*) (FIG 1).

FIG 1. *Mekong goliath catfish* (*Pangasianodon gigas*) and the *silver arowana* (*Osteoglossum bicirrhosum*).

The food chains of the world’s oceans are at risk of collapse paid to decline of greenhouse gases, overfishing and localized pollution, a stark new analysis shows. The world’s oceans absorb about a third of all the GHG emitted by the burning of fossil fuels. Sea is therefore huge that a million or a lot of so far unknown species might board its waters. Most of these aquatic species are tied along through the food cycle.

The foundation of the sea's organic phenomenon is essentially invisible. Countless billions of single-celled organisms, called plant life, saturate sunlit upper-ocean waters worldwide [32-51]. These tiny plants and microorganism capture the sun's energy and, through photosynthesis, convert nutrients and carbon dioxide into organic compounds. On the coast, seaweed and sea grasses do the same issue.

They also turn out a lot of than half the element that we have a tendency to breathe on Earth.

The next level of the marine organic phenomenon is formed from animals that feast on the sea's abundant vegetation [64-78]. On the ocean's surface waters, microscopic animals-zooplankton, which embody jellyfish and the larval stages of some fish, barnacles, and molluscs-drift across the sea, grazing opportunistically. Larger herbivores include percoid, parrotfish, green turtles, and manatees. The oxygen and biomass they turn out conjointly sustains terrestrial life.

An organism’s biological process level is measured by the range of steps it's far away from a primary producer. Food chains connect organisms through energy transfer among producers, consumers, and decomposers. These energy levels are referred to as biological process levels [52-63]. A significant quantity of energy is lost between biological process levels. The number and kind of species that structure every level varies greatly between totally different areas and different ecosystems.

Morphology

Overall, we tend to found there’s a decrease in species diversity and abundance disregard less of what scheme we square measure viewing. These are broad scale impacts, made worse once you mix the impact of warming with activity.

Meanwhile, warming of the oceans is causing water to thermally expand, fuelling sea level rises caused by melting land ice. Problems in the ocean’s food chains are a right away concern for many countless folks that rely on food for sustenance,
medicines and income. The loss of coral reefs could conjointly worsen coastal erosion due to their role in protective shorelines from storms and cyclones.

The primary marine organic phenomenon, which is based mostly on plant productivity, includes many of the sea's species—but not all of them [79-98]. There square measure different deep-ocean schemes that are entirely freelance of the daylight energy that kick-starts the most marine ecosystem. At their roots, these unique ecosystems square measure fuelled by chemical energy, which enters the ocean from sources like seafloor hydrothermal vents. The large predators that sit atop the marine organic phenomenon square measure a various cluster that has finned (sharks, tuna, dolphins), feathered (pelicans, penguins), and flipped (seals, walruses) animals.

These apex predators tend to be large, fast, and very sensible at catching prey. They are conjointly lasting and typically reproduce slowly but the marine food chain's prime predator’s square measure common prey for the most deadly hunters of all-humans. When prime predator species square measure depleted, their numbers are typically slow to rebound, and their loss can send shock waves through the entire organic phenomenon. They are chiefly bacterium that break down dead organisms. This process releases nutrients to support the producers as well because the customers that feed through gripping organic material within the water column. This process is terribly vital and means even commanding customer’s square measure tributary to the organic phenomenon because the decomposers break down their waste or dead tissue.

Some species in an organic phenomenon are delineating as ‘keystone’ species [99-112]. A keystone species is one that has a greater impact on an organic phenomenon than you'd expect in reference to their abundance. The removal of a keystone species characteristically results in a significant change, in the same way that removing a keystone from AN arch or bridge might cause the structure to collapse. The effect of removing or reducing a species in an organic phenomenon varies significantly looking on specific species and therefore the particular organic phenomenon. In general, food webs with low variety square measure additional vulnerable to changes than food webs with high biodiversity. In some food webs, the removal of a plant species can negatively have an effect on the entire organic phenomenon, but the loss of one plant species that creates up solely a part of the diet of a herbivorous client could have very little or no impact (FIG .2).

FIG .2. Predominant fish families by species abundance in freshwater.
Feeding Techniques:
There are three essential strategies by which sustenance is accumulated into the mouths of fish: by suction encouraging, by slam nourishing, and by control or gnawing. Almost all fish species utilize one of these styles, and most utilize two. Early fish genealogies had firm jaws restricted to minimal more than opening and shutting. Current teleost's have developed protrusible jaws that can contact immerse prey [113-128]. An extraordinary illustration is the protrusible jaw of the sling jaw wrasse. Its mouth stretches out into a tube half the length of its body, and with a solid suction it gets prey. The gear hides under its body when it is not being used.

By and by, sustaining modes lie on a range, with suction and smash nourishing at the extremes. Many fish catch their prey utilizing both suction weights joined with a forward movement of the body or jaw.

Most fish are nourishment go getters, or generalists. They eat whatever is most effectively accessible. For instance, the blue shark sustains on dead whales and about everything else that wriggles: other fish, cephalopods, gastropods, ascidians, scavengers. Sea sunfish lean toward jellyfish.

Their vision:
Numerous types of fish can see the bright end of the range, past the violet.
Mesopelagic angles live in more profound waters, in a twilight zone down to profundities of 1000 meters, where the measure of daylight accessible is not adequate to bolster photosynthesis [129-142]. These fish are adjusted for a dynamic life under low light conditions.

Toxic Nature:
Lethal fish create solid toxic substances in their bodies. Both harmful fish and venomous fish contain poisons; however convey them in an unexpected way. Venomous fish nibble, sting, or wound, creating an envenomation. Venomous fish don't really bring about harming in the event that they are eaten, since the stomach related framework regularly devastates the venom. By complexity, harmful fish don't chomp, sting, or cut to convey their poisons, yet they are toxic to eat on the grounds that they contain poisons in their body that the stomach related framework does not wreck.

Venomous fish are found in all environments around the globe, yet for the most part in tropical waters. They twisted more than 50,000 individuals consistently. They convey their venom in venom organs and utilize different conveyance frameworks, for example, spines or sharp balances, points, spikes and teeth. Venomous fish have a tendency to be either extremely noticeable, utilizing showy hues to caution foes, or skillfully covered and perhaps covered in the sand [143-162]. Aside from the guard or chasing esteem, venom help base staying fish by slaughtering the microscopic organisms that attempt to attack their skin.

They are yet to be tapped asset for bio prospecting to discover drugs with restorative employments. Treatment for venom stings typically incorporates the use of warmth, utilizing water at temperatures of around 45°C (113 °F), since warmth separates most complex venom proteins.

Conclusion
Around 94% of all freshwater fisheries happen in creating nations. They give nourishment and an employment to a large number of the world's poorest individuals, and furthermore add to the general financial prosperity by methods for fare item exchange, tourism and amusement. Fish are looked for by people for their incentive as business nourishment angle,
recreational game fish, enhancing aquarium angle and in tourism and so forth. Throughout mankind's history, essential fisheries have been founded on search angle. Scavenge fish are little fish which are eaten by bigger predators. They as a rule school together for security.

Truly and today, most fish protein has stopped by methods for getting wild fish. Be that as it may, aquaculture, or fish cultivating, this has been honed since around 3,500 BCE in China, is winding up plainly progressively imperative in numerous countries. In general, around one-sixth of the world's protein is assessed to be given by fish.

At present, some vast scale angle ranchers are extending their operations to take care of promoting expenses. Sooner rather than later, need ought to be given to the treatment of fish, albeit some advance has been made. Be that as it may, connected information of how to keep up the nature of fish is as yet inadequate. Concentrate on taking care of fish cleanly from homestead door to customer must increment with the goal for fish to summon higher costs. Enhanced market offices are required that outcome in a more sterile condition, and also other appropriate luxuries [163-171]. Waste and defilement of fish could be diminished through legitimate taking care of systems. Building more noteworthy familiarity with the wholesome estimation of freshwater fish sustenance and advancing the utilization of fish as a normal dietary staple are critical strides towards further improvement of aquaculture and advertising of amphibian items.

REFERENCES

87. Ulman A. Urgent Change in Management Measures Required to Save Turkish Fisheries from Collapse. J Coast Dev. 2014;17:386.

92. Abdi TG. Participatory Evaluation and Verification of Improved Post Harvest Fishery Technologies on Selected Sites of Oromia water bodies. Fish Aquac J. 2014;5:090.

139. Sogbesan OA, Onoja CF, Adedeji HA. Utilization of Treated Duckweed Meal (Lemma paucisostata) as Plant Protein Supplement in African Mud Catfish (Clarias gariepinus) Juvenile Diets. Fish Aquac J. 2015;6:141.

