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ABSTRACT
Probabilistic inference in an MRF involves computing Marginal distribu-
tions over the random variables in the graph. Graph formalism is an effec-
tive and efficient representation for multivariate independence structure
for both model construction and for inference. The use of graphs to repre-
sent independence structure in multivariate probability models has been
pursued in a relatively independent fashion across a wide variety of re-
search disciplines. Traditional graphical models decompose the joint dis-
tribution as a product of functions of subsets of variables. However, a
number of rigorous approximation algorithms have been devised for per-
forming inference in MRFs. Factor graphs are more useful for describing
models that involve a large number of overlapping relationships between
variables. When compared to Bayesian Networks (BNs) and Markov Ran-
dom Fields (MRFs) Factor graph model decomposes interactions between
variable. While functional relationships between variables in BNs and
MRFs must be determined by identifying parent-child clusters or maximal
cliques, Factor graphs explicitly identify functional relationships. Any
Bayesian network or Markov random field can be represented as a factor
graph. Belief propagation algorithm is used for finding the Marginal prob-
ability of the any hidden Variable conditioned on the observed variable.
The algorithm is designed by passing real valued functions called mes-
sages along the edges between the nodes. This paper analyses the appli-
cation of the belief propagation on Biological Markov random field with an
example.  2012 Trade Science Inc. - INDIA
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INTRODUCTION

Many studies in recent years address the challenge
of constructing protein�protein interaction networks.

Several experimental assays, such as yeast two-hy-

brid[13] and tandem affinity purification[11] have facili-
tated high-throughput studies of protein�protein inter-

actions on a genomic scale. Some computational ap-
proaches aim to detect functional relations between
proteins, based on various data sources such as phylo-
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genetic profiles[10] or mRNA expression[3]. Other com-
putational assays try to detect physical protein�protein

interactions by, for example, evaluating different com-
binations of specific domains in the sequences of the
interacting proteins[12].

While the above combined approaches lead to an
improvement in prediction, they are still inherently lim-
ited by the treatment of each interaction independently
of other interactions. By explicitly modeling such de-
pendencies, we can leverage observations from varied
sources to produce better joint predictions of the pro-
tein interaction network as a whole. As a concrete ex-
ample, consider the budding yeast proteins Pre7 and
Pre9, given in Figure 1.

structure is a central problem in protein-folding and
molecular design. For many the applications it is not
enough to calculate a single, most probable side chain
configuration but the interest is mainly in the calculation
of the free energy distributions. Due to the importance
of this problem in computational biology large number
of special algorithms has been developed.

Biomolecular systems are governed by changed in
free energies provides better understanding of bio mo-
lecular interactions and the ability of optimize them. A
probabilistic representation confers several advantages,
including that it provides a structural changes due to
changes in temperature, pH, ligand binding and muta-
tion can become an inference problems over the model.
Recent advances in inference algorithms for graphical
models such as generalized belief propagation is a rig-
orous approximation to the free energy of the system[14].
These free energy estimates are accurate enough to
perform non-trivial tasks within structural biology.

The free energy is defined as G = E  TH, where E
is the enthalpy of the system, T is the absolute tempera-
ture and H is the entropy of the system. The entropy
estimates are difficult because they involve sums over
an exponential number of states. Hence the entropy term
is often ignored altogether under the assumption that it
does not contribute significantly to the free energy[1]

proved that energy functions comprising sums of
pairwise interactions cannot distinguish a protein�s na-

tive structure from decoy structures. Hence entropy
contributions become significant when the structures are
similar. It is proved that the native structure is usually
the one with highest entropy and hence[8] entropy should
be included in the energy calculations.

A MARKOV RANDOM FIELD MODEL FOR
PROTEIN STRUCTURE

A protein consists of finite number of atoms across
one or more polypeptide chains. A configuration of the
protein corresponds to the geometry of each of its con-
sistent atoms. An accurate representation of the protein
is the ensemble of configurations at room temperature.
Let the configuration of a protein be regarded as a ran-
dom variable in some configurational space C. Let x
denote the random variable which corresponds to the
configuration of the entire set of atoms in the protein.

Figure 1

These proteins were predicted to be interacting by a
computational assay[12]. However, according to a large-
scale localization assay[5], the two proteins are not co-
localized; Pre9 is observed in the cytoplasm and in the
nucleus, whilePre7 is not observed in either of those com-
partments. Based on this information alone, it can be con-
cluded that an interaction between the two proteins is
improbable. However, additional information on related
proteins may be relevant. For example, interactions of
Pre5 and Pup3 with both Pre9 and Pre7 were reported
by large scale assays[9, 10]. This example illustrates two
reasoning patterns that we would like to allow in our
model. First, to encode that certain patterns of interac-
tions (e.g., within complexes) are more probable than
others. Second, an observation relating to one interac-
tion should be able to influence the attributes of a protein
(e.g., localization), which in turn will influence the prob-
ability of other related interactions.

Proteins are chains of simpler molecules called
amino acids. An amino acid unit in a protein is called a
residue. Each amino acid has a chemical group called
the side-chain. This group distinguishes one amino from
another. Amino acids are joined end to end during pro-
tein synthesis by the formation of peptide bonds. For-
mation of a succession of peptide bonds generates the
backbone upon which the side chains are hanged. Pre-
dicting side-chains conformation given the backbone
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the Boltzmann�s constant and T is the absolute tem-

perature in Kelvin.
The entire set of atoms is partitioned as 2 disjoint

subsets as backbone and side bone chains. Backbone
atoms refers to those that are common to all 20 amino
acid types, while side chain atoms are those that differ
among the different kinds of amino acids.

Let the backbone variables are represented by X
b

and the side bone variables are represented by X
s
, then

the protein representing the conformation of backbone
atoms are the
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the side chain space with a fixed backbone.
Given a specific backbone trace X

b
 due to the na-

ture of the physical forces in action, pairs of residues
distally located according to trace are expected to ex-
ert very little direct influence on one another. Such resi-
dues are independent of each other when conditioned
on X

b
. These conditional independencies are compactly

independencies are compactly encoded as a Markov
Random field (MRF).

An MRF is a probability distribution on over a graph
and can be represented as a tuple
(x, , ) where the set of random variables in the multi-
variate distribution are the set of vertices X

s
 and X

b
.

The edges e  join residues that are directly depen-
dent on each other and  = (

1
, 

2
, �,

m
) is a set of

functions called as factors over the random variables.
In general an MRF encodes the following conditional
independencies for each vertex X

i
 and for any set of

vertices X not containing X
i
 as

P(X
i
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That is a random variable X
i
 is conditionally inde-

pendent of every other set of nodes in the graph, given
its immediate neighbors in the graph[7].
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where Z
b
 is the so-called partition function.

Figure 2 : Part of the random field induced by the outlined

residues i
sx  �s are hidden variables representing the

rotameric state, the visible variables are the backbone atoms
in conformations x

b
.
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of atoms that serve as arguments to iö  and )E(x öi  is
the potential energy of those atoms as defined by a mo-
lecular force field. The joint distribution is obtained by
simply multiplying (2) with the probability of a particu-
lar backbone conformation x

b
 according to (1). Thus

the probability of a given state is simply the product of
the functions, suitably normalized.

PROBABILISTIC INFERENCE AND FREE
ENERGY CALCULATIONS

Probabilistic inference in an MRF involves com-
puting the marginal distributions over the random vari-
ables in the graph. Inference and free-energy approxi-
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mations require the estimation of a partition function.
The belief propagation algorithm starts with random ini-
tial beliefs[4], and then use messages passing between
nodes to converge on a final set of beliefs.

Informally each node updates its own beliefs base
on the beliefs of its neighbors in the graph and the value
of the potential function. When the algorithm converges
the final beliefs can be used to obtain the partition func-
tion, and hence the free energy.

If the MRF happens to form a tree (i.e., a graph
with no cycles). Belief propagation is exact and takes
O (||) times, where || is the number of edges in the
graph. Here the algorithm used in generalized belief
propagation on MRF which encodes the conditional
distribution with the estimation of the partition function
for each backbone configuration X

b
[6].

Thus the undirected graphical model (MRFs) char-
acterized by the variable X and the potential function 
is a bipartite graph (X, F) called a factor graph. If it is
restricted with pairwise potentials then the equivalent
factor graph for the MRF of Figure 2 is shown as Fig-
ure 3.
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Note that if â
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1 this algorithm becomes equiva-

lent to running BP directly on the region graph.
The algorithm is typically started with randomly ini-

tialized messages and run until the beliefs converge. If it
does converge, GBP is guaranteed to find a fixed point
of the region based free energy.

Inferences from the probabilistic graphical models
have been used for a number of problems in the area of
secondary structure prediction[2]. The applications of
graphical models to tertiary structure are limited to ap-
plication of Hidden Markov models (HMM)[7]. HMMs
make severe independence assumptions to allow for
efficient learning and inference.

The focus is mainly on the problem of computing
entropy using marginal probabilities for the unobserved
variables, X

s
. Variables has been replaced by edges to

a factor f
i
 representing the interactions between these

variables can be dropped from the factor graph by re-
placing their interactions with each side chain variable
by a factor. Hence the probability of a particular con-
formation can be expressed using the factor notation





Ffa

a
ss )fa(X

Z
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Where a
sX is a set of variables connected to the

factor �fa� in the factor graph.

Figure 3 : Factor graph representation for Figure 2. The
observed variables corresponding to the backbone atoms can
be replaced by a factor f

i
 at each side chain variable.

The generalized belief propagation (GBP) is a mes-
sage passing algorithms that approximates the true
marginals. This differs from the belief propagation (BP)
algorithm in the size of its regions that estimates the free
energy. GBP computes fixed points of the more general
region based free energy. Let the pseudo message for a
region R with parents P(R) and children O(R)
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APPROXIMATING FREE ENERGY

A corollary of the second law of thermodynamics
is that a physical system seeks to minimize its freeenergy.
Thus, the most accurate entropy estimates are obtained
when the system has the least free energy. Under the
assumption of constant temperature, the free energy of
a system is given by

G= E -TH
Where E is the enthalpy of the system, T the tem-

perature and H, the entropy. If we associate a belief
b(x) with state x, this can be rewritten as

G = ))x(b(ln)x(bb(x)E(x)
xx
 

Where the first term and second terms on the right
are the enthalpic and entropic contributions
respectivelyand the summation is over all possible x.
Intuitively, the enthalpic term corresponds to the en-
ergy of thesystem. However, the second law of ther-
modynamics dictates that not all energy can be used to
do work. The free energy is the energy left to be used
to do work after deducting the energy that is �lost�

which isthe entropic deduction mentioned above. There
has been a considerable amount of work by physicists
at developing approximations to estimatethese terms.
The popular methods are based on approximating the
free energy using a region based free energy. Intuitively,
the idea is to breakup the factor graph into a set of
regions, R, each containing multiple factors f

R
 and vari-

ables X
R
, computethe free energy over the region using

estimates of the marginal probability over X
R
, and then

approximatethe total free energy by the sum of the free
energies over these regions. Since the regions could
overlap, contributions of nodes�factors or variables�

which appear in multiple regions have to be subtracted
out, so that each node is counted exactly once. This
can be done by associating weights w

Ri 
to the contribu-

tion of every node in region region R
i
 R, in such a way

that the sum of weights of the regions that the node
appears in sums to one.

IMPLEMENTATION AND RESULTS

The Two-Way GBP algorithm is implemented to
compute region graph estimates of free energy and en-
tropy. The factor graph is created by computing inter

atomic distances and creatinga factor between residues
if the C

á
 distance between them was lesser than a thresh-

old value. This threshold is largely dictated by the sen-
sitivity of the energy function. For the energy terms we
used, we found a threshold of 8.0 Å to be adequate.

Each rotamer in the library also had an associated apriori
probability which were incorporated into the factor as
a prior. The temperature of the system was taken to be
300 K, whichcorresponds to normal room tempera-
ture. Then there were two levels of regions. The top
level contained �big�regions�regions with more than

one variable�while the lower level contained regions

representing singlevariables. Since the interaction be-
tween residues closest in sequence to be very strong,
all factors and nodes were placed between residues
within two sequence positions of each other in one re-
gion. Each of the rest of the factors, representing edges
between residues connected in space, formed
�big�regions with two nodes in them. Thus, in the ex-

ample shown in Figure 2, (X
1
s ;X

2
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3
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),(X
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), and (X

1
s ;X

7
s ;

f
17

) would be examples of big regions which appear in
thetop level, while (X

1
s) would be an example of a small

region in the lower level. Finally, edges from the �big�

regions to all small regions that contain a strict subset of
the �big� region�s nodes are added. In the aboveexample,

the region encompassing X
1
s ;X

2
s ;X

3
s would thus be

connected to the small regions corresponding to each
of X

1
s, X

2
s, and X

3
s. Since the region graph formalism

is very flexible, other equally valid alternatives for cre-
ating the graph exist. The best choice of regions will
largely depend on the application at hand and the com-
putational constraints. The choice of regions reflects a
balance between accuracy and running time by focus-
sing on residues which are expected to be closely
coupled together and placing them in bigger regions.

CONCLUSION

Fast and accurate free energy calculations are es-
sential to a number of significant tasks within computa-
tional structural biology including structure based pro-
tein. Side-chain prediction is an important subtask in
the protein-folding problem. It is shown that finding a
minimal energy side-chain configuration is equivalent to
performing inference in an undirected graphical model.
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The graphical model is relatively sparse yet has many
cycles and this equivalence is used to assess the per-
formance of approximate inference algorithms in a real-
world setting. The probabilistic graphical model based
approach to all atom free energy calculations strikes a
balance between the physical methods and the speed
of the statistical methods. Since it uses all atom force
fields when computing internal energies and computes
a better approximation of the true partition function of
the system. Also this method is competitive with statis-
tical methods in terms of speed.
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