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ABSTRACT KEYWORDS
Probabilistic inferencein an MRF involves computing Marginal distribu- Markov Random Fields;
tions over the random variablesin the graph. Graph formalismisan effec- Bayesian Networks;
tive and efficient representation for multivariate independence structure Factor graphs;
for both model construction and for inference. The use of graphsto repre- Belief networks.

sent independence structure in multivariate probability models has been
pursued in a relatively independent fashion across a wide variety of re-
search disciplines. Traditional graphical models decompose the joint dis-
tribution as a product of functions of subsets of variables. However, a
number of rigorous approximation algorithms have been devised for per-
forming inference in MRFs. Factor graphs are more useful for describing
models that involve alarge number of overlapping relationships between
variables. When compared to Bayesian Networks (BNs) and Markov Ran-
dom Fields (M RFs) Factor graph model decomposesinteractions between
variable. While functional relationships between variables in BNs and
MRFs must be determined by identifying parent-child clusters or maximal
cliques, Factor graphs explicitly identify functional relationships. Any
Bayesian network or Markov random field can be represented as a factor
graph. Belief propagation algorithmisused for finding the Marginal prob-
ability of the any hidden Variable conditioned on the observed variable.
The algorithm is designed by passing real valued functions called mes-
sages along the edges between the nodes. This paper analyses the appli-
cation of the belief propagation on Biological Markov random field with an
example. © 2012 Trade Sciencelnc. - INDIA

INTRODUCTION bridi*¥ and tandem affinity purification™ havefacili-

tated high-throughput studiesof protein—protein inter-

Many studiesin recent yearsaddressthechalenge  actions on agenomic scale. Some computational ap-

of constructing protein—protein interaction networks.  proaches aim to detect functional relations between
Severa experimental assays, such as yeast two-hy-  proteins, based on various data sources such as phylo-
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genetic profiles™ or mRNA expression’®. Other com-
putationa assaystry to detect physical protein—protein
interactionsby, for example, eva uating different com-
binations of specific domainsin the sequences of the
interacting proteing*2.,

Whilethe above combined approacheslead to an
improvement in prediction, they arestill inherently lim-
ited by thetreatment of eachinteraction independently
of other interactions. By explicitly modeling such de-
pendencies, we canleverage observationsfrom varied
sourcesto produce better joint predictionsof the pro-
teininteraction network asawhole. Asaconcrete ex-
ample, consider the budding yeast proteinsPre7 and
Pre9, giveninFigure 1.
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Figurel

Theseproteinswere predicted to beinteractingby a
computationa assay*?. However, accordingto alarge-
scalelocdlization assay!™™, thetwo proteinsare not co-
localized; Pre9 isobserved in the cytoplasm andinthe
nucleus, whilePre7 isnot observed inether of thasecom-
partments. Based onthisinformationdone, it canbecon-
cluded that an interaction between thetwo proteinsis
improbable. However, additiona information onrelated
proteins may berelevant. For example, interactions of
Preb and Pup3 with both Pred and Pre7 werereported
by largesca e assayd® 19, Thisexampleillustratestwo
reasoning patternsthat we would liketo alow in our
model. Firgt, to encode that certain patternsof interac-
tions (e.g., within complexes) are more probablethan
others. Second, an observationrelating to oneinterac-
tion should beabletoinfluencetheattributesof aprotein
(eg., locdization), whichinturnwill influencethe prob-
ability of other rd ated interactions.

Proteins are chains of simpler molecules called
aminoacids. Anaminoacidunitinaproteiniscdleda
residue. Each amino acid hasachemical group called
thes de-chain. Thisgroup distinguishesoneaminofrom
another. Amino acidsarejoined end to end during pro-
tein synthesisby theformation of peptide bonds. For-
mation of asuccess on of peptide bonds generatesthe
backbone upon whichthe side chainsare hanged. Pre-
dicting side-chains conformation given the backbone
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structureisacentral problemin protein-folding and
molecular design. For many the applicationsit isnot
enough to calculate asingle, most probablesidechain
configuration but theinterestismainlyinthecaculation
of thefreeenergy distributions. Dueto theimportance
of thisproblem in computationa biology large number
of specid agorithmshas been devel oped.
Biomolecular systemsaregoverned by changedin
free energies providesbetter understanding of bio mo-
lecular interactionsand the ability of optimizethem. A
probabilistic representation confers severd advantages,
including that it providesastructural changesdueto
changesin temperature, pH, ligand binding and muta-
tion can becomean inference problemsover themodd.
Recent advancesininferenceagorithmsfor graphical
mode ssuch as generaized belief propagationisarig-
orous gpproximeationto thefreeenergy of thesystem™,
These free energy estimates are accurate enough to
perform non-trivia taskswithin structurd biology.
ThefreeenergyisdefinedasG=E—-TH, whereE
istheenthalpy of thesystem, T isthe absol utetempera:
tureand H isthe entropy of the system. The entropy
estimatesaredifficult becausethey involvesumsover
anexponentia number of states. Hencetheentropy term
isoftenignored altogether under theassumptionthat it
does not contribute significantly to thefree energy!
proved that energy functions comprising sums of
pairwiseinteractions cannot distinguishaprotein’s na-
tive structure from decoy structures. Hence entropy
contributionsbecomesignificant when thestructuresare
similar. Itisproved that the native structureisusually
the onewith highest entropy and hence® entropy should
beincludedintheenergy calculations.

A MARKOV RANDOM FIELD MODEL FOR
PROTEIN STRUCTURE

A protein consistsof finite number of atomsacross
oneor more polypeptidechains. A configuration of the
protein correspondsto the geometry of each of itscon-
Sstent atoms. An accuraterepresentation of theprotein
istheensembleof configurationsat room temperature.
Let the configuration of aprotein beregarded asaran-
dom variablein some configurational spaceC. Let x
denote therandom variablewhich correspondsto the
configuration of theentire set of atomsin the protein.
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The probability of aconfigurationx_e Cwithinterna
energy E is

1 -E
P(x=X_.)=—exp| —
(x=x.) - p(KBTJ

where 2= 2.€ ~ isthe partition function, K, is

the Boltzmann’s constant and T is the absolute tem-
peraturein Kelvin.

Theentireset of atomsispartitioned as2 digoint
subsets as backbone and side bone chains. Backbone
atomsreferstothosethat are commontoal 20 amino
acid types, whilesidechain atomsarethosethat differ
among thedifferent kindsof amino acids.

L et the backbone variables are represented by X,
and thesidebonevariablesarerepresented by X , then
the protein representing the conformation of backbone
atomsarethe

Xy ={Xp, , Xp, b AN X ={x, X, ...} Whereeach
x, representsthe conformation of thesidechain atom
of residuei. Lettheenergiesof X , X_areE, , E. The

joint distribution and the partition function be defined
as
P(X=X)=P(X, =x)P(X_=x_/ X, =X)
)
z=Ye “®Vz,
Xp

@)

Es
wherez, =) e[ KBT] isthepartitionsfunctionover

the sidechain space with afixed backbone.

Given aspecific backbonetrace X, duetothena-
tureof thephysical forcesin action, pairs of residues
distally located according to trace are expected to ex-
ert very littledirect influence on oneanother. Suchresi-
duesareindependent of each other when conditioned
onX,. Theseconditiona independenciesare compactly
independencies are compactly encoded asaMarkov
Randomfied (MRF).

AnMRFisaprobability distribution onover agraph
and can be represented as a tuple
(X, €, ¢) wherethe set of random variablesinthe multi-
variatedistribution arethe set of vertices X .and X ..
Theedgese ¢ joinresiduesthat aredirectly depen-
dent on each other and ¢ = (¢,, ¢, ....0,) isaset of

ﬂiogecﬁnokyy (—

functions called asfactorsover therandom variables.
Ingeneral an M RF encodesthefollowing conditional
independenciesfor each vertex X, and for any set of
vertices X' not containing X, as

P(X,/ X', Neighbors(X)) = P(X/ Neighbors(X.))

ThatisarandomvariableX. isconditionaly inde-
pendent of every other set of nodesinthegraph, given
itsimmediate neighborsinthegraphl™.

1
P(X¢ =X/X, =Xb)=Z_H(pi(X(Pi)

b ¢ice

)

whereZ, istheso-called partition function.

Figure2: Part of therandomfield induced by the outlined

residues x. ’s are hidden variables representing the

rotameric state, thevisblevariablesar ethe backbone atoms
in conformationsx, .

ZbZZHXw

Xi ¢ice

KT where x,, aistheset

Also @, (%, )=exr{—

of atomsthat serve asargumentsto ¢, and E(x,;) is

thepotentia energy of thoseatomsas defined by amo-
lecular forcefield. Thejoint distributionisobtained by
samply multiplying (2) with the probability of aparticu-
lar backbone conformation x, accordingto (1). Thus
the probability of agiven stateissimply the product of
thefunctions, suitably normaized.

PROBABILISTIC INFERENCEAND FREE
ENERGY CALCULATIONS

Probabilisticinferencein an MRF involves com-
puting themargina distributionsover therandom vari-
ablesinthegraph. Inference and free-energy approxi-
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mations requirethe estimation of apartition function.
Thebdief propagation dgorithm startswithrandomini-
tial beliefd¥, and then use messages passing between
nodesto convergeon afina set of beliefs.

Informally each node updatesitsown beliefsbase
onthebeliefsof itsneighborsinthegraph and thevaue
of thepotentia functiond. Whenthed gorithm converges
thefind beliefscan be used to obtain the partition func-
tion, and hencethefreeenergy.

If the MRF happensto form atree (i.e., agraph
with no cycles). Belief propagation isexact and takes
O (Je|) times, where [e| is the number of edgesin the
graph. Herethe algorithm used in generalized belief
propagation on M RF which encodesthe conditional
distribution with the estimation of the partition function
for each backbone configuration X 9.

Thustheundirected graphica mode (MRFs) char-
acterized by thevariable X and the potential function ¢
isabipartitegraph (X, F) called afactor graph. If itis
restricted with pairwise potentia sthen theequiva ent
factor graphfor the MRF of Figure2isshownasFig-
ure3.

fi

| 3
£ g"{
fj f& fS
Figure 3 : Factor graph representation for Figure 2. The

observed variablescorresponding tothebackboneatomscan
bereplaced by afactor f, at each sdechain variable.

Thegeneraized bdief propagation (GBP) isames-
sage passing agorithms that approximates the true
marginds Thisdiffersfromthebdief propagation (BP)
dgorithmintheszeof itsregionsthat estimatesthefree
energy. GBPcomputesfixed pointsof themoregenerd
region based freeenergy. L et the pseudo messagefor a
region Rwith parents P(R) and children O(R)

—==— Review

begivenby n? (X, ) = fo (X) T mp'—> R(x,)[Tno

p'eP(R)

m%,o(Xo)= X foXg) I m, >

XR\Xo peP(R)\p
R(xg) JIny —r (xy)
0'e0O(R)\O
where f, (X )= (ag\rfa(xa))m and then compensating
for over counting by defining the actua messagesas
n R—>P (X r ) = (n g—)P (X r ))BR (m g—)o (x (o} ))BR-I

mR—)P (Xr ) = (ng»P (Xr ))BR»l (m g—)o (Xo))BR

where o, istheweight giventoregionR, p, the
number of parentsof region R, and B, = p./(2p; + o
-1)

Thebdiefsa R, arethengiven by

T R
bR(xr)=fR(xR)ogRr;o _)R (XO) pgR)mp_) (Xp)

Notethat if B, =1thisagorithm becomesequiva-
lent to running BP directly ontheregion graph.

Thedgorithmistypically sarted withrandomly ini-
tidized messagesand run until the beliefsconverge. If it
doesconverge, GBPisguaranteed to find afixed point
of theregion based freeenergy.

Inferencesfrom the probabilistic graphical modes
have been used for anumber of problemsintheareaof
secondary structure prediction. Theapplications of
graphical modelstotertiary structurearelimited to ap-
plication of Hidden Markov modds(HMM). HMMs
make severeindependence assumptionsto alow for
efficient learningandinference.

Thefocusismainly onthe problem of computing
entropy usingmargina probabilitiesfor the unobserved
variables, X . Variables has been replaced by edgesto
afactor f, representing theinteractions between these
variables can bedropped from thefactor graph by re-
placing their interactionswith each sdechainvariable
by afactor. Hence the probability of aparticular con-
formation can be expressed using thefactor notation

P(X,) = [Tfa(x?)

faeF

Where x2is aset of variables connected to the
factor “fa’ in the factor graph.
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APPROXIMATING FREE ENERGY

A corollary of the second law of thermodynamics
isthat aphys cd syslem seeksto minimizeitsfresenergy.
Thus, the most accurate entropy estimatesare obtained
when the system hasthe |l east free energy. Under the
assumption of constant temperature, thefreeenergy of
asystemisgivenby

G=E-TH

Where E isthe enthalpy of thesystem, T thetem-
perature and H, the entropy. If we associate a belief
b(x) with state x, this can berewritten as

G = 2 PME)+ Y b(x)In(b(x))

Wherethefirst term and second termson theright
are the enthalpic and entropic contributions
respectivelyand the summationisover all possiblex.
Intuitively, the entha pic term correspondsto the en-
ergy of thesystem. However, the second law of ther-
modynamicsdictatesthat not al energy can beusedto
dowork. Thefreeenergy isthe energy left to be used
to do work after deducting the energy that is “lost”
whichistheentropic deduction mentioned above. There
has been acons derableamount of work by physicists
at developing approximationsto estimatetheseterms.
The popular methods are based on approximating the
freeenergy using aregion based freeenergy. Intuitively,
theideaisto breakup the factor graph into a set of
regions, R, each containing multiplefactorsf_ andvari-
ables X, computethefreeenergy over theregionusing
estimates of themarginal probability over X, and then
approximatethetota free energy by thesum of thefree
energiesover theseregions. Sincetheregionscould
overlap, contributions of nodes—factors or variables—
which appear in multipleregionshaveto be subtracted
out, so that each node is counted exactly once. This
can bedone by associating weightsw., to the contribu-
tionof every nodeinregionregionRe R, insuchaway
that the sum of weights of the regionsthat the node
appearsin sumsto one.

IMPLEMENTATIONAND RESULTS

The Two-Way GBPa gorithmisimplemented to
computeregion graph estimates of freeenergy and en-
tropy. Thefactor graph iscreated by computing inter

%iogecﬁnofo_qy —

atomic distancesand creatingafactor between residues
iftheC_distancebetween themwaslesser thanathresh-
oldvaue. Thisthresholdislargely dictated by the sen-
gitivity of theenergy function. For theenergy termswe
used, we found athreshold of 8.0 A to be adequate.
Eachrotamer inthelibrary o had an associated gpriori
probability whichwereincorporated into thefactor as
aprior. Thetemperature of the system wastakento be
300 K, whichcorresponds to normal room tempera-
ture. Thenthereweretwo levelsof regions. Thetop
level contained “big”regions—regions with more than
onevariable—while the lower level contained regions
representing singlevariables. Sincetheinteraction be-
tween residues closest in sequenceto bevery strong,
all factors and nodes were placed between residues
within two sequence positionsof each other inonere-
gion. Each of therest of thefactors, representing edges
between residues connected in space, formed
“big”regions with two nodes in them. Thus, in the ex-
ample shown in Figure 2, (X,s;X,s;X,s; f; f; f,;
fE. (X5 X8 X s;f, 0 f, T 1), and (X ;X s;
f ) would beexamplesof big regionswhich gppear in
thetoplevel, while (X s) would bean exampleof asmall
regioninthelower level. Findly, edgesfromthe“big”
regionstoal smal regionsthat contain astrict subset of
the“big” region’s nodes are added. In the aboveexample,
theregion encompassing X, s;X.,s; X ,swouldthusbe
connected to thesmall regions corresponding to each
of X,s,X.s,and X s. Sincetheregion graph formaism
isveryflexible, other equally valid aternativesfor cre-
ating the graph exist. The best choice of regionswill
largely depend on the gppli cation at hand and thecom-
putational constraints. Thechoiceof regionsreflectsa
bal ance between accuracy and running timeby focus-
sing on residues which are expected to be closely
coupled together and placing theminbigger regions.

CONCLUSION

Fast and accuratefree energy calculationsare es-
sentia toanumber of significant taskswithin computa
tiona structura biology including structure based pro-
tein. Side-chain predictionisanimportant subtask in
theprotein-folding problem. Itisshownthat findinga
minima energy Sde-chain configurationisequivdent to
performinginferenceinan undirected graphica moddl.
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Thegraphical model isrelatively sparseyet has many
cyclesand thisequivaenceisused to assessthe per-
formanceof gpproximateinferencedgorithmsinared-
world setting. Theprobabilistic graphical model based
approachtodl atom freeenergy caculationsstrikesa
bal ance between the physical methods and the speed
of the statistical methods. Sinceit usesall atomforce
fieldswhen computinginterna energiesand computes
abetter approximation of thetrue partition function of
thesystem. Also thismethod iscompetitivewith statis-
tica methodsintermsof speed.
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