December 2008

Volume 3 Issue 3



Environmental Science An Indian Journal

Trade Science Inc.

Current Research Paper

ESAIJ, 3(3), 2008 [261-267]

# A novel potentiometric technique to determine the dissolved oxygen (DO) and biological oxygen demand(BOD) of river, Lake and industrial waste water

O.G.Palanna<sup>1</sup>\*, M.C.Thejaswini<sup>2</sup>

<sup>1</sup>Department of Chemistry, RNS Institute of Technology, Channasandra, Bangalore-61, (INDIA) Tel: 26483861

> E-mail: drogp@hotmail.com Received: 30th March, 2008; Accepted: 4th April, 2008

### ABSTRACT

Generally, dissolved oxygen (DO) and biological oxygen demand (BOD) of waste water sample are determined at a particular temperature by the well known Winkler's volumetric method. The DO of water can also be determined by membrane electrodes (Clarke method), polarographic, galvanic type and luminescent optode methods; and each technique measurement has its own limitations. In the present investigation, we have used new potentiometric technique to determine the DO and BOD of lakes, ponds, rivers and industrial waste waters. The technique is simple and inexpensive and the results obtained are comparable to any other methods and are highly reproducible; and is need of the day for environmental monitoring of waters. © 2008 Trade Science Inc. - INDIA

#### **INTRODUCTION**

Winkler's iodometric method<sup>[1]</sup> has undergone various modifications for DO analysis to eliminate or minimize effects of interferences; nevertheless, the method still is inapplicable to a variety of industrial and domestic wastewaters<sup>[2]</sup>. Moreover, the iodometric method is not suited for field testing and cannot be adapted easily for continuous monitoring or for DO determinations in situ.

Polarographic methods using the dropping mercury electrode or the rotating platinum electrode have not been reliable always for the DO analysis in domestic and industrial wastewaters because impurities in the test solution can cause electrode poisoning or other interferences<sup>[3,4]</sup>. With membrane covered electrode systems these problems are mini-mized, because the sens-

ing electrode is protected by an oxygen-permeable plastic membrane that serves as a diffusion barrier against impurities<sup>[6-8]</sup>. Understeady-state condi-tions the current is directly proportional to the DO concentration<sup>[7]</sup>.

Polargraphic<sup>[5,6]</sup> as well as the galvanic<sup>[7]</sup> type membrane electrodes are being used for DO measurements in lakes and reservoirs<sup>[9,10]</sup> for stream survey and control of industrial effluents<sup>[11,12]</sup>, for continuous monitoring of DO in activated sludge units<sup>[13]</sup> and for estuarine and oceanographic studies<sup>[14]</sup>. Being completely submersible, membrane electrodes are suited for analysis in situ. Their portability and ease of operation and maintenance make them particularly convenient for field applications. In laboratory investigations, mebrane electrodes have been used for continuous DO analysis in bacterial cultures, including the BOD test<sup>[7,15]</sup>.

Membrane electrodes provide a good method for

# KEYWORDS

Dissolved oxygen; Biological oxygen demand; Winkler's Method; Mn<sup>2+</sup> state; Analyte; Indicator platinum electrode.

# Current Research Paper

DO analysis in polluted waters, highly colored waters, and strong waste effluents. They are recommended for use especially under conditions that are unfavorable for use of the iodometric method, or when that test and its modifications are subject to serious errors caused by interferences.

Oxygen-sensitive membrane electrodes of the polarographic<sup>[5,6]</sup> or galvanic type<sup>[7]</sup> are composed of two solid metal electrodes in contact with supporting electrolyte separated from the test solution by a selective membrane. The basic difference between the galvanic and the polarographic systems is that in the former the electrode reaction is spontaneous (similar to that in a fuel cell), while in the latter an external source of applied voltage is needed to polarize the indicator electrode. Polyethylene and fluorocarbon membranes are used commonly because they are permeable to molecular oxygen and are relatively rugged. In all these instruments the "diffusion current" is linearly proportional to the concentration of molecular oxygen. The current can be converted easily to concentration units (e.g., milligrams per liter) by a number of calibration procedures.

Over the years a number of methods for dissolved oxygen determination have been developed. These methods have been found to vary widely in their sensitivity, susceptibility to electrode poisoning by the presence of undesirable compounds, and, in some instances, sensitivity to a slow flowing or static aqueous media. Some methods require a very clean sample, devoid of extraneous chemical compounds, but only a few are adaptable to continuous on-line measurement.

Compared to the photometric and amperometric end point detection, little attention has been paid to the potentiometric detection for use in titration probably because the electrochemical equilibrium at the platinum indicator electrode is considered to be established slowly and it is difficult to detect iodine at low concentration of 10<sup>-6</sup> N. However, since potentiometry is simple, convenient and generally precise, it seems worthwhile exploiting potentiality of the potentiometric analysis.

In the present paper, we are indicating that the basic principle of Winkler's redox reactions can be successfully considered for an electro-chemical cell in potentiometric analysis to determine DO and BOD of water samples. The DO and BOD measurement through the electrode potentials and the Winkler's volumetric titre values are determined in this two-in-one cell set up which has a magnetic bead stirrer provision for continuous mixing after the addition of titrant.

#### **EXPERIMENTAL**

One of the most useful titrations involving iodine is that originally developed by Winkler<sup>1</sup> to determine the amount of oxygen in samples of water. The dissolved oxygen content is not only important with respect to the species of aquatic life which can survive in the water, but is also a measure of its ability to oxidise organic impurities in the water.

Basic principle of determination of DO in water by potentiometric technique:

### **Electrochemical set up**

In the present investigation of DO analysis of water by potentiometric technique, an electro-chemical cell is constructed with a redox potential indicator electrode, as given

 $\begin{array}{ll} Hg/Hg_2Cl_2/KCl (Satd) & // \mbox{ Redox analyte/Pt} \\ (reference electrode) & (Indicator electrode) \\ The emf of the cell, \mbox{ } E_{cell} = [E_{Indi} - E_{ref]} \\ &= E_{Indi} - 0.2422. \end{array}$ 

**Therefore,**  $\mathbf{E}_{\text{Indi}} = \mathbf{E}_{\text{cell}} + 0.2422$ Where,  $\mathbf{E}_{\text{ref}}$  is a saturated calomel electrode of constant potential, 0.2422 Volts.

In the present potentiometric technique of investigation, the redox chemistry of reactions of only two stages of Winkler's<sup>1</sup> method are given prime importance to estimate the DO and BOD of water. The Winkler<sup>1</sup> reactions are as follows sequentially:

(i) Manganous sulfate reacts with the potassium hydroxide at p<sup>H</sup> 12.0 to produce a white flocculent precipitate of manganous hydroxide:

$$MnSO_4 + 2 KOH \rightarrow Mn(OH)_2 + K_2SO_4$$
(1)  
(white)

(ii) If there is any DO in the water, a second reaction



Figure 1: An electrochemical cell for DO measurement in water bodies

Environmental Science An Indian Journal between the  $Mn(OH)_2$  and DO occurs immediately to form a brownish manganic oxide precipitate.

# $2Mn(OH)_2 + O_2 \rightarrow 2MnO(OH)_2$ (2)

#### (brown)

(iii) After the quantitative conversion of  $Mn^{2+}$  to  $Mn^{4+}$  state, a requisite amount of  $H_2SO_4$  (1:1sulphuric acid) is added at  $p^H = 1.0 - 2.0$  to dissolve completely the brownish precipitate with continuous swirling with the help of magnetic stirrer. Manganic sulphate,  $Mn(SO_4)_{22}$  is the product of this reaction.

### $2MnO(OH)_2 + 2H_2SO_4 \rightarrow 2Mn(SO_4)_2 + 6H_2O$ (3)

From step (iii) of reaction, it can be realized that Mn<sup>2+</sup> reacts with an equivalent amount of dissolved oxygen and gets oxidized to Mn<sup>4+</sup> state quantitatively. This gives rise to a steady potential at the platinum indicator electrode which can be recorded using a digital potentiometer.

The standard oxidation potential of the indicator electrode,  $Pt/Mn^{2+}$ ;  $Mn^{4+}$ , for  $1MMnSO_4$  solution is

$$Mn^{2+} \rightarrow Mn^{4+} + 2e; E^{0}_{Mn^{2+}} / _{Mn^{4+}} = -1.23 V$$
 (4)

However, for particular  $Mn^{2+}/Mn^{4+}$  concentration, we have the Nernst expression for reduction electrode potential (by Convention) at the Pt indicator electrode as  $Mn^{4+} + 2e \rightarrow Mn^{2+}$ : E

$$\begin{array}{l} \text{Mn} &+2e \rightarrow \text{Mn}^{2}, \text{ } E_{\text{Mn}^{4+}/\text{Mn}^{2+}} \\ =+1.23+0591/2 \log_{10}[\text{Mn}^{4+}]/[\text{Mn}^{2+}] \\ = E_{1} \text{ (Volts)} \end{array}$$

$$(5)$$

After the addition of requisite amount of KI solution, the measured equilibrium reduction potential ( $E_2$ ) for overall redox reaction (5) at the indicator electrode can be explained as follows: Potassium iodide reduces  $Mn^{4+}$  to  $Mn^{2+}$  ions and  $\Gamma$  ions gets oxidized to iodine and the number of moles of iodine liberated is exactly equivalent to the number of moles of dissolved oxygen present in the water sample.

The release of iodine  $(I_2)$  imparts a brown coloration to water.

$$2Mn(SO_4)_2 + 4KI \rightarrow 2MnSO_4 + 2K_2SO_4 + 2I_2$$
 (6)

The redox reaction (6) takes place spontane-ously at the platinum indicator electrode of the cell and a resultant potential is developed at the indicator electrode for these competitive reactions as mentioned below (i)  $2I \rightarrow I_2 + 2e$ ;  $E^0_{I-/12} = -0.535 V$  (7) (ii)  $Mn^{4+}+2e \rightarrow Mn^{2+}$ ;  $E^0_{Mn4+}/_{Mn2+} = +1.23 V$ 

The net redox electrode reaction can be thus represented as

$$2\mathbf{Mn}^{4+} + 4\mathbf{I}^{-} \rightarrow 2\mathbf{Mn}^{2+} + 2\mathbf{I}_{2}$$
(8)

 $\blacksquare$  Current Research Paper Where 2I is oxidized to I<sub>2</sub>, and Mn<sup>4+</sup> gets reduced to Mn<sup>2+</sup> in

solution. The resultant potential  $(E_2)$  established at the Pt electrode is

$$\mathbf{E}_{\text{redox}} = [\mathbf{E}_{\text{Mn4+}} / _{\text{Mn2+}} - \mathbf{E}_{\text{I-}/12}] = \mathbf{E}_{\text{Resultant}}$$
  
=  $\mathbf{E}_2$  (volts)  
where (9)

$$E_{\text{redox}} = \left| 1.23 + \frac{0591}{2} \log_{10} \left[ \frac{\text{Mn}^{4+}}{\text{Mn}^{4+}} \right] - \left| 0.535 + \frac{0591}{2} \log_{10} \left[ \frac{[I_2]}{[I^-]^2} \right] \right|$$
(10)

$$E_{\text{redox}} = [1.23 - 0.535] - \frac{0591}{2} \log_{10} \frac{[\text{Mn}^{4+}][\text{I}^{-}]^2}{[\text{Mn}^{2+}][\text{I}_2]}$$
(11)

= E2 ( volts)

The quantitative conversion of  $Mn^{4+}$  to  $Mn^{2+}$  is stoichiometrically equivalent to the amount of I<sub>2</sub>liberated; which is exactly equivalent to the number of moles of dissolved oxygen present in the water sample.

Therefore, based on the above stoichiometric relationship of reaction, one can arrive at the following quantitative relationship:

1 mole of 
$$O_2 = 2$$
 moles of  $I_2 = 4$  moles of  $Na_2S_2O_3$   
=  $[E_1 - E_2]$  Volts (12)

The present potentiometric technique of investigation of DO and BOD is based on this stochiometric relationship.

### Procedure

1. Preparation of standard MnSO<sub>4</sub> solution for DO calibration plot:

Theoretically, it is possible to calculate the stoichiometric amount of  $MnSO_4$  needed to react with an equivalent amount of dissolved oxygen(DO mg/L) from step (ii) of winkler's method; and accordingly, different stan-

| TABLE 1: Weight of $MnSO_4^*$ equivalent to DO in water |                                          |  |  |  |  |
|---------------------------------------------------------|------------------------------------------|--|--|--|--|
| O <sub>2</sub> /mgL                                     | Weight equivalent to DO: (mg/250ml) MnSO |  |  |  |  |
| 1                                                       | 2.6410                                   |  |  |  |  |
| 2                                                       | 5.2813                                   |  |  |  |  |
| 3                                                       | 7.9313                                   |  |  |  |  |
| 4                                                       | 10.5625                                  |  |  |  |  |
| 5                                                       | 13.2033                                  |  |  |  |  |
| 6                                                       | 15.8438                                  |  |  |  |  |
| 7                                                       | 18.4850                                  |  |  |  |  |
| 8                                                       | 21.1250                                  |  |  |  |  |
| 9                                                       | 23.7656                                  |  |  |  |  |
| 10                                                      | 26.4063                                  |  |  |  |  |

\*M.W = 169.00

# Current Research Paper

dard manganous sulphate solutions are prepared for calibration DO plot as given in TABLE 1.

(Note: all the solutions are to be prepared in water sample containing DO to obtain a linear calibration plot; and are to be preserved in a closed bottles at constant temperature.

- A calomel reference and an indicator Pt -electrodes are inserted into a closed glass container/cell. A thermometer is also inserted to record the temperature of the DO water sample. A combined glass electrode is inserted to control the desired p<sup>H</sup> of the solution. 25ml of the prepared stock solution (TABLE 1) carefully pipetted out into the cell containing the electrodes set up.
- 3. The electrodes are connected to a digital potentiometer.
- 4. Magnetic stirrer is used to obtain homo- genous mixing of reagents
- 5. 0.5ml of 4N NaOH is added ( $p^{H} = 12.0$ ) and solu-

tion is kept for 10-15 minutes.

- 6. 6.0 ml of  $1:1 \text{ H}_2\text{SO}_4$  is introduced to the cell and kept for 15-20 minutes with continuous swirling of solution with the help of magnetic stirrer.(Note : p<sup>H</sup> = 1.0 2.0).
- 7. The equilibrium potential  $(E_1 mv)$  of the indicator electrode recorded using a potentiometer.
- 8. Then, 4.0ml of 10% KI solution is added into the cell having the electrodes kept for another 10-15 minutes with solution swirling and record the steady electrode potential (E<sub>2</sub> mv) using potentiometer.
- 9. The difference between  $E_1$  and  $E_2$  is noted and is given in TABLE 2 for a particular standard MnSO<sub>4</sub> solution from among the prepared series of solutions. It can be observed that stochiometry as given in equation (11) holds good for the determination of DO of water sample by potentiometric analysis (TABLE 2).

# 10. Potentiometric analysis data

| TABLE 2: Cambration data for $[E_1 - E_2]$ my and the dissolved oxygen |                               |                                   |                                                                     |                                            |                                        |                                  |
|------------------------------------------------------------------------|-------------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------|
| Weight of<br>MnSO <sub>4</sub> /<br>250ml 'g'                          | Emf (mv)<br>MnSO <sub>4</sub> | Emf (mv) after<br>the addition of | Emf (mv) after the addition<br>of 1:1H <sub>2</sub> SO <sub>4</sub> | Emf (mv) after the<br>addition of KI<br>F. | E <sub>1</sub> -E <sub>2</sub><br>(mv) | Dissolved<br>oxygen<br>(DO) mg/I |
| <u> </u>                                                               | 203                           | -80                               | 890                                                                 | <u>260</u>                                 | 710                                    | (DO) Illg/L<br>8                 |
| 0.0189                                                                 | 181                           | -68                               | 889                                                                 | 261                                        | 690                                    | 7                                |
| 0.0159                                                                 | 148                           | -20                               | 892                                                                 | 240                                        | 670                                    | 6                                |
| 0.0132                                                                 | 114                           | 0                                 | 890                                                                 | 242                                        | 648                                    | 5                                |
| 0.0106                                                                 | 128                           | -4                                | 872                                                                 | 246                                        | 630                                    | 4                                |
| 0.0079                                                                 |                               | 15                                | 865                                                                 | 241                                        | 610                                    | 3                                |

| FABLE 3: Potentiometric analysis data for dissolved oxy | ygen (D O) at lab temperature |
|---------------------------------------------------------|-------------------------------|
|---------------------------------------------------------|-------------------------------|

| Weight of       | Indicator electrode potential    | Indicator electrode potential                                                       | Emf equivalent to | Dissolved |
|-----------------|----------------------------------|-------------------------------------------------------------------------------------|-------------------|-----------|
| MnSO./250ml 'a' | $Mn^{2+} \rightarrow Mn^{4+}+2e$ | $2\mathbf{Mn}^{4+} + 4\mathbf{\Gamma} \rightarrow \mathbf{Mn}^{2+} + 2\mathbf{I}_2$ | $DO=E_1 - E_2$    | oxygen    |
| WI1604/250111 g | $\mathbf{E_1}(\mathbf{mv})$      | $E_2(mv)$                                                                           | ( <b>mv</b> )     | (DO)mg/L  |
| 0.0212          | 970                              | 260                                                                                 | 710               | 8         |
| 0.0189          | 951                              | 261                                                                                 | 690               | 7         |
| 0.0159          | 910                              | 240                                                                                 | 670               | 6         |
| 0.0132          | 892                              | 242                                                                                 | 650               | 5         |
| 0.0106          | 876                              | 246                                                                                 | 630               | 4         |
| 0.0079          | 851                              | 241                                                                                 | 610               | 3         |





Environmental Science

An Indian Journal

## 11. 1st day DO determination from graph :

 $[E_1 - E_2]$  of Ist day water is noted from the results as D<sub>1</sub> from graph (figure 3).

# 12. 5th Day DO measurement

25 ml of unknown DO sample + add 0.0265g of MnSO<sub>4</sub> H<sub>2</sub>O [Molecular Weight=169] + 0.5 ml of NaOH- keep for 10-15 minutes + Add 6.0 ml of  $1:1H_2SO_4$  + dissolve the precipitate - keep for 15 minutes and record its E<sub>1</sub> value. Add 4.0 ml of KI and take  $E_2$  value after 10 minutes. Find the difference,  $[E_1 - E_2]$  for the sample.

13. 5<sup>th</sup> day DO value of the water sample is obtained from the calibration graph (figure 3).



## Winkler's Titration

14. The estimated DO and BOD of water samples from potentiometric analysis are further corroborated by results of Winkler's titration values obtained in the same two-in-one cell for all the prepared MnSO<sub>4</sub> solutions. All the MnSO<sub>4</sub> solutions (TABLE 1) are then titrated in the same cell set up itself as given:

25 ml of water containing DO is pipetted out into the cell. The procedure as mentioned for potentiometric analysis is followed for Winkler's titration in the cell, too. A burette filled with standard  $Na_2S_2O_3$  solution is inserted into the cell as shown in the figure 4. The swirling sample is then titrated to a pale, straw colour, After recording  $E_2$  (mv) value using a potentiometer, 1ml of freshly prepared starch is added and titrated against standard (0.005N)  $Na_2S_2O_3$  solution.



Figure 4: An electrochemical set up for Winkler's iodometric titration in the same cell set up

# Current Research Paper

When blue colour of the solution of the cell disappears with addition of last drop of  $Na_2S_2O_3$  solution, the end point of the titration is recorded as V ml.(TABLE 4).

 TABLE 4 : Dissolved oxygen by Winkler's method

| S.no | Weight of<br>MnSO4g | Volume of<br>thiosulphate<br>consumed,ml | DO of water<br>samples<br>Mg/L |
|------|---------------------|------------------------------------------|--------------------------------|
| 1    | 0.0212              | 4.6                                      | 7.68                           |
| 2    | 0.0189              | 3.9                                      | 6.4                            |
| 3    | 0.0159              | 3.7                                      | 6.0                            |
| 4    | 0.0132              | 3.3                                      | 5.4                            |
| 5    | 0.0106              | 2.1                                      | 3.4                            |
| 6    | 0.0079              | 1.5                                      | 2.4                            |

 TABLE 5: BOD of Madivala lake water by potentiometric analysis at lab temperature

| Weight of<br>MnSO <sub>4</sub> /<br>250ml 'g' | E1-E2mv<br>1 <sup>st</sup> day | E1 -E2,<br>5 <sup>th</sup> day | Dissolved<br>oxygen<br>Fro graph<br>D <sub>1</sub> mg/L | Dissolved<br>oxygen<br>From<br>graph D <sub>2</sub><br>mg/L | BOD=<br>D <sub>1</sub> -D <sub>2</sub> /P<br>mg/L |
|-----------------------------------------------|--------------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| 0.0212                                        | 703                            | 656                            | 7.60                                                    | 4.50                                                        | 31.6                                              |

1 mole of  $O_2 = 2$  moles of  $I_2 = 4$  moles of  $Na_2S_2O_3$ 

1 mol of  $Na_2S_2O_3 = 1/4^{th}$  mole of  $O_2 = 8g$  of  $O_2$ 

 $1 \text{ml of } 1 \text{N} \text{Na}_2 \text{S}_2 \text{O}_3 = 8 \text{ mg } \text{O}_2 / \text{L}$ 

'V' ml of 0.005N Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>=8 × V ×0.0051N

 $\therefore$  D.O of water sample =

 $\underline{8 \times \text{Titre Vol} \times 0.005 \text{N} \times 1000} 22^{\circ}\text{C}$ 

25

Therefore.

#### **1. D.O** of water sample =

<u>8×Vol × 0.005N ×1000</u> at 22°C 25

### 2. BOD of water sample at lab temperature

= 0.1

- (i) Determine the DO of waste water on Ist day(D<sub>1</sub>) at lab(20<sup>0</sup> C) temperature
- (ii) Determine the DO of the same waste water on the  $5^{th} day(D_2)$  at  $20^{0}C$

Volume of dilution, P = 25/250

Therefore

BOD of water sample =  $\underline{D_1} - \underline{D_2}$ 

| Weight of                       | Thiosulphate                    | Thiosulphate                      | Dissolved oxygen    | Dissolved oxygen    | $D_1 - D_2/P$ |
|---------------------------------|---------------------------------|-----------------------------------|---------------------|---------------------|---------------|
| MnSO <sub>4</sub> /250ml 'g' co | nsumed, ml. 1 <sup>st</sup> day | consumed, ml. 5 <sup>th</sup> day | D <sub>1</sub> mg/L | D <sub>2</sub> mg/L | mg/L          |
| 0.0212                          | 19.2                            | 11.3                              | 7.68                | 4.52                | 31.6          |

#### S Environmental Science Au Indian Journal

# Current Research Paper Results and discussion

The determination of dissolved oxygen (DO) and Biological oxygn demand (BOD of water /waste waters are always confined to conventional techniques like Winkler's<sup>[1]</sup> titrimetry, Oxygen membrane<sup>[5]</sup>, Amperometric membrane<sup>[5]</sup>, polarographic<sup>[5,6]</sup>, Galvanic cell<sup>[6-8]</sup> and luminescence optode methods. The results of analysis of these techniques have their own merits and demerits. The present investigation highlights a novel potentiometric technique successfully to determine the DO and BOD; and COD of waste water samples for the first time.

In the present methodology of determination of DO and BOD of water samples, the stochiometry of Winkler's<sup>[1]</sup> reactions (5) and (7) are given prime importance. Accordingly, stochiometric amounts of  $MnSO_4$  react with NaOH at alkaline condition (p<sup>H</sup>>12) to produce a white flocculent precipitate of manganous hydroxide (equation 1).

If there is any DO in the water, a second reaction between the  $Mn(OH)_2$  and equivalent amount of dissolved oxygen (D O) occurs spontaneously to form a brownish manganic sulphate precipitate,  $Mn(SO_4)_2$ , (Equation 2).

The weight of  $MnSO_4$  to DO relationship is given in TABLE 1. In the present investi-gation, an exact amount of  $MnSO_4$  as given in TABLE 1 is dissolved in 250ml of water and different such solutions are prepared by taking different amounts of  $MnSO_4$  for DO calibration plot (figure 1). The equilibrium electrode potential values (mv) of the indicator electrode against a standard calomel reference electrode are recorded at the beginning for  $MnSO_4$  solutions; and as well, after the addition of requisite amounts of NaOH, 1:1 H<sub>2</sub>SO<sub>4</sub>, KI solutions as precisely as stated elsewhere in the procedure.

It is evident from equation (3) that  $Mn^{2+}$  in solution is quantitatively transformed to  $Mn^{4+}$  state in alkaline condition by reacting with an equivalent amount of dissolved oxygen from water. The equilibrium potential value (E<sub>1</sub>) of the indicator electrode is recorded, which is due to the presence of free quanitatively converted  $Mn^{4+}$  ions in solution after the addition of 1:1 H<sub>2</sub>SO<sub>4</sub> acid. The observed equilibrium potential (E<sub>2</sub>) value of the solution is due to the presence of quantitatively formed  $Mn^{2+}$  ions from  $Mn^{4+}$  state after the redox reactions with the addition of 10% KI solution. Interestingly, Bharath N and Palanna O.G<sup>[16]</sup> have shown a quantitative relationship (equation -11) between the difference of these two potential values  $[E_1 - E_2]$  (mv) is related to an equivalent amounts of dissolved oxygen (DO) present in water samples for solutions prepared as given in TABLE 1. The below mentioned techniques of analysis justifies the relationship of equation-11.

- (a) potentiometric technique of DO analysis and
- (b) Winkler's titrimetric technique.

In the present work, we have adopted both these techniques of DO analysis using the same two-in-one cell set up (figures 1 and 4). Experimentally, the amount of iodine liberated due to redox reaction (8) is titrated against standard  $Na_2S_2O_3$  and the amount dissolved oxygen (mg/L) is evaluated.

Curiously enough, it is observed in potentiometric analysis that the observed  $[E_1-E_2]$  millivolts of the redox reactions (4) and (8) are found to be quantitatively related to the amount dissolved oxygen (mg/L) present water at laboratory temperature (TABLE 3).

A linear plot is obtained when  $[E_1 - E_2]$  millivolts of redox reactions (5) and (9) plotted against DO mg/L at laboratory temperature (figure 2). This linear plot is identified as the calibration plot for DO determination. If  $[E_1 - E_2]$  millivolts for a unknown water sample is measured, it is possible to report the DO of water at laboratory temperature from the graph (figure 3). The potentiometric technique of DO analysis of water determination is unique, which was adopted by Bharath N and Palanna O.G to determine DO of water (communicated to Indian Patent 2007) for the first time; and is also successfully adopted again for the determination of DO and BOD of waste water (Madival lake) sample in the present work. The data obtained from potentiometric analysis is further corroborated by the investigation of the samples of water by Winkler's titrimetric method (TABLE 4). A notable feature of the present investigation is that one can record simultaneously both [E, millivolts] by a potentiometric technique and the end point volume (ml) of Standard thiosulphate by winkler's titrimetry; wherein the liberated iodine is titrated against standard sodium thiosulphate solution using starch as an indicator.

The Dissolved oxygen (DO) obtained by these techniques are comparable to any known techniques<sup>[6-8]</sup> of analysis and the results are reproducible with great success. Moreover, the present technique is simple, unique, easy to handle and inexpensive to determine the DO

Environmental Science An Indian Journal

# Current Research Paper

267

and BOD of water samples.

These encouraging results of DO of water determination has prompted us to investigate the BOD of waste water samples, too. As described in the procedure, the dissolved oxygen  $(D_1)$  of waste water sample at laboratory temperature is evaluated on the same day (Ist day) soon after the collection of sample of water and carefully introduced into a closed cell for DO data in a set up as shown in figure 3; and equilibrium potential values  $E_1$  and  $E_2$  are recorded as usual for the waste water sample. The difference  $[E_1-E_2]$  millivolts for the waste water(Madivala lake) sample is noted. From graph (figure 3), DO of waste water is noted for the corresponding value of  $[E_1 - E_2]$  millivolts. This is referred to as  $D_1$  (mg/L) of waste water on the first day of investigation. The same waste water sample is isolated and kept in a closed container at constant temperature ; and DO of this waste water sample is similarly obtained by noting  $[E_1 - E_2]$  millivolts on the 5<sup>th</sup> day and recorded as  $D_2(mg/L)$  from the figure 3. The BOD of the waste water (madivala lake) sample at the temperature is calculated thus:

25ml of waste water (Madivala) sample is diluted to 250 ml and 25 ml this waste water is taken for DO and BOD measurements of Madival lake water. Volume fraction,  $P = \frac{25}{250} = 0.1$ 

- (i). Draw a line horizontally for  $[E_1 E_2]$  mv on the DO calibration graph of water for the Ist day and note the corresponding value of  $D_1$ .
- (ii). Draw a line horizontally for  $[E_1 E_2]$  mv on the DO calibration graph of water corresponding to the 5<sup>th</sup> day and note the corresponding value of D<sub>2</sub>

(iii). Find the difference  $D_1 - D_2$  from graph (figure 3) The BOD of waste water (Madivala lake) is calculated thus

 $\mathbf{BOD}_{r} = \mathbf{D}_{1} - \mathbf{D}_{2}$ 

The BOD of Madivala lake water measured by potentiometric analysis is 31.6 mg/L (TABLE 5) at the laboratory temperature. Since the above electrochemical set up has two-in-one provision,  $BOD_5$  of madivala lake waste water is also simultaneously obtained as 31.6 mg/L by Winkler's titration method. The values of  $BOD_5$ obtained from these two techniques of analysis are in excellent agreement (TABLES 5 and 6) pointing out that potentiometric analysis as a valid technique for the determination of BOD of any waste water sample.

### ACKNOWLEDGMENTS

We are very much indebted and grateful to Prof M.R Holla, Director, for his stimulating encouragement and the permission to carry out this work in the laboratory. I profusely thank with gratitude to Prof Dr H N Shivashanker, Principal, RNSIT for his untiring encouragement through out this investigation. we thank sincerely, H.C.Anandamurthy and Dr Subha Ramesh, departmental colleagues for their valuable help and involvement.

#### REFERENCES

- [1] L.W.Winkler; Die Bestimmung des in Wasser gelösten Sauerstoffen. Berichte der Deutschen Chemischen Gesellschaft, **21**, 2843-2855 (**1888**).
- [2] J.J.Mckeown, L.C.Brown, G.W.Gove; J.Water. Pollut.Control.Fed., **39**, 1323 (**1967**).
- [3] W.R.Lynn, D.A.Okun; Sewage Ind. Wastes, 27, 4 (1955).
- [4] K.H.Mancy, D.A.Okun; Anal.Chem., 32, 108 (1960).
- [5] (a) L.C.Clarke; Jnr.Ann.NY Acad.Sci., 102, 29-45 (1962).
  (b) H.A.Clark; Patent No. 2, 913, 386 (1959).
- [6] D.E.Carritt, J.W.Kanwisher; Anal.Chem., 31, 5 (1959).
- [7] K.H.Mancy, W.C.Westgarth; J.Water Pollut. Control.Fed., **34**, 1037 (**1962**).
- [8] K.H.Mancy, D.A.Okun, C.N.Reilly; J.Electroanal. Chem., 4, 65 (1962).
- [9] K.H.Mancy, T.Jaffe; Publ. No. 999-WP-37, U.S. Public Health Serv., Washington, D.C (**1966**).
- [10] C.M.Weiss, R.T.Oglesby; 'Instrumentation for monitoring water quality in reservoirs', American Water Works Assoc. 83<sup>rd</sup> Annual Conf., New York, N.Y, (1963).
- [11] E.J.Cleary; Proc.Water.Quality. Meas. Instrum. Publ. No. 108, U.S. Public Health Serv., Washington, D.C (1962).
- [12] F.J.H.Mackereth; J.Sci.Instrum., 41, 38 (1964).
- [13] F.Sulzer, W.M.Westgarth, D.O.Continuous; Water Sewage Works, 109, 376 (1962).
- [14] A.C.Duxbury; Limnol.Oceanogr., 8, 483 (1963).
- [15] H.J.Lipner, L.R.Witherspoon, V.C.Champeaus; Anal.Chem., 36, 204 (1964).
- [16] N.Bharath, O.G.Palanna; Indian Patent communicated, (2007).