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ABSTRACT
This paper proposed a normalization method based on minimum variance
and median adjustment (MVM), and then made a comprehensive
comparison of three normalization methods including DESeq, TMM and
MVM. In this study, the MVM method was evaluated using
polyadenylation [poly(A)] data and gene expression data from Arabidopsis
by ways of empirical statistical criterias of mean square error (MSE) and
Kolmogorov-Smirnov (K-S) statistic. Experimental results demonstrated
the high performance of MVM method in that it could accurately remove
the systematic bias and make the distributions of normalized data stable.
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INTRODUCTION

With the improving of the next high-throughput gen-
eration sequencing (NGS), the RNA sequencing tech-
nology (RNA-seq) has developed[1, 2]. The systematic
variation of RNA-seq data can be eliminated by effec-
tive normalization methods[3-5], which are divided into
within-library method and between-library method. The
within-library normalization method is able to make
accurate comparisons of the gene-level expression within
sample, but this method can not be used in differential
analysis. The between-library normalization method uses
total numbers of reads to balance the sample expres-
sion, so it is commonly used in the RNA-seq analysis.

The existing normalization methods for RNA-seq
studies include TC (Total number of reads Count)[1], Q
(Quaritile)[6], UQ (Upper Quaritile)[7], Med (Median),

DESeq[8], TMM (Trimmed Mean of M values)[9] and
RPKM (Reads Per Kilobase per Million mapped
reads)[10] normalization. Both of the TC and RPKM
methods are widely used, however, they are sensitive
to the presence of majority genes and ineffective in gene
differential analysis. The DESeq and TMM methods
are implementation of statistical tests using NB distri-
bution, producing similar results when the library com-
positions are robust[4]. In this study, the between-library
normalization method was used to remove between-
library variation of polydenylation [poly(A)] data and
gene expression data. A minimum variance and median
adjustment method (MVM) that based on DESeq and
TMM methods was proposed to normalize poly (A)
data and gene expression data. The performance of this
MVM method was assessed by ways of data distribu-
tions and empirical statistical criterias of mean square
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error (MSE) and Kolmogorov-Smirnov (K-S)[11].

DATA  AND METHODS

Data description

The poly (A) data and gene expression data from
Arabidopsis under different conditions were used (un-
published data) in this study. Each dataset includes four
sequencing samples with different conditions, each con-
dition contains three biological replicates, denoted it as
wt1~3, oxt1~3, g1~3, gm1~3. Each row of poly (A)
data represents a poly (A) site, each column represents
the expression of the corresponding poly (A) site. Each
row of gene expression data represents a gene, each
column represents the expression of relevant gene.

Normalization methods

The process of the MVM method is shown in Fig-
ure 1.

The TMM normalization method[12] is also based
on the hypothesis that most genes are similar expressed.
The procedure of TMM method is doubly trimmed, by
default, trimming off M-value by 30% and A-value by
5%[9]. The TMM factor is calculated as Eqs. (2):

(2)

Where s
j 
represents the scaling factor, G´ represents

genes set after removing the data whose value is 0. These
TMM normalization factors should be re-scaled by the
mean of the effective library sizes[4]. The normalized
data set are obtained by scaling raw data by these re-
scaled factors.

The MVM normalized value can be calculated as
Eqs. (3):

(3)

Where median
j
 represents the median of genes expres-

sion in j sample, n represents number of experiment
samples, m´

ij
 represents the expression level of i gene

under j sample with MVM method.
This article implemented the MVM method using a

series of R scripts with empirical statistical metrics. Both
of the DESeq and TMM methods are implemented in
appropriate R Bioconductor libraries. In package
DESeq, calling estimateSizeFactors() and
sizeFactors() functions can estimate the sample-spe-
cific normalization factors, then calling counts() func-
tion and setting the normalized parameter to TRUE,
this study receives DESeq normalized data. The TMM
normalization method is included in TMM package. The
calcNormFactors() function provides TMM scale fac-
tors. The TMM normalized data are obtained by scal-
ing raw data by re-scaled factors.

Appraisal procedures of the normalization meth-
ods

By examining the boxplots of data across samples,
both before and after normalization, this study prelimi-
nary evaluates data discretization. If the method is an
effective normalization scheme, the data distributions
across samples should be stable. Moreover, the scatter
plots are also used to describe data distributions quan-

Figure 1 : The framework of the minimum variance and
median adjustment method.

The DESeq normalization method[8] is based on the
hypothesis that most genes in different samples are not
differentially expressed, the underlying meaning of which
is distributions of data are steady across samples. The
DESeq normalization data can be received by dividing
raw data by a sample-specific normalization factor, this
factor is calculated as Eq. (1):

(1)

Where the scaling factor s
j
 is the DESeq normalization

factor, m
ij
 is the expression of gene i in sample j, n is

the number of samples in the experiment.
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titatively, as an effective normalization method should
make bulk of M-value to lay on the horizontal line indi-
cating equal value in two comparable samples.

Also, the MSE can be used to estimate the varia-
tion of the normalization data. In empirical statistics
analysis, MSE is defined as the summation of variance
and the square of bias, where the variance is a metric
for precision and the bias is a criterion for accuracy. A
small MSE shows that the difference of data between
samples is small, the normalization method is better in
overall[5]. The K-S statistic is another comparison cri-
terion. By calculating the largest deviation statistic value
D between two accumulative distributions, the K-S sta-
tistic measures similarities between these samples. An
effective normalization method should produce smaller
D value.

RESULTS

Profiles of the data before normalization

The M-values distribution between two technical
replicates of the raw gene expression data is showed in
Figure 2A, where the M value is calculated as log2
(read data). The M-values distribution is mostly cen-
tralized around zero, indicating that there is no signifi-
cant difference expression in these technical replicates.
However, Figure 2B shows that the log ratios between
the two comparison biological replicates have signifi-

cantly partial to the condition with higher expression
genes. The M-value distributions between the two com-
parison biological replicates of gene expression (Figure
2C) and poly (A) (Figure 2D) data show the centers of
M-values before normalization are deviated from zero.
The median values are 1.15 for gene expression data
and 1.66 for poly (A) data. Therefore, an effective nor-
malization procedure for these data is needed in our
analysis.

Assessment of the MVM normalization method

Comparison of methods with data distributions

As to the poly (A) data, Figure 3A shows the dis-
tributions of data across replicates, both before and
after normalization. The DESeq and TMM methods
appear to perform similarly. The distributions of MVM
normalized data from different samples are more stable
than DESeq and TMM methods, illustrating that the
difference among these samples is minimum. In the M-
A plot (Figure 3B), the M-values of the raw data are
not centered on M = 0, the M-values of normalization
data are all centered close to zero. Especially, in the
M-A plot after MVM normalization, the bulk of data
lie on the line of zero. All the results consistently exhib-

Figure 2 : Profiles of the data before normalization.
Comparison on the log ratios of (A) technical replicates and
(B) biological replicates expression levels. M-A plot of
biological comparison replicates in (C) gene expression and
(D) poly(A) data.

Figure 3 : Comparison of methods with data distributions.
(A) Boxplots of data both before and after normalization for
all replicates to assess. (B) M-A plots of the same data.
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ited that the MVM is an effective normalization method.
Comparison of methods with empirical statistical

criteria
As to the gene expression data, Figure 4 presents

the results assessed by methods of MSE and K-S sta-
tistics. The bias and MSE of raw data both are large
(Figure 4A); in contrast, the MVM method could re-
move the bias and minimize MSE effectively. As shown
in Figure 4B, the K-S statistics value from all of these
methods is much lower than the raw data. The D value
from our MVM method is least among all these meth-
ods, showing the difference of data from these biologi-
cal replicates is smaller.

expression across replicates. In this study, the MVM
method turned in a good performance on stabilization
of data distributions across replicates.
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