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I. Introduction
Many mathematicians have made great efforts in the area of establishing more precise inequalities and accurate approximations for
the factorial function and its extension of gamma function.

The gamma function is defined as follow:

rx) = [re'd, x>0 1.1)
0
Stirling’s formula,
n
nl~ ~/2m [ﬂj L2
e

is one of the most widely known formulas for approximation of the factorial function.

Based on this formula, lots of approximation formulas were discovered. The Stirling’s series [1]:

i '_Zm[ﬂ) (1+i+ 1 __ 139 . 571 4+...j (1.3)
e 12n  288n° 51840n° 2488320n

which is the extension of (1.2).

Burnside’s formula [2],
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which is more precise than (1.2). Also, there are many approximations which are better than (1.4), Dawei Lu’s formula [3],
n+s
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and Dawei Lu’s continued fraction formula [4],
1
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Also, some authors paid attention to giving the better increasing approximations of the gamma function using continued fraction.
For example, Mortici introduced Stieltjes’ continued fraction [5],

I'(x+1) =~ JZﬂ‘X(ij exp| —— 2
e

, (1.7)
x+ A

Where

1 1 53
aozi, al=7’ a2=7,""

12 30 210
and Mortici also provided a new continued fraction approximation as follows [6]:


http://www.tsijournals.com/

www.tsijournals.com | July 2023

I'x+1) = \lZﬂxe_X X+ 1
12x -

10x +

X+
X+

X+

X+ . (1.8)
Where
B 2369 b 2117009 393032191511 d- 33265896164277124002451'__

= y C= 1 -
252 1193976 1324011300744 14278024104089641878840

ChaoPing Chen provided a new approximation starting from Burnside’s formula (1.4) as follows [7]:

1
1 19 2561 3
L1 24 . 5760 29030401, .
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X+= (x4 X+=
, (57 (x+9)

I'(x+)~2x

o (1.9)

In this paper, we provide a new continued fraction approximation of the gamma function starting from Burnside’s formula (1.4) as
follows:

Theorem 1.1.

For the factorial function, we have,

1
n+=
2
n+—
=2z —2 | ep o , (1.10)
e agn+by + 1
ayn+hy+ 1
"
ain+bi
Where
o= oab —12a, - 5 p 5 5 _ 8282, 416
7 14 1517 1517
Next, using Theorem 1.1, we provide some inequalities for the gamma function.
Theorem 1.2.

For every x = 0, it holds:
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To prove Theorem 1.1, we need the following lemma which is very useful for constructing asymptotic expansions and for
accelerating some convergences.
Lemma 1.1.

If (x,)ns1 IS CONvergent to zero and there exists the limit,

H S
nIirpwn (X, —X,,y) = € (—00,40) (1.12)
with s>1, then,
- S*l I
limnx, =— (1.13)
n—+w [ -1

Lemma 1.1 was first proved by Mortici in [8]. Using Lemma 1.1, we can see that the rate of convergence of the sequence (x;,)n»1
increases together with the value s satisfying (1.12).

The rest of this paper is arranged as follows. In Section Il, we provide the proof of Theorem 1.1. In Section Ill, the proof of
Theorem 1.2 is given. In Section 4, we give some numerical computations which demonstrate the superiority of our new
approximation over the Burnside formula, the Dawei Lu’s formula and the ChaoPing Chen’s formula.

I1. Proof of Theorem 1.1

First, we need to find the value of the parameters a;, b;€ER which produces the best approximation of the form,

n 1
1\"2
n+— 1
nl ~ 27 2 expl —— |- (2.1
e an+b
A method to measure the accuracy of approximation (2.1), is to define the sequence (w,,),s1 by the relation,
1 n+%
n+— 1
n =+2rx 2 exp| —— |exp(w,) (2.2)
e an+b

and to say that an approximation (2.1) is better if (w,,),>1 CONverges to zero faster.

From (2.2), we have,

1 1 1 1 1
o, =Inn—=I2z7—-|n+=|Infn+= [+n+=— . (2.3)
2 2 2

Thus,
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Developing (2.4) in a power series in % , We have,

2
o, —o = 211 iz+ i+i+2b21 is+ _ﬂ_i_g_% i4+o(i) (2.5)
24 a )n 12 & n a /n n

Thus, using Lemma 1.1, we have,

e Ifa, # —24, then the rate of convergence of (w,)»1 isn™ , since,

. 1 1
limnow, = —+—|#0-
n—o 24 a

If a; = 24,b, # —12, then from (2.5), we have,

1 b )1 .1
PSP S T [ YA
“n = Bna [24 288) n® (n“ )

and the rate of convergence of (w,)ns; iSN*, since,

o If a; = —24,b, = —12 ,then, from (2.5), we have,

7 1
w,, =—F+0(—
' 960n* e
and the rate of convergence of the sequence (w,),s; 1SN 3, since,

), —

We can see that the fastest possible sequence (w,),s1 s Obtained only for a,

=—24,b; = —12.
Next, we define the sequence (u,),»1 by the relation,

n=+v2z| —2 | exp ! T |expu,)” (2.6)
€ —24n-12+

a,n+bh,

where a,, b, is any real number. We use the same method (2.1) to (2.5). Then, we can see that the best possible sequence (u;)n>1
. . 5 5

is obtained only for a, = —-,b, = ——.

Then, we define the sequence (v,,),»; by the relation,
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nl=+/2x exp ! exp(v,).

e B B 1 2.7
24n -12 + En & 1

+
7 14 a,n+b,

Using the same method from (2.1) to (2.5), we can see that the fastest possible sequence (v,),»; iS obtained only for
8232, _ _ 4116
1517’73 7 1517

a3—_

Similarly proceeding, we get a;, b;(i = 1,2, ...). For example,

2301289 , 2301289

47 6918030 * 13836060’
286503689736 , 143251844868
5" 096288327108 ' ° 96288327103 ’
_ 52374449785240453 | 52374449785240453
8 241778324720548917' °©  483556649441097834
_102600418475818016094701640 ,  51300209237909008047350820
7 — 7 —

50286103698593621472051013 ' © 50286103698593621472051013 ’

10670106971195869207484450057185962833
© 66384209830428923589901518762311503292
~ 10670106971195869207484450057185962833

132768419660857847179803037524623006584

g =

g =

We obtain the new asymptotic expansion (1.10).
I11. Proof of Theorem 1.2
The left-hand side inequality of (1.11) is equivalent to (x) > 0, where,

F(x)=|n1"(x+1)—lln27z— x+1 In x+E +x+£+; (3.1)
2 2 2 2 24x+12

Let,
f(X)=F(X)—F(x+1).

1 1 1 1 1
f(x)=-1+In——| x+=[In| x+= |+ x+§ In x+§ + - : (3.2)
X+1 2 2 2 2) 24x+12 24(x+1)+12

From (3.2), we have, for every > 0,

From (3.1), we have,

, 25 + 56X + 28 x?
f"(x)= . ol
31+ x)2(3+8x +4x?)
f'(x) >0, s0 f'(x) is strictly increasing on[0, o]. As lim,_., f' (x) = 0, we get f'(x) < 0 on [0, +o]. Thus, f(x)is strictly

decreasing on [0, +o0]. As lim,_,, f' (x) = 0, we get f(x) > 0 on [0, +o]. So,

(3.3)
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F(X)>F(x+1)>--->F(x+n), F(x)>nlirr10F(x+n):0.

Then, the left-hand side inequality in Theorem 1.2 is obtained.
The right-hand side inequality of (1.11) is equivalentto G(x) < 0 , where,

G(x):InF(x+1)—1In2ﬂ—(x+ljln[x+1J+x+l+;l- 34)
2 2 2 2 2x2eg
71
Let,
g(x) =G(x) —-G(x+1).
From (3.4), we have,
g(x)=—1+|n—1 xe i xa 2 x 2 inf x+ 2 )+ L —— 1 — (35
X+1 2 2 2 2 UxH2+g—5  24(x+D)+H12+5 5
7X+ﬂ 7(X+1)+ﬂ

From (3.5), we have, forevery x > 0 ,
—h(x)

" X — ’
9"(x) (1+ x)* (3+8x + 4x?)(37 +120x +120x?)* (277 + 360x +120x?)*

(3.6)

Where,

h(x) =800369777449 + 7567926713280 X + 30646991363040 x2 +69282414374400 x°

+95510046153600 x” +82144958976000 X° -+43050237696000 x° +12582604800000 X’

+1572825600000 x°.
g (x) <0, s0 g'(x) is strictly decreasing on [0, +o0]. As lim,_,, g’ (x) =0, we get g’(x) > 0 on [0, +]. Thus, g(x) is
strictly increasing on[0, +co]. Aslim,_,,, g (x) = 0, we get g(x) > 0 on[0, +oo]. So,
G(X) <G(x+1) <G(x+n), G(x) < lim G(x+n)=0.
N—-+0
Then, the right-hand side inequality in Theorem 1.2 is obtained.

IV. Numerical Computations

Here, we give a comparison table to demonstrate the superiority of our new approximation,

1 ”*%
n+—
nl~+2r 2 exp ! I =0, (4.1
e a1n+bl+7l
a2n+b2+ 1
Tt
ai”+k7?
over Burnside’s formula,
1
n+2
n+
nl~ +2r =a, (4.2)
e
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Dawei Lu’s formula,

1 2 1

n+— 2 k (4.3)
1~ Jom 2 L. S L S O R
S e [1 24n+(1152+48 w2 ) = e
Dawei Lu’s continued fraction formula,
1
ot
nJ% k
n+— K
nl=2z| —%| |u— 2 =y (4.4)
e (L_ﬁ) k.n
2,°48 120
14
" 5k_a6
and Chao-Ping Chen’s formula,
1 19 X+
il 24, 5760
x+l (><+1)3
nl~ 27z 2 "2 =v, (4.5)
e
where we take i=2, i=4 and i=8 in (4.1), respectively. Combining Theorem 1.2, we have TABLE 1.
TABLE 1. Comparison for eight approximations.
n (an—n!)/n! (,Blln—n!)/n! (7/13,n—”!)/n! (v, —nh/n! (szn—n!)/n! (94Yn—n!)/n! (Hsyn—n!)/n!
50 8.2540%x10* 7.0647x10® 4.6003x10"° | 2.6852x107? | 1.9085x1072 1.6402x107 1.6518x10
500 8.3254x10° | 7.0902x107 5.7555x10™® | 2.8089x10™ | 1.9966x10™Y 1.7808x102% | 1.9432x10™®
1000 | 4.1647x10° | 8.8645x107%? 1.8191x10"° | 8.7998x10™"° | 6.2550x107%° 3.4939x10%! 1.4953x103
1500 2.7769x10° | 2.6267x10" 2.4045x10%° | 1.1598x107° | 8.2439x10°%° 9.1020x10 1.5220x107¢
2000 2.0828x10° | 1.1082x10*? 5.7168x102 | 2.7534x10%° | 1.9571x10% 6.8393x10 1.1457x1078
3000 1.3887x10° | 3.2836x10™° 7.5424x10% | 3.6273x10% | 2.5784x10°% 1.7804x107% 1.1645x10%!
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