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ABSTRACT 
 
Bacterial Foraging Optimization Algorithm (BFOA) is inspired by the social foraging
behaviour of Escherichia coli. Although the BFOA has successfully been applied to many
kinds of optimization problems, experimentation with complex problems reports that the
basic BFO algorithm possesses a poor performance mainly because of its constant
chemotactic step. In this paper, a new self-adaptive approach to BFO based on ES (ES-
ABFO) is proposed. In the proposed algorithm, each bacterial decides the step size C on
the basis of the objective function value. When it is far away from the best objective, the
step size C is large. Otherwise, the step size C is small. In this way, the step size C can be
regarded as an evolution progress with self-adaptive adjusting. And it can keep right
balance between an exploration of the whole search space and an exploitation of the
promising areas. In order to prove the validity of the ES-ABFO, two experiments have
been done for a set of benchmark functions and then they have been compared with basic
BFOA. The performance comparisons indicated that the ES-ABFO is capable of
alleviating the problems of premature convergence in BFO. And it is suitable to solve the
complex optimization problems. 
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INTRODUCTION 
 
 Recently natural swarm inspired algorithms like Particle Swarm Optimization (PSO), Ant Colony Optimization 
(ACO) have found their way into this domain and proved their effectiveness. Following the same trend of swarm based 
algorithms, The bacterial foraging optimization Algorithm(BFOA)proposed by Passino in 2002[1],which inspired by the E. 
Coli foraging strategy, is a new comer to the family of nature inspired optimization algorithms. Since its biological 
motivation and graceful structure, BFOA has drawn attention of researchers from diverse fields of knowledge. 
 One major step in BFOA is the simulated chemotactic movement, Chemotaxis is a foraging strategy that implements 
a type of local optimization, where the bacteria try to climb up the nutrient concentration to avoid noxious substance and 
search for ways out of neutral media. If the step size of chemotaxis is lager, the area of nutrient concentration will be missed. 
Otherwise the area of nutrient concentration will be not discovered. However the step size C of Chemotaxis is constant in 
classical BFOA, which limit to explore its local and global search properties separately. Several researchers have 
concentrated on it, and proposed several adaptive methods. Dasgupta et al.[2-6] showed that it is necessary to modify its value 
on the run for the algorithm to converge. Mishra[7] suggested using a Fuzzy Logic Controller (FLC) to adapt this parameter. 
Nevertheless this requires the tuning of a complete FLC, which implies the selection of several more parameters. Hanning 
Chen[8] introduced the adaptive search strategy, which allows each bacterium strikes a good balance between exploration and 
exploitation during algorithmic execution by tuning its run-length unit self-adaptively. Ben Niu[9] raised a point of linear 
decreasing chemotaxis step to self-adaptive optimize the step size C of chemotaxis. 
 This paper presents a modification for the BFOA by means of introducing the evolution strategies[10] to improve its 
computation speed and convergence. The paper is organized as follows. In Section II we describe the original BFOA. In 
Section III we proposed modification to the algorithm. In Section IV several experimental studies were done to examine its 
performance. We carried out a simulation study using some common benchmark functions comparing the proposed algorithm 
with the original and adaptive bacteria algorithms. And the results for these tests were shown. Finally, we present some 
conclusions in Section VI. 
 

BACTERIAL FORAGING OPTIMIZATION ALGORITHM 
 
 Bacterial foraging optimization algorithm (BFOA) process can be subdivided into four motile behaviours namely 
chemotaxis, swarming, reproduction, and elimination and dispersal[1]. 
 
Chemotaxis 
 This process simulates the movement of an E.coli cell through swimming and tumbling via flagella. Biologically an 
E.coli bacterium can move in two different ways. It can swim for a period of time in the same direction, or it may tumble, and 
alternate between these two models of operation for a run lifetime. Supposed ),,( lkiiθ  represents the ith bacterium at jth 
chemotactic, kth reproductive and lth elimination and dispersal step. C(i) is the size of the step taken in the random direction 
specified by the tumble (run length unit). Then in computation chemotaxis the movement of the bacterium may be 
represented by 
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 WhereΔ indicates a vector in the random direction whose elements lie in [-1, 1]. 
 
Swarming 
 E.coli bacterium has a specific sensing, actuation and decision-making mechanism. As each bacterium moves, it 
releases attractant to signal other bacteria to swarm towards it. Meanwhile, each bacterium releases repellent to warn other 
bacteria to keep a safe distance from it. BFOA simulates this social behaviour by representing the combined cell-to-cell 
attraction and repelling effect as 
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 where )),,(,( lkjPJ cc θ is the objective function value to be added to the actual objective function (to be minimized) to 
present a time varying objective function, S is the total number of bacteria, p is the number of variables to be optimized, 
which are present in each bacterium and

T
p ],...,[ 32,1 θθθϑθ = is a point in the p-dimensional search domain. tattracd tan , tattracw tan ,

repellanth , repellantw are different coefficients that should be chosen properly. 
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Reproduction 
 The health status of each bacterium is calculated as the sum of the step fitness during its life. All bacteria are sorted 
in reverse order according to health status. Only the first half of population survives and a surviving bacterium split into two 
bacteria, which are placed in the same location. Thus the population of bacteria keeps constant. 
 
Elimination and dispersal 
 Gradual or sudden changes in the local environment where a Bacterium population lives may occur due to various 
reasons e.g. a significant local rise of temperature may kill a group of bacteria that are currently in a region with a high 
concentration of nutrient gradients. Events can take place in such a fashion that all the bacteria in a region are killed or a 
group is dispersed into a new location. To simulate this phenomenon in BFOA some bacteria are liquidated at random with a 
very small probability while the new replacements are randomly initialized over the search space. 
 
The BFOA Algorithm 
 [Step 1] Initialize parameters p, S, Nc, Ns, Nre, Ned, Ped, C(i)(i=1,2…S), iθ  
 [Step 2] Elimination-dispersal loop: l=l+1 
 [Step 3] Reproduction loop: k=k+1 
 [Step 4] Chemotaxis loop: j=j+1 
 [a] For i =1,2…S take a chemotactic step for bacterium i as follows. 
 [b] Compute fitness function, J (i, j, k, l). 
 Let, )),,(),,,((),,,(),,,( lkjPlkjJlkjiJlkjiJ i

cc θ+= (i.e. add on the cell-to-cell attractant–repellent profile to simulate the 
swarming behaviour)where, Jcc is defined in(2). 
 [c] Let ),,,( lkjiJJ last = to save this value, since we may find a better cost via a run. 
 [d] Tumble: generate a random vector Pi ℜ=∈Δ )(  with each element ,,...,2,1),( pmim =Δ a random number on[−1, 1]. 
 [e] Move: Let )()(
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 This results in a step of size C(i) in the direction of the tumble for bacterium i. 
 [f] Compute ),,1,( lkjiJ +  and let 
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 [g] Swim 
 1)let m=0 (counter for swim length) 
 2)while m<Ns(if have not climbed down too long) 
 3)let m-m+1 
 4)if lastJlkjiJ <+ ),,1,(  
 Let ),,1,( lkjiJJ last += and let 
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 and use this ),,1( lkji +θ  to compute the new ),,1,( lkjiJ + as we did in (f) 
 5)Else let m=Ns, this is the end of the while statement 
 [h] Go to next bacterium (i+ 1) if i≠S [i.e., go to (b) to process the next bacterium 
 [Step 5] If j < Nc, go to Step 4. In this case, continue chemotaxis since the life of the bacteria is not over 
 [Step 6] Reproduction 
 For the given k and l, and for each i =1, 2,..., S, let 
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 the health of the bacterium i (a measure of how many nutrients it got over its lifetime and how successful it was at 
avoiding noxious substances). Sort bacteria and chemotactic parameters C(i)in order of ascending cost Jhealth (higher cost 
means lower health).The Sr bacteria with the highest Jhealth values die and the remaining Sr bacteria with the best values 
split (this process is performed by placing the copies that are made at the same location as their parent) 
 [Step 7] If k < Nre, go to Step 3. In this case, we have not reached the number of specified reproduction steps, so we 
start the next generation of the chemotactic loop 
 [Step 8] Elimination-dispersal. For i = 1, 2..., S with probability Ped, eliminate and disperse each bacterium (this 
keeps the number of bacteria in the population constant). To do this, if a bacterium is eliminated, simply disperse another one 
to a random location on the optimization domain. If l < Ned, then go to Step2; otherwise end. 
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BFO BASED ON EVOLUTION STRATEGIES 
 
Evolution strategies 
 Evolutionary Strategies (ES) is a technique that makes part of the set of techniques of the Evolutionary 
Computation. This technique can be defined as an algorithm where individuals (potential solutions) are codified by a real 
value variable set, the "genome"[10]. 
 The ES were initially developed with the purpose of parameter optimization. The first ES algorithm proposed by 
Rechenberg, 1965, used a mutation-selection schema, known as two-membered ES or (1 + 1) - ES algorithm. It works with 
an individual, which creates an offspring through mutation. The best of these both individuals is deterministically selected to 
integrate the next generation. In 1971,Rechenberg proposed the multimembered ES, (µ+ 1) -ES, where, µ parents, (µ> 1), 
participate in the generation of one descendant. In this method all parents have the same likelihood of matching. After, the 
(µ+λ) –ES proposed by Schwefel in 1975, specifies that µ parents produce λ descendants, where (λ>µ). The descendants 
compete with their parents in the selection of the best, µ individuals to the creation of the next generation. This procedure 
presents local optimal. To solve it, the (µ,λ) -ES was proposed, where the lifetime of an individual is just during a generation. 
Recent evidences points that the last algorithm is as good as the first one in practical applications[11]. 
 The notation of an ES algorithm is the following (µ+λ) –ES or (µ,λ) –ES. Where: µ is the size of the population. The 
"+" operator indicates that µ andλwill compete to the next generation. The µ best individuals will be selected. The "," 
operator indicates that the µ best individuals will be selected just only between the descendants. λ is the number of 
descendants created at each generation. 
 The definite question expression way, in this kind of expression the individual is composed of the goal variable X

and σ the standard deviation,each part may has a component: 
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 Where: ）（ iix σ, -father generation of individual i-th component,  ),( ''

iix σ -son generation the new individual i-th 
component, )1,0(N -obedient standard normal distribution random number, )1,0(iN -produces in view of the component one 

time conforms to the standard normal distribution random number, 1-' )2( nr = -global coefficient, is took to 1, 1-)2( nr = -local 
coefficient, is took to 1, 0.3)0( =σ . the above equation indicated the new individual is the random mutation from in the old 
individual foundation. 
 
BFO based on evolution strategies 
 It is acknowledged that the most critical parameter is the step size C because of its strong influence in the algorithm 
stability and convergence. The each bacterial decide the every step size C mainly on the basis of the objective function value. 
When it is far away from the best objective, The step size C is large, otherwise, the step size C is short. In this way, the step 
size C can be regarded as an evolution progress with self-adaptive adjusting. One new self-adaptive approach to BFO based 
on ES is proposed in this paper. 
 When the i-th bacterial swims alone the direction in the j-th Chemotaxis, the step size C is described as: 
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 Where: )1( +mC j

i
-son generation of the new step size C, )(mC j

i
-father generation of the old step size C, )1,0(mN  -

produces in view of the component one time conforms to the standard normal distribution random number, )(miσ -mutation 
strength. 
 For the adaptation of the step size，we use a modification the 1/5-th rule extracted from the Evolution Strategies 
(ES)[10]. A rule to control the size of )(miσ  depending on the cost value found by the bacteria is included. If the cost value 

has decreased or has sustained, )(85.0)1( mm ii σσ ⋅=+ ,otherwise )(18.1)1( mm ii σσ ⋅=+ . The chosen values for the adaptation are based 
on the works of ES in the change of mutation strength[10], since we can compare the movement of the bacteria to the mutation 
in ES. The results show that they work in an acceptable way. 
 The flowchart of the EA-BFO algorithm can be illustrated by Figure 1. 
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Figure 1: The flowchart of the ES-ABFO algorithm 
 

EXPERIMENTAL STUDY 
 
 This section presents two experiments. One is an extensive comparison among the performances of ES-ABFO, the 
classical BFO, a standard real-coded GA, and the standard PSO algorithm. The other is an intensive comparison among the 
parameters of ES-ABFO influencing on performance of ES-ABFO algorithm. 
 

TABLE 1 : Description of the benchmark function used 
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Benchmark functions 
 To test the modifications to the algorithm, we carried on a benchmark study using 10 well known test functions[12]. 
In TABLE 1. p represents the number of dimensions and we used p=15,30,50,while functions f8 to f10 are 2-D. the first 
function is unimodal function with only one global minimum. It can be used to test convergence speed and precision. The 
others are multimodal with a considerable number of local minima in the region of interest. They are capable of finding the 
best result and precision in general searching. TABLE 1 summarizes the initialization and search ranges used for all the 
functions. 
 
The extensive comparison 
 
(1)Parameter settings for algorithms 
 Experiment was conducted to compare four algorithms including the original BFO, the real-coded Genetic 
Algorithm (GA), the standard Particle Swarm Optimization (PSO) and the proposed ES-ABFO on ten benchmark functions. 
The experiments run 50 times respectively for each algorithm on each benchmark function and the maximum generation is 
set at 1000. The mean values and standard deviation of the best-of-run values were recorded. 
 The original BFO and the ES-ABFO employ the same parameter setup, except with the difference that the 
chemotactic step sizes in ES-ABFO has been made adaptive according to (3) and (4). After performing a series of hand-
tuning experiments, we found 00.0)0( =iσ  gives good result. The parameters settings for ES-ABFO are summarized in TABLE 2. 
 

TABLE 2 : Common parameters setup for BFO and ES-ABFO 
 

S Nc Ns Ned Nre Ped 
100 50 6 4 8 0.25 

Ci(0) σi(0) dattr wattr wrepel hrepel 
0.1 0.001 0.1 0.2 10 0.1 

 
 The PSO algorithm we used is the standard one and the parameters were given by the default setting[13]. The GA 
algorithm we executed is a real-coded GA with intermediate crossover and Gaussian mutation (the parameters were to be the 
same of)[14]. The population size of all the algorithms was set at 100. 
 
(2)Simulation result and discussion 
 The algorithms on the quality of the best solutions obtained are compared in TABLE 3. It presents the evolution 
process for all algorithms according to the reported result in TABLE 3. 
 From the results, we observe that ES-ABFO achieved significantly better performance on all benchmark functions 
than the original BFO algorithm. It is because that the chemotactic step size is constant in the original BFO, which makes the 
original BFO algorithm get into local minimum. And the ES-ABFO remains the super competitive edge to GA and PSO in 
the most of cases. The function 1 is adopted to assess convergence rates of optimization algorithm, but in the follow phase, 
the performance course of the ES-ABFO is accelerated. A self-adaption chemotatic step size is the primary action. From 
TABLE 3, we find that the number of dimension will effect on the convergence speed and precision of optimization 
algorithms. When increase of dimension is from 15-dim to 50-dim, the precision of convergence falls and the convergence 
rate becomes slow. 
 
The intensive comparison 
 In this section, two parameters mainly effecting on performance of ES-ABFO are considered, which include S-the 
scale of bacterial swarm and Ped elimination-dispersal probability. Other parameters are set as TABLE 2. The number of 
dimension of objective functions is 30. 
 
(1)Setting S-the scale of bacterial swarm 
 In the TABLE 4, the scale of bacterial swarm S parameter is set. From the result, we can find the performance of 
ES-ABFO is inferior to as the decrease of the scale of bacterial swarm. Whereas the performance of ES-ABFO is improved 
obviously as the increase of the scale of bacterial swarm. We suggest that S parameter is set as about double dim. 
 
(2)Setting eliminate and disperse probability Ped 
 In order to improve the capacity of searching the general best result in BFO algorithm, eliminate and disperse 
probability Ped is introduced. When BFO algorithm is run into local optimization, eliminate and disperse can help BFO 
algorithm to dap from the local optimization by means of dispersing the bacteria of bad fitness. In this section, we argument 
that Setting eliminate and disperse probability Ped how to effect the performance of ES-ABFO. In TABLE 5, Function f2-f5 
are selected and Ped is set 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, D=30. From the result, we can find eliminate and disperse 
probability Ped will effect the performance of ES-ABFO. In f2 function, performance of ES-ABFO is better as Ped decrease. 
In f2-f5 function, when Ped is nearby 0.25, the result is better. 
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TABLE 3 : The best solutions 
 

Func Dim Max no. of FEs 
Mean best value/standard deviation 

GA PSO BFO ES-BFO 

F1 
15 5x104 0.001 0.001 0.001 0.001 
30 1x105 0.039/0.0015 0.065/0.0116 0.085/0.0025 0.024/0.00626 
50 5x105 0.261/0.0325 0.382/0.2281 0.771/0.1603 0.211/0.0666 

F2 
15 5x104 14.716/9.9889 0.523/0.1265 32.295/26.2341 12.532/2.586 
30 1x105 31.712/3.2424 12.813/2.2658 18.215/3.2154 6.217/2.0854 
50 5x105 57.473/14.651 135.260/45.7610 87.745/25.671 29..436/11.844 

F3 
15 5x104 0.4889/0.0353 0.2943/0.2509 11.042/5.7661 0.2864/0.5931 
30 1x105 3.628/0.8014 17.873/4.2712 17.531/9.8904 2.576/0.3798 
50 5x105 8.143/2.5813 16.332/7.3556 32.850/9.9687 6.238/1.4876 

F4 
15 5x104 0.0605/0.0047 0.1573/0.08779 0.09858/0.01874 0.0364/0.02331 
30 1x105 0.3474/0.3812 0.2684/0.2031 0.3937/0.0463 0.2303/0.1034 
50 5x105 0.4101/0.1103 0.5293/0.1946 0.5528/0.0503 0.3751/0.0678 

F5 
15 5x104 0.0985/0.0100 0.0206/0.00947 0.8278/0.0268 0.6241/0.0302 
30 1x105 0.2731/0.3687 0.2496/0.1871 0.3217/0.03142 0.1984/0.0128 
50 5x105 0.3863/0.0951 0.4764/0.1875 0.4821/0.0558 0.3419/0.0511 

F6 
15 5x104 0.001 0.0109/0.00102 0.00983/0.00094 0.001 
30 1x105 0.001 0.0489/0.0052 0.2088/0.0385 0.001 
50 5x105 6.6583/0.4879 4.5712/0.6812 10.5721/2.8943 3.2784/0.8321 

F7 
15 5x104 0.0090/0.0047 0.00651/0.0041 0.005901/0.0026 0.00305/0.0018 
30 1x105 0.6016/0.8124 0.0681/0.2463 0.0961/0.2710 0.01004/0.0093 
50 5x105 5.4865/2.1742 1.3628/0.4476 4.9211/5.1347 0.5489/0.3117 

F8 2 1x105 0.9998/0.0039 0.9998121/0.00832 1.010453/0.0096 0.9995102/0.00378 
F9 2 1x105 -1.0312/2.047 -1.031264/0.00549 -0.9528/0.00056 -1.031527/0.00041 

F10 2 1x105 3.2104/0.0627 3.41925/0.00724 3.58793/0.09876 3.12047/0.00081 
 

TABLE 4 : Setting S-the scale of bacterial swarm 
 

S-the scale 10 15 20 30 50 80 
F1 Mean best value 62.271 12.734 0.378 0.0258 0.0247 0.0244 
F2 Mean best value 234.521 106.783 24.672 8.137 6.2224 6.2181 

 
TABLE 5 : Setting eliminate and disperse probability Ped 

 
Ped 0.1 0.15 0.2 0.25 0.3 0.35 

Mean best value 

F2 6.203 6.187 6.215 6.217 6.221 6.782 
F3 3.983 3.025 2.604 2.576 2.613 2.726 
F4 0.3215 0.2441 0.2358 0.2303 0.2301 0.3101 
F5 0.2548 0.2681 0.1973 0.1984 0.2001 0.2985 

 
CONCLUSIONS 

 
 This paper has presented a modification for the Bacteria Foraging Algorithm named ES-ABFO, which employs 
Evolutionary Strategies to get a clear adaptation rule for the step size C(i). It can dynamically adjust the chemotaxis step size 
to keep right balance between an exploration of the whole search space and an exploitation of the promising areas. In order to 
verify the feasibility and efficiency of ES-ABFO, two experiments have been done for a set of benchmark functions and then 
they have been compared with basic BFO algorithm. The performance comparisons indicated that this proposed method is 
capable of alleviating the problems of premature convergence in BFO. Nevertheless, there are still more work to be carried 
on. Such as the algorithm suffers of premature convergence in several tests and did not acquire the global minimum in the 
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function evaluation limit previously set, and it suffers slower convergence speed than basic BFO. The next issue to solve is 
how to improve the reproduction and elimination/dispersal mechanisms, so as to increase the convergence speed and improve 
convergence precision. 
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