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ABSTRACT
A kind of two-dimensional semilinear parabolic equation is presented by
two-grid methods for nonconforming mixed finite element. The correspond-
ing convergence analysis is presented and the error estimates are ob-
tained by use of the interpolation operator instead of the conventional
elliptic projection which is an indispensable tool in the convergence analy-
sis. Compared with the previous literature which was solved by conform-
ing mixed finite element, the same order of convergence is obtained and
the method can be parallelized in a highly efficient manner.
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INTRODUCTION

Parabolic equation is considered a prototype of a
model that arises in flow through porous media. There
have been many numerical modeling methods for para-
bolic equations. For example[1-4]: used the mixed finite
element method for parabolic equations[5] studied the
parabolic equation with anisotropic mixed finite element
method. In[6], the maximum norm estimates of mixed
finite element method for parabolic equations is obtained.
Expanded mixed finite element method were used in[7]

and H1-Galerkin mixed finite element methods were
studied in[8,9].

In this paper, we will study a class of semilinear
parabolic equations with two-grid mixed finite element
method. The two-grid method is a method by which
the nonlinear system is only executed on the coarse grid
of size H and then the linear system is solved on the fine
grid of size h. Inspired by Xu[10,11] for a method to solve

nonsymmetric and indefinite linear algebraic systems,
we employ two finite element spaces: V

H
 and V

h
 in our

discrete schemes. On the coarser space V
H
, we use the

standard finite element discretization to obtain a rough
approximation u

H
  V

H
 and then solve a linearized equa-

tion based on u
H
 to produce a corrected solution u

h
 

V
h
. A remarkable fact about this simple technique is

that the space V
H
 can be extremely coarse (in contrast

to V
h
) and still maintain the optimal accuracy. The

method can not only accelerate the convergence but
also improve the computational efficiency. There are a
lot of other problems which were solved by the two-
grid method. For example:[12] studied the reaction-dif-
fusion equations and[13] studied the stream function form
of Navier-Stokes equations with the method[14] studied
the convection-dominated diffusion equation with two-
grid characteristics finite element method[15] studied a
kind of parabolic problems and[16] studied another para-
bolic problems with the two-grid method. However[15],
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and[16] were studied for the conforming finite element.
As we all know, the nonconforming elements whose
degree defined on the edges of the element and in the
element itself, it can lead to cheap local communication
and the method can be parallelized in a highly efficient
manner. Compared with the general elements, this
method can improve the efficiency of calculation.

In this paper, we will apply a kind of nonconform-
ing element to the parabolic equations with two-grid
method. In the first step, we got the error estimate O(t2

+ H3) on the coarse grid of size H which is the same
order of convergence as[15], and in the second step, we
got the error estimate O(t2 + h3 + H5) on the fine grid
of size h. The error analysis demonstrates that if the

mesh size of coarse grid equal to  5 3h , the two-grid

solution in the second step and the finite element solu-
tion in the first step have the same order of accuracy.
We also used interpolation instead of Fortin projection
in[15] and improved the computational efficiency.

CONSTRUCTION OF THE ELEMENT AND
DISCRETE SCHEMES

Now let us consider the following semilinear para-
bolic equations:

0

( ), (0, )

0, (0, )

( ,0) ( )

tp p f p in T

p on T

p X p X in

  


 
   ，

(1)

For the sake of convenience, Let   R2 be a con-
vex polygon domain composed by a family of rectan-
gular meshes T

h
, which does not need to satisfy the

regular conditions.  is the boundary of the domain 
and  is the Laplace operator. f(p) satisfies the Lipschitz
condition. For all K  T

h
, denoted the center of ele-

ment K by (x
K
, y

K
), and the length of edges parallel to

x-axis and y-axis by 2h
x
, 2h

y
, respectively.

)hy,hx(Z yKxK1  , )hy,hx(Z yKxK2  , )hy,hx(Z yKxK3 

and )hy,hx(Z yKxK4   are the four vertices, and

))4(mod(ZZl 1iii 
  are the four edges. Let �K be the ref-

erence element, the four vertices are )1,1(a� 1  ,

)1,1(a� 2  , )1,1(a� 3
 and )1,1(a� 4  . Let 

1iii a�a�l�


  ( )4mod( ),

then there exists an reversible mapping KF : KK�  :









.hyy

,hxx

K

K

.

We define the new finite element  �� �( , , )K P   as fol-

lows:

  1 � , 1, 2,3,4 ,iv i    2
1
� {1, , , }P span     and

  2 � , 1, 2,3, 4 ,iv i    2
2
� {1, , , }P span    , where

�

1
� � �, 1, 2,3,4.

� i
i l

i

v vds i
l

 

It can be checked that the above interpolation is
well-posed, the interpolation function can be expressed
as follow

2 2 2
1 3 2 4 2 4 3 1 1 2 3 4

3 1 1 1 3
� � � � � � �( ) ( ) ( ) ( ) ( ) .

4 4 2 2 4
I v v v v v v v v v v v v v              

The associated finite element space V
h
 and W

h
 is

defined by 
 �{ ; , [ ] 0}j

h h h hV v v P v   ,  { , tan ),h h h K
W q q is a cons t

{ , tan ),
K

W q q is a cons t  where [] denote the jump value of 
across the boundary F and [] =  when F  .

ERROR ESTIMATES

Introducing the auxiliary variable q = p, and re-
writing the equation (1) as:

 ( , ) ( , ) ( ( ), ),

( , ) ( , ) 0,
tp w u w f p w w W

u v p v v V

    


    
(2)

The discrete problem of (2) reads as: find

 { , }:[0, ]h h h hp u T W V  , such that

 ( , ) ( , ) ( ( ), ),

( , ) ( , ) 0,
ht h h h h h h h

h h h h h h

p w u w f p w w W

u v p v v V

     


     
(3)

By the theory of differential equations, (3) has a
unique solution.
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TWO-GRID ALGORITHM AND ERROR
ESTIMATES

We will give the two-grid algorithm which solved a
nonlinear system of equations on the coarse grid and
then made linear modification on the fine grid. Let

 
, n

T
t t n t

N
    , The discrete problem of (2) reads

as: Find  { , }:[0, ]n n
h h h hp u T W V   such that:

 1 1
1 2 2

1 1

2 2

1
( , ) ( , ) ( ( ), ), ,

( , ) ( , ) 0,

n nn n
h h h h h h h h h

n n

h h h h h h

p p w u w f p w w W
t

u v p v v V

 


 


      




     

First of all, we will introduce the mixed element space

 ( )H H h hW V W V    which was defined on the coarse

quasiuniform rectangular subdivision and the mesh size

is H ( 1)h H  , so the two-grid algorithm is listed as
follows:

Step 1: Solve a nonlinear system

 { , }:[0, ]n n
H H H Hp u T W V  on the coarse grid

Step 2:Solve a linear system

 { , }:[0, ]n n
h h h hp u T W V   on the fine grid

For the convenience of error estimates, we suppose

that  , .u uuf F f G
 
   Let 

 
0, ,

T
t N

t
  


 and

 nt n t  .

Theorem 1 under the coarse grid subdivision,

 ( , )n n
H H H Hu p V W  is the solution of step 1, there is

constant and independent of the H, there exists a con-
stant C which is independent of the mesh size, there
hold

 1
2 21 1

2 32 2

1

( )
m n nm m

H H
n

u u t p p c t H
 



 
       
  


where  1 m N  .
Proof : Let

 ( ) ( ) , ( ) ( )H H H H H H H Hu u u I u I u u p p p p p p                 

( ) ( ) , ( ) ( )H H H H H H H Hu u u I u I u u p p p p p p                  .

We can get the error equation from step 1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2( ( ), ) ( , ) ( ( ) ( ), )
n n n n n n n n

t H H H Hu u u p p f u f u  
       

       (4)

We choose 
 1 1

2 2,
n n

H Hv w 
 

   .

Not that

1 1

2

1 2 2( ) ( ( ) ( ) ( ) ( ) )
n

n

t t

t n ttt n tttt t
u u u t u d t u d     



       ,

Let 
 1

12
1

( )
n n n
tu u u

t



  


,

where
 1

2

1 1

2

2 2
1

1
( ( ) ( ) ( ) ( ) )

2
n

n

n
n

t t

n ttt n tttt t
t u d t u d

t
      





   

  

The equation (4) can be written that:

1 1 1 1 1 1 1

2 2 2 2 2 2 2( , ) ( , ) ( ( ) ( ), ) ( , ).
n n n n n n n

Hf u f u       
      

      

By the equation (3) and (4) we obtain the following
error estimate equations:
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2 2 21 1 1
22 2 2

1 1 1 1

(3 1) .
m m m mn n n

n n n n

L t c c t c t t    
  

   

            

Note that  0 0  , 
当

  1(3 1)t L     时, by the

lemma Gronwall, we have

 21
2 4 62

1

( )
m nm

n

t c t H 




     ,

By the triangle inequality, we complete the proof.
Lemma 1 Suppose that (u, p) and (u

H
, p

H
) are the

solution of the equation (2) and equation (3), let

 3 4( ), ( )tu H u H    , we can obtain that

 5

2
0,4

( )Hu u h   .

Proof : we have known that:

 1
2 23 2

3 4
( ) ( )H H tI u u h u u ds    

  ,

By the lemma 1 and the inverse estimation, we can
get

 
0,4 0,4 0,4H H H Hu u u I u I u u    

 5

4 2 4 2 2( ) ( =2)
d d d d

H H Hc u I u H I u u H cH d
 

     .

Theorem 2 under the coarse grid subdivision,

 ( , )n n
h h h hu p V W   is the solution of step 1, there is

constant and independent of the h, there exists a con-
stant C which is independent of the mesh size, there
hold

 1
2 21 1

2 3 52 2

1

( )
m n nm m

h h
n

u u t p p c t h H
 



 
        
  


Proof : Let

 ( ) ( ) , ( ) ( )h h h h h h h hu u u I u I u u p p p p p p                 

( ) ( ) , ( ) ( )h h h h h h h hu u u I u I u u p p p p p p                  .

We can get the error equation:

 1 1 1 1 1
12 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2

1
( ( ), ) ( , )

( ( ) ( ), ) ( ( )( ), )

n n n n nn n
t h h h

n n n n n n n

H u H h H

u u u p p
t

f u f u f u u u

 

 

    


      

    


   

where 
 1 1

2 2,
n n

h hv w 
 

   .

By the Taylor formula

1 1 1 1 1 1
22 2 2 2 2 2( ( )( ) ( )( ) ,

n n n n n n n

u H h uu Hf u u u f u u 
     

   

1

2 ).


We get the error equation

1 1 1 1 1 1 1 1
22 2 2 2 2 2 2 2( ( )( ) ( )( ) , ) ( , ).

n n n n n n n n

u H h uu Hf u u u f u u   
       

    

Similar to the proof of theorem 1, the above equa-
tion is multiplied by 2t, by the use of the Young in-
equality, we can obtain that:

2 2 21 1 1
2 42 2 2

0,4
1 1 1 1

( 3) .
2

m m m mn n n

H
n n n n

G
F t c c t c t t u u    

  

   

              

note that 0 = 0, let  1(3 )t F    , by the lemma

Gronwall, we have

 21
2 4 6 102

1

( )
m nm

n

t c t h H 




      ,

By use of the Tayor formula and lemma 1, we can
complete the proof.
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