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ABSTRACT KEYWORDS
Signal transduction is important in many different aspects of cellular activity. Signal transduction networks;
Many computational methods have been generated in mining signal Modeling;
transduction networks with the increasing of high-throughput genomic Minimax distance metric
and proteomic data. However, more effective means are still needed to algorithm.

understand the complex mechanisms of signaling pathways. In this paper,
we have developed a computational approach for generating models of
signal transduction networks. Networks are determined entirely by protein-
protein interaction data without prior knowledge of any pathway
intermediates. Thisapproach should enhance our ability to model signaling
networks and to discover new components of known networks. The
precision and recall values of our method are comparablewith other existing
methods. Our method isamore suitable method than existing methods for

detecting underlying signaling pathways.
© 2013 Trade SciencelInc. - INDIA

INTRODUCTION

Systemsbiology isan emerging field in biology
whose aimsareto understand the complex biological
systemsat the sysemleve. System-level understand-
ingof call networksrequiresalot of principlesand meth-
odologiesthat linksthe behaviorsof moleculesto sys-
tem characteristicsand functions. Cell signalling path-
waysareenormousy complex becausethey includea
hugenumber of different moleculesandbiochemicd in-
teractions. Thedynamic behaviorsof biological systems
aredeeply affected by their structura complexity and
uncertainty of somekinetics parameters?. A world of
complicated systemsin nature can bedescribed by vari-

ous networks. Onerepresentative network consists of
many nodesand the sidethat connectstwo nodes. Node
isgppliedtorepresent different dementsinthered sys-
temwhilesdeisemployedtoindicatetherdationship
among e ements, usualy, therewill beasdewhentwo
nodes have certain specific relationship. Two nodes
connected by side are considered as adjacent. Net-
work modd isthemost effectivemodel to describethe
complicated system.

Signd transduction playsan essentid roleincdl re-
sponseto environment changes. Signal transductionis
the primary meansby which cdllscoordinatetheir meta-
bolic, morphologic, and genetic responsesto environ-
mental cuessuch asgrowth factors, hormones, nutri-
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ents, osmol arity, and other chemica andtactilestimuli.
Thishiologicd processisusudly characterized by phos-
phorylation of somekey proteinsand generaly involves
asignal cascade. Thesignd transduction process often
sartsfrom amembrane protein, spansaseriesof inter-
cdlular sgnding proteinsandthen transfersto transcrip-
tion factorsinthe nucleus, subsequently raising the ex-
pression of downstream genes. Therefore, itisneces-
sary to study how to quantitatively determinatethere-
|ation between system behaviorsand parameter varia-
tions, and how to investigate theinteraction of param-
eters. With the devel opment of molecular biology and
high throughput experimentad techniques, alargenum-
ber of data sets have been obtained so that it is pos-
sbleto study cdl signding transduction networksquan-
titatively34,

Another sourceof evidencesonthekey roleof tran-
scription factorsinregulating cellular regulatory pro-
cessescomesfrom analyssof sgnd transduction path-
ways. Multiplesignal transduction pathwaysof acell
transducer extracellular signalsfrom receptorsat the
cellular membraneto the transcription factorsinthe
nucleuswherethey regul ate the transcription of genes.
There are several databasesthat collect information
about signa transduction pathwaysin different cells.
Among them, the TRANSPATH database® storesa
largebody of information onsgnaing pathwaysalow-
ing computationa search throughthegraph of signding
reactions. Oneam of such searchesistofind thekey
transcription factorsthat medi atethe concerted changes
inexpress on of gpecific componentsof thesignal trans-
duction network.

Studiesdemonstrate that many important cellular
processessuch ascdl proliferation, differentiation, cell
cyclecontrol and cellular responsesto nutrient limiting
conditionsareinvolvedin different sgnding pathwaydg57.
For example, Tang et al® showed that the receptor
kinase BRI1 and BR-signaling kinases (BSKs) medi-
ate growth regulation related signal transduction in
Arabidopsis. TheToll-likereceptor (TLR) signaling
cascade playsan essentia roleinrecognizingand elic-
iting responses upon invasion of pathogeng®9. Recent
highthroughput genomic and proteomic techniques, such
as Co-lmmunoprecipitation (Co-1P)**2 protein
chip!*>18 and microarray experiments” have gener-
ated enormous amounts of datafor uncovering signal

transduction networks. Thisabundance of information
bringsincreasing complexity to network andysis, which
iIsamgor obstacleto understanding the mechanisms of
cel signding™.

Although thesemethodshave been highly effective
ingenerating detailed descriptionsof specificlinear sg-
naling pathways, our knowledge of complex signaling
networks and their interactions remainsincomplete.
Recently, new computational methods that capture
molecular detailsfrom high-throughput genomic datain
an automated fashion aredesirableand can help direct
the established techniques of molecular biology and
genetics. Steffen et al*¥ developed a static model,
NetSearch, to reconstruct the signal transduction net-
work from PPl and gene expression data. Some com-
putational methods, e.g. gene co-expression?” and se-
mantic smilarity of GeneOntology (GO) annotationg?,
indicate that geneswith high scored interactions may
beinvolved in the same signaling pathway!??. How-
ever, thisinformation either islimited or has not been
incorporated in most databases constructed from ex-
perimenta data Though theseinteractionsmay not nec-
essarily bedirect interactions, using thisinformation may
help toimprove prediction of signal transduction net-
works. Wedefine“direct interaction” as a direct physi-
cal association between two proteinsand “indirect in-
teraction” as no direct physical association between two
proteinsintheactua state. Two proteinswith indirect
interaction must function through at | east one medial
protein.

We present acomputationa approach for generat-
ing staticmodel sof signal transduction networkswhich
utilizes prote n-interaction mapsgenerated fromlarge-
scal etwo hybrid screensand expression profilesfrom
DNA microarrays. Networksare determined entirely
by protein-proteininteraction datawithout prior knowl-
edge of any pathway intermediates. In effect, thisis
equivaent to extracting subnetworks of theproteinin-
teraction dataset whose members have themost corre-
lated expression profiles.

MATERIALSAND METHODS

Dataset
Here, only the PPl dataset wasemployed. TheYeast

s BioTechnology

An Tudian Yourual



1506

A computational approach for generating models of signal transduction networks

BTAIJ, 8(11) 2013

FULL PAPER o

Proteome Database (Y PD)?24, Saccharomyces Ge-
nome Database (SGD)®! and Database of Interacting
Proteins (DIP)?521 arethe most frequently used PPI
databases, but theinteraction dataset inthose databases
isvery limited, which may lead to misconnectionsdue
to deficient data. In this study, we constructed a PPI
dataset from the STRING database (Version 8.3)%,
The current STRING database contains 6,015 yeast
proteinsand 245,782 yeast proteininteractions. Our
database containsboth direct and indirect PPIsderived
from both computationa methods and biological ex-
periments, providing morecomprehensiveinformation
than previoudy used.

Scoring system

To scorethe PPI pairsinthe combined database,
we used the STRING scoring systemi?, The STRING
database infers PPIsthrough various approaches, in-
cluding the neighbourhood method, fusion events, co-
occurrence, co-expression, experimentad methodsand
text-mining. Itintegratesdl probabilitiesof those meth-
ods and assigns each PPI pair areasonable score?.
Theorigina PPl scorein STRING databaseisfrom 0
t0 999, whichissubsequently normalized from 0.000
t00.999 by dividing by 1000. However, not all of the
proteinswould have acorresponding GO terminthe
annotationfile. So, the proteinisrepresented based on
thestrategy of hybridizing the gene ontology (GO) da-
tabase? and PseA AC*, The GO approach has been
used for predicting protein subcd lular locdization, mem-
brane proteintype, and enzymefunctiond class. Again,
not al protein samplescan bemeaningfully definedin
the GO space. To overcome such a problem, an ap-
proach was devel oped by hybridizing the GO space
with the PseAAC space. The GO database contains
20,126 numbers. With each of the 20,126 sequences
asavector base, agiven protein samplecan bedefined
asa20,126-D vector according to thefollowing pro-
cedures. To comparethe protein sequencewith each
of the 20,126 sequencesinthe GO database, if “hit” is
found, then the ith component of the protein in the
20,126-D spaceisassgned 1; otherwise, itisassigned
0. Theprotein sample Pinthe GO space can beformu-
lated as:

Poo = [Al A A A&oue]T @
ﬂbgecétzo/og C—

whereT isthetranspose operator, and
B 0, when ahitisfound for Pin GO database
A= 1, otherwise 2

On the other hand, according to the concept of
PseAACEY the protein sample P can be represented

by
The concept of PseAA (PseudoAminoAcid) com-

position was proposed by incorporating the sequence
order information completdly. Accordingto the PseAA
composition discretemodel, the protein p canbefor-
mulated as

Posean = [ Py Pasees Pags Pagigseos p20+§]T1 (& <N) ©)
wherethe20+ & componentsare given by

(1<k <20)

P =
WO,

20 £
Z f+ WZ(D]-
i1 =

wherewistheweight factor, whichwasset at 0.05in

,  (20+1<k<20+¢) D

Ref. and ¢; isthe j thtier correlation factor, which
reflectsthe sequence order correlation between all of
theth most contiguousresidues. f, istheoccurrence

frequencies of 20 amino acidsin sequence. Because
thelength of the shortest protein sequencein thebench-
mark dataset isN =39, thevauealowedforin Egs. 2
and 3is24. Hence, the PseAA isactudly correspond-
ing to a20+24=44-D (Dimensiondity) vector.

Data pre-processing

Toreducethefalse positiverate, two pre-process-
ing stepswere carried out to exclude obvioudly irrel-
evant proteinsbut to keep thehigh correlated proteins
asmuch aspossible. Firstly, given severa seed pro-
teins, which we assumed to be known componentsina
signaling pathway, DFS a gorithm wasrealized. DFS
agorithmwould search for al proteinsconnected with
each seed protein within acertain path length. Thecom-
mon proteinswithin thisscopewerekept.

Then, thegraph search dgorithm Dijkstraisusualy
employed to cal culate the distance between any two

Hn Tudian Jounual



BTAIJ, 8(11) 2013

Tong Wang et al.

1507

————, FyurrL PAPER

proteins. Here, Minimax DistanceMetricagorithmis
adopted. In order to represent this new dissimilarity
metric, we need to introduce apath-based criterion for
connectednessfirgtly. Wedenotethedataset of n points

by X ={x,x,,---x } . The data points can be repre-
sented asafully connected graph with vertices corre-
spondingtothe npoints. Eachedge (x ., x,) inthegraph
isassgnedaweight d, reflectingtheorigina dissmilar-
ity between x andx, . Euclidean distanceisusudly cho-
senasorigind dissmilarity.

A path from onevertex to another vertex through

the abovefully connected graph isasequence. There
may have many poss ble pathsbetween thispair of ver-

tices. Let p, denotestheset of al pathsfromvertex x to

vertex x through the graph. For ex-

ample, p; = (X, %), P, = (X, %, %, %), B = (X, %, %),
and so on. Wedefineasingle hopiswakingfromone
vertex to another vertex of an edge. Andthesinglehop
distance is the weight of the edge. For each path

p; € p, (Where kisanindex toenumeratea| possible
sequences between x andx, ), theeffectivedissimilar-

ity d, between vertices x and x, (or the correspond-
ing datapointsand)

isthemaximumsinglehop distancein p; . Wedefine
thetotd dissmilarity M, betweenvertices x and x, asthe

minimumof &l effectivedissimilaritiesd, :

M, = min d, = nglfn{(xr‘l:?i(pf d; } (5
From the above Eq. (5), we can easily draw a

conclusion that the proposed dissmilarity M, between

thetwo pointsislessthanorigina dissmilarity d, while

thetwo points x and x, lieonthe same branch of the

manifold (or in sameclass), andisequa to whileon
different branchesof manifold (or in different class).
Now wetake an exampleto show the detailsof how to

choose the appropriate neighborhood in the new
nel ghborhood selection method.

5000 pointsrandomly sampled onthe Swissroll data
isgiveninHgurel. TherearefivepointsonthisSwissroll
manifold. It can be observed from the figure

that x , x, , x, and x, areononebranchand x, isonan-
other one. The Euclidean distance d,issmaller than

d,, seenfrom Figure 1. According to origina neighbor-
hood sl ection method based on Euclidean distance,

x, but not x, may be chosen as the neighbor of x .

Though, the Euclidean distance between andmay be
deceptively small inthethree-dimensiona Swissroll
space, their distance on anintrinsic two-dimensiona
manifoldislarge (theintrinscdimensonof Swissroll is
two). Sothe Euclidean distancemay not accurately re-
flectthar intringcdissmilarity. Thisproblem canberem-
edied by using minimax distance metric. InFigure 1,

Figurel: A sampleof applying minimax distancemetricfor
neighborhood selection

supposedthat p,isonepathfrom x to x, throughthe

fully connected graph (a.consecutive path on thesame
branch of themanifold or inthesamedassification) and
each sngle hop distance between onepoint and itsnear-
est point onthe pathissufficiently smadl (i.e.,, thesingle

hop distance d,, between x, andx. ). However, for an-
other path p,, (apath from onebranch of themanifold
or classificationto another), assuming thesingle hop
distance d,, between x andx, isbig. Namely,thereis

at least one““great leap” from x_tox,. Under the new
minimax distance metric, the
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dissimilarity M, (x and x, on the same branch of the
manifold) issmaller thantheorigind distanced,, forits
small singlehop distanceon thepath p, . Ontheother
hand, thedissimilarity M, (x and x,onthedifferent
branch of manifold) isstill equal tod, . Asaresult, it
makesit possiblethat thedissimilarity M, issmaller

thanM , and x, istheneighbor of of x instead of x, .

Giventheinitia node, thisalgorithmwill find the
minimax distance between thisnode and any other node
inthegraph. Hence, it isoften used in solving routing
related problems. Consequently, the distancesbetween
each protein and any seed protein are obtained. Gen-
erdly speaking, if thedistance of anodeto the“actual
network” is maximal, the node represents the steepest
descent direction. However, the “actual network™ is
unknown, we simply use the distance of the nodeto
any of thegiven nodes (i.e. seed proteins) asthedis-
tancetothe‘“actual network”. Hence, the node corre-
sponding to themaxima distancewill besdected asa
candidate steepest descent node to remove from the
network. While, if removing the candidate steepest de-
scent node leads to a disconnection between given
nodes, thenode corresponding to thenext maximd dis-
tanceisselected as acandidate steepest descent node,
and soforth.

To date, the network with the highest score has
been obtained. For comprehensive consideration, we
extended thisrestriction to thetop N highest scored
network.

RESULTSAND DISCUSSION

Thefilamentous growth pathway regulatescdl lular
responseto nutrient limiting conditions. For this path-
way, there are many common proteins with other
MAPK pathways. So, we randomly selected three or
four seed proteins. Different parameters were also
tested. After fiveindependent experiments, weobtained
an average of 85% recall and 32% precision (TABLE
1). TABLE 1 showsthe performance of our methodin
detecting the filamentous growth pathway compared
with that of NetSearch. Our method clearly showsboth

BioTechnology —

higher recall and precision than the other method. In
addition, our method seems to predict fewer edges
between the proteinsin the predicted signal transduc-
tion networks comparing with other methods. Hence,
even though the membranereceptor and transcription
factor arenot known, westill know wherethesignd is
from and to among those proteins, since most proteins
have only onelink to the preceding and succeeding e -
ement in the predicted network. Infact, if werequire
the order between the proteinsto be more intuitive,
fewer edges should be kept in the predicted network.
Weachieved thisgod by maximizingtheaverageweight
of thenetwork whilekeeping most of thereliableinter-
actions,

TABLE 1 : Performance comparison between different
methods in precision and recall for filamentous growth

pathway

Method Precision(%) Recall (%)
Our method 32 85
Netsearch 29 63

CONCLUSIONS

Generdly, somepotentid proteinsinvolvedinasig-
naling pathway stimulated by environmentd factorsare
eadly availablethrough variousreiablemeans, such as
manua literature curation and biological experiments.
But inmost situations, not al or noneof these proteins
aremembranereceptorsor transcription factors. More-
over, the proteinswe obtaned may be more than just
two proteins. The proteins were represented by hy-
bridizing the GO (gene ontol ogy) approach with the
PseA AC (pseudo amino acid composition) approach.
Therefore, our method ismore suitablefor actua bio-
logica gpplication compared with existing methodssuch
as NetSearch. Neverthel ess, although those methods
utilizeamorereliabledataset, the dataislimited. How-
ever, using computationdly predicted interactionsmay
make up for thedeficiency of experiment data, whichis
asooneof our origind ams.
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