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ABSTRACT

In this paper, an analytic solution to the flow eguations inside blood ves-
sels is proposed in a particular case. The solution is based on bringing
together the initial set of Bloch equations and a recently established ho-
mogenous equation for the Boubaker-Turki polynomials, which was pro-
posed as a support to canonical applied physics investigations. The main
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restriction, besides experimental constraints, was the imposition of a spa-
tial uniformrotating field rF. The representative function of the magnetiza-
tion response iscompared to an experimental set of points. The mean error

was | ess then 18%.

INTRODUCTION

Historically, thefirst use of the nuclear magnetic
resonance NMR waslimited to physics. Later, itsreso-
lution and sensitivity enhancement madeit auseful
method for biologists. Thefollowing introduction of
mathematica trandformstoolsdlowed theinvestigations
of larger, morecomplex domains, asstudiesinsdeor-
ganictissues. Inthelast decades, theNMR, asaspec-
troscopic method, has seen spectacul ar growth over
both asatechniqueandinitssmulations. Actudly, the
NMR applications span awiderangeof scientificdis-
ciplines, frombiophysicsto medicinetophysicg*3. The
major part of theactualy published resultsisnumerica
and not analytical, liketheworksof C. Cdlicott et a .
on blood physica propertiesaterations, and theinves-
tigationsof X. Songet a. and N. Hashiyaet a .59,

Inseveral NMR simulation works™Y, thecalcula-
tionsarefounded on theintegration of the Bloch equa-
tionsinsdeaparticular geometrical model. They con-
S< of derivation of anonlinear first-order partid differ-
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entia equation system.

Asit has been investigated®>24 that any obstacle
tothenormal flow of blood causesamafunctioningin
the body system that |eadsto cardiovascular related
diseases, many studiesaimed to implement the NMR
asan meanto blood flow insidearteriesand veing >4,

This paper is based on the idea of recasting the
meacroscopic fluid flow problemintheform of asecond
order differentid equation**1. The solutionisdeduced
thanksto noticed similaritieswith arecently established
homogenous equation(**2% for the Boubaker polyno-
mia g2,

METHODSAND MATERIAL

Thebloch NMR flow equations

Thered physicad model of theblood vessdl isdiffi-
cult to design since the constitution of the vessel en-
velopisheterogeneous and generally anisotropic. The
movement of blood particled??* isal so hardto simu-
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Figure 1(a) : A simplified model of the pancreatic islet
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Figurel(b) : NMR principlescheme

|ate because of its dependence on severa parameters
including, viscosity, temperature, pH etc.

We established aphysical ssimplified model of a
blood artery on adefined short length dongsidewitha
prospecting device (figure 1a).

In the system described by the Bloch NMR equa-
tions, aparticle, spinswith angular speed o, inarotat-

ing coordinate system. WhentherF H; fieldisapplied

on amicroscopi c volume of massm of thered cell, at
equilibrium, thetotal forceson m must be zero*™. The
forcesarethe contact force, Coriolisforceand the cen-
trifugal force. Thecoriolisand centrifuga forcesseem
quitered inarotating frame.

Itisacommonly known fact that, among the vari-
ousatomic nuclel, many possessamagnetic moment p
expressed by (eg.1) :
w="nly @
where j istheintrinsic angular momentum or spin, and y is
the gyromagnetic ratio.

The Larmor theorem states that the motion of a

magnetic momentinamagneticfidd H, isaprecession
around that fidd. The precession frequency, also cdled
Larmor frequency , isgiven by (eq. 2):

YHo
f. =10
0=, )

Inour model (figure 1.b), theexternal static field
H, isapplied alongthe z-axisand the field detector
stands along with the y-axis. After the sample has
reacheditsequilibrium, thesystem showsamagnetisation
vector y dongthez-axis. Inthisstate, noNMR signal

isobserved, sincethereisno transverserotating mag-
netization. By applying an additional pulsed rotating

magneticfield H, inthehorizontd plane(figure 1a), the

orientation of )y can be shifted into thisplaneasthe
precession of isawaysaround thetotal magneticfield.

Toinvedtigatethevariationsof magnetisationvector m in

the presence of thefield Hy , it isconvenient tousea

rotating coordinate system instead of astatic one. The
rotating coordinatesystemischosentorotateat thesame

frequency than 1, , themanner that bothy; and g be-
cometime-independent. TheBloch equations 4 inthis
coordinate system are expressed by thesystem (3).

(dM

oM M
=V.gradM, + —X
t g et

T,

X __

My V.gradm
—==V.gra +
dt g Y

My _ oM
= X)——L
at YM R, T,

woou, O
Ty

dM,
|t

oM
=V.gradM, +TZ=—yMyH1(x)—

wherey is the gyromagnetic ratio of fluid spins, o/2r istherF
excitation frequency, f /y isthe off-resonancefield in therotat-
ing frame of reference, M isthe equilibriummagnetization, T,
and T, arerespectively the spin-lattice and the spin-spin relax-
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ationtimesand finally V isthe flow velocity .
Bloch NMR simplified equation

Inorder to calculate the transverse magnetisation
component wm, , two conditiong™** were chosen:

1. M =M _asituationwhich holdsgoodingenera and

inparticular whentherF B, (x) fieldisenough strong.

2. beforeentering signa detector coil, fluid particles
hasmagnetizationM, =0andM, =0

Under theseconditionsand for steady flow wehave

the consideration: aliATy -0
We canwrite, from the system (3) :

dM
A
dx

V2T, d;'\(/lzy + VTl[T—ll + T—lzj
, 1 4
Tl('Y HE(x)+ ﬁ]M y =MoyH(x)
Equation (4) isthemain equationto be solved.
TheBoubaker-Turki polynomials
1.Historical summary

The Boubake-Turki polynomials'®2? are an
enhanced form of the earlier defined Boubaker
polynomia ¢ whichemergedfromanattempt toyidd
asolutionto heat equation*®. Infact, inacalculation
step during resol ution process, anintermediatecal culus
sequenceraised aninteresting recursiveformulaleading
to a class of polynomial functions that performs
differencewith common classes™.

Theserial of the Boubaker polynomia functions
B, (X) isdefined by theexplicit expression (5):

&)
_ (n=4p) } p \N-2p
Bn(X) = Y |~—2CP_ |.(-1)P.X 5
(X) %{(n_p) p [ (5)
where
%(M{%FW(H%MWI represents the floor

function*)
withtheordinary generating function (6):

1+3t2
T 1et(t-X) ©
2. The characteristic homogenous differential
equations

fg(X,t)

2.1 Caseof themodified Boubaker polynomials
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TheBoubaker-Turki polynomials g, (x) 162, have
theexplicitexpression:

. @ (1 ap) 25
Bn(X)=2"X"-2"2(n-4)X""2+ Z Tpl_[(nfj)

2N ()P X"2P

Calculations start out from an al ready established
result (7):

8,00= 21 o1, ) @)
which gives(8):
dB,(X)  4X d?T,(X) (4 .)dT,(X)
dX — n  dx? _(H_ZJT ®
and (9)
d%B,(X) 4X d3T (X) (8 )dZT (X)
n — n | 2o |2 n\AJ 9
dx? n dx3 n dx? ©

Usingthethird order differentia equation (10):
2, @Th(X) o B¥Ta(X) (L2 ,\dTa(X)
(l— X ) dx2 3X dx3 (n 1)7
Weobtainfindly thesecond order differentid equa
tion(11):
AX (1= X2)y" +(=4X° + 2nX - 2n + 8)y'+
(=4X°n+6n—n? - 32)y = 2(-4X%n + 6n —n% - 32)T,,(X)

(10)

(1)

2.2. Caseof theBoubaker polynomials

According totherelationsthat defined the modi-
fied Boubaker polynomial g6, wecould establisha
differential equation (12), verified by the original
Boubaker polynomids:
4X(1-4X2)y" +(—=8X? + 2nX —n + 2)y'+(—16X°n +

12
6n —n? — 32)y = 2(-16X2n + 6n—n? - 32)T, (2X) (12)

Bloch equation solution
Comparison between equations (4) and (11) gives:

V2T = 4X(1-4X?) (13)
vig 2+ L |- (-8x2+2nx-n+2)

W' 1) (4

) ) 1 "
(-16X“n+6n-n —32)=T—2,underthecond|t|0n
. (15)

242

HZ(X) <<| ==
Y H1( )<<(T1T2)

For obtaining atrue solution of equation (4), T is
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Figure2: Theexperimental and theor etical spatial varia-
tions of the functional NM R transver se magnetization
My(X), for asecond order polynomial excitation term

set equal to unity. Typically!®, thevaluesof T, and T,
for human blood are 0.8s<T <1.2sand 0.0s<T <0.5s
respectively.

In previous studies 9, wetried unsuccessfully to
giveanandyticd solutionto (eg. 10), by attributing some
arbitrary expressionsto theright term of the equation.
Infact thisterm correspondsto the X-dependant ex-
pressiontotherFfield, whichisan exogenousand con-
trollableparameter. Theexigting setup couldeasily yidd
many standard functionssuchas: B, (X)=cst., B, (X)=
aX+b (linear), B, (X)=a.cos(wt+¢) and B, (X)=aX>+
bX+c (Paraboalic).

Thelast function (parabolic) wasthe most useful,
aslongastheright termof (eg. 4) isapolynomial func-
tion. Theexisting rFfield generator has been conse-
guently managed so that it can generate appropriated
preset polynomid functions(16).

1
Moy T .

Consequently, asolution to the equation (4) could

beyielded.

|B)] = (2x2-1) (16)

RESULTSAND DISCUSSION

By choosingamonitored spatia expressontothe
rFfield B (x) which variesaccording to the expres-
son (11) and whichisindexed onthevaueof the spin-
spin (transverse) rdlaxaiontime T, , thegenerd form
of the equation (4) becomesidentica to theequation
(11). Thisfeaturealowsderiving modal solutionsto
main equation (4). Theauthorshave discussed theva-
lidity of the solutionswith many specialized research-

Suctation {F)

Figure3: Theexperimental and theor etical spatial varia-
tions of the functional NM R transver se magnetization
My(X), for athird order polynomial excitationterm

ers, and made comparisonwith severa proposed stud-
iglo,ll,zz-ZS] .

Thefigures2 and 3 represent the gathered experi-
mental and theoretica resultsfor respectively , asec-
ond-order and a third-order polynomia rF field
B;(x) monitored according to equation (16).

| these cases, and thanks to the recently yielded
proprieties, an anaytical solution could be performed
rather thantheempirical solutionsaready proposedin
to previouspublicationg #1522,

It wasnoti ced that the measured transverse mag-
netization amplitude (figures2 and 3.) followsthe spa-
tial parity of theexcitation field asconfirmed in prece-
dent studiesliketheresults of K. Sasankaet a .2 and
J.Simbrunneraet d .14, Cd culation of the Pearson co-
efficient of the second order polynomia regressionin
relationwiththeexperimenta spatid distribution (figure
2) yielded amean error about 18.5% and an ordinary
standard deviationcloseto 0.3.

CONCLUSION

Inthisstudy, we haveinvestigated asolutiontothe
Bloch equationin the case of blood vessel NMR de-
vicesubjected to particular preset conditions. Themain
advantagetothisstudy laysingiving analytical spatia
expressions of the magnetic transverseresponseto a
preset rotating field. Further investigationsareoriented
toward analyzing theresponsesto higher ordersor muilti-
modal excitationterms.
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