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INTRODUCTION

Historically, the first use of the nuclear magnetic
resonance NMR was limited to physics. Later, its reso-
lution and sensitivity enhancement made it a useful
method for biologists. The following introduction of
mathematical transforms tools allowed the investigations
of larger, more complex domains, as studies inside or-
ganic tissues. In the last decades, the NMR, as a spec-
troscopic method, has seen spectacular growth over
both as a technique and in its simulations. Actually, the
NMR applications span a wide range of scientific dis-
ciplines, from biophysics to medicine to physics[1-3]. The
major part of the actually published results is numerical
and not analytical, like the works of C. Callicott et al.[4]

on blood physical properties alterations, and the inves-
tigations of X. Song et al. and N. Hashiya et al.[5-6].

In several NMR simulation works[7-11], the calcula-
tions are founded on the integration of the Bloch equa-
tions inside a particular geometrical model. They con-
sist of derivation of a nonlinear first-order partial differ-

ential equation system.
As it has been investigated[12-14] that any obstacle

to the normal flow of blood causes a malfunctioning in
the body system that leads to cardiovascular related
diseases, many studies aimed to implement the NMR
as an mean to blood flow inside arteries and veins[13,14].

This paper is based on the idea of recasting the
macroscopic fluid flow problem in the form of a second
order differential equation[13,15].The solution is deduced
thanks to noticed similarities with a recently established
homogenous equation[16-20] for the Boubaker polyno-
mials[16-20].

METHODS AND MATERIAL

The bloch NMR flow equations

The real physical model of the blood vessel is diffi-
cult to design since the constitution of the vessel en-
velop is heterogeneous and generally anisotropic. The
movement of blood particles[12,14] is also hard to simu-
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late because of its dependence on several parameters
including, viscosity, temperature, pH etc.

We established a physical simplified model of a
blood artery on a defined short length alongside with a
prospecting device (figure 1a).

In the system described by the Bloch NMR equa-
tions, a particle, spins with angular speed , in a rotat-

ing coordinate system. When the rF 1H field is applied

on a microscopic volume of mass m of the red cell, at
equilibrium, the total forces on m must be zero[15]. The
forces are the contact force, Coriolis force and the cen-
trifugal force. The coriolis and centrifugal forces seem
quite real in a rotating frame.

It is a commonly known fact that, among the vari-
ous atomic nuclei, many possess a magnetic moment 
expressed by (eq.1) :

 I (1)
where I is the intrinsic angular momentum or spin, and  is

the gyromagnetic ratio.

The Larmor theorem states that the motion of a

magnetic moment in a magnetic field 0H is a precession
around that field. The precession frequency, also called
Larmor frequency , is given by (eq. 2):






2
H

f 0
0 (2)

In our model (figure 1.b), the external static field

0H  is applied along the z-axis and the field detector

stands along with the y-axis. After the sample has
reached its equilibrium, the system shows a magnetisation

vector M along the z-axis. In this state, no NMR signal
is observed, since there is no transverse rotating mag-
netization. By applying an additional pulsed rotating

magnetic field 0H in the horizontal plane (figure 1a), the

orientation of M can be shifted into this plane as the
precession of is always around the total magnetic field.

To investigate the variations of magnetisation vector M in

the presence of the field 1H , it is convenient to use a
rotating coordinate system instead of a static one. The
rotating coordinate system is chosen to rotate at the same

frequency than 1H , the manner that both 1H  and 0H be-
come time-independent. The Bloch equations[1-14] in this
coordinate system are expressed by the system (3).




































1

z0
1y

z
z

z

2

y
1z

y
y

y

2

xx
x

x

T
MM

)x(HM
t

M
gradM.V

dt
dM

T

M
)x(HM

t

M
gradM.V

dt

dM

T
M

t
M

gradM.V
dt

dM

(3)

where  is the gyromagnetic ratio of fluid spins, /2 is the rF
excitation frequency, f

o
/ is the off-resonance field in the rotat-

ing frame of reference, M
o
 is the equilibrium magnetization, T

1

and T
2
 are respectively the spin-lattice and the spin-spin relax-

Figure 1(a) : A simplified model of the pancreatic islet
blood artery

Figure 1(b) : NMR principle scheme
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ation times and finally V is the flow velocity .

Bloch NMR simplified equation

In order to calculate the transverse magnetisation

component yM , two conditions[14,15] were chosen:

1. M
o
 M

z
 a situation which holds good in general and

in particular when the rF B
1
(x) field is enough strong.

2. before entering signal detector coil, fluid particles
has magnetization M

x
 =0 and M

y
 = 0

Under these conditions and for steady flow we have

the consideration: 0
t

My






We can write, from the system (3) :
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Equation (4) is the main equation to be solved.

The Boubaker-Turki polynomials

1. Historical summary

The Boubake-Turki polynomials[16-20] are an
enhanced form of the earlier defined Boubaker
polynomials[16-20] which emerged from an attempt to yield
a solution to heat equation[16]. In fact, in a calculation
step during resolution process, an intermediate calculus
sequence raised an interesting recursive formula leading
to a class of polynomial functions that performs
difference with common classes[19].

The serial of the Boubaker polynomial functions
B

m
(X) is defined by the explicit expression (5):
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with the ordinary generating function (6):
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2. The characteristic homogenous differential
equations

2.1 Case of the modified Boubaker polynomials

The Boubaker-Turki polynomials )X(Bn
 [16-20], have

the explicit expression :
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Calculations start out from an already established
result (7):
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Using the third order differential equation (10):
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We obtain finally the second order differential equa-
tion (11) :
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2.2. Case of the Boubaker polynomials

According to the relations that defined the modi-
fied Boubaker polynomials[16-20], we could establish a
differential equation (12), verified by the original
Boubaker polynomials:
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Bloch equation solution

Comparison between equations (4) and (11) gives :
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For obtaining a true solution of equation (4), T
1
 is
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set equal to unity. Typically[21], the values of T
1
 and T

2

for human blood are 0.8s<T
1
<1.2s and 0.0s<T

2
<0.5s

respectively.
In previous studies[12,15], we tried unsuccessfully to

give an analytical solution to (eq. 10), by attributing some
arbitrary expressions to the right term of the equation.
In fact this term corresponds to the X-dependant ex-
pression to the rF field, which is an exogenous and con-
trollable parameter. The existing setup could easily yield
many standard functions such as : B

1
(X)= cst., B

1
 (X)=

aX+b (linear), B
1
 (X)= a.cos(t+) and B

1
 (X)=aX²+

bX+c (Parabolic).
 The last function (parabolic) was the most useful,

as long as the right term of (eq. 4) is a polynomial func-
tion. The existing rF field generator has been conse-
quently managed so that it can generate appropriated
preset polynomial functions (16).

)1²X2.(
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1
)X(B

2o
1 






(16)

Consequently, a solution to the equation (4) could
be yielded.

RESULTS AND DISCUSSION

By choosing a monitored spatial expression to the

rF field  )X(B1  which varies according to the expres-

sion (11) and which is indexed on the value of the spin-
spin (transverse) relaxation time T

2
 , the general form

of the equation (4) becomes identical to the equation
(11). This feature allows deriving modal solutions to
main equation (4). The authors have discussed the va-
lidity of the solutions with many specialized research-

ers, and made comparison with several proposed stud-
ies[10,11,22-25].

The figures 2 and 3 represent the gathered experi-
mental and theoretical results for respectively , a sec-
ond-order and a third-order polynomial rF field

)X(B1 monitored according to equation (16).
I these cases, and thanks to the recently yielded

proprieties, an analytical solution could be performed
rather than the empirical solutions already proposed in
to previous publications[12,15,22-25].

It was noticed that the measured transverse mag-
netization amplitude (figures 2 and 3.) follows the spa-
tial parity of the excitation field as confirmed in prece-
dent studies like the results of K. Sasaoka et al.[22] and
J.Simbrunnera et al.[24]. Calculation of the Pearson co-
efficient of the second order polynomial regression in
relation with the experimental spatial distribution (figure
2) yielded a mean error about 18.5% and an ordinary
standard deviation close to 0.3.

CONCLUSION

In this study, we have investigated a solution to the
Bloch equation in the case of blood vessel NMR de-
vice subjected to particular preset conditions. The main
advantage to this study lays in giving analytical spatial
expressions of the magnetic transverse response to a
preset rotating field. Further investigations are oriented
toward analyzing the responses to higher orders or multi-
modal excitation terms.

Figure 2: The experimental and theoretical spatial varia-
tions of the functional NMR transverse magnetization
My(X), for a second order polynomial excitation term

Figure 3: The experimental and theoretical spatial varia-
tions of the functional NMR transverse magnetization
My(X), for a third order polynomial excitation term
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