

*ISSN* : 0974 - 746X



Inorganic CHEMISTRY

Trade Science Inc.

An Indian Journal

Full Paper ICAIJ, 5(3), 2010 [98-104]

# 1-[(2,5-dioxopyrrolidin-1-yl)(phenyl)methyl] urea and 1-[(2,5dioxopyrrolidin-1-yl)(phenyl)methyl] thiourea and its transition metal (II) complexes: Synthesis, structural characterization and antimicrobial study

S.Rajeswari, D.Tamilvendan, G.Venkatesa Prabhu\*

Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, (INDIA) E-mail: raji\_802000@yahoo.com Received: 19<sup>th</sup> April, 2010 ; Accepted: 29<sup>th</sup> April, 2010

### ABSTRACT

Mannich bases 1-[(2,5-Dioxopyrrolidin-1-yl)(phenyl)methyl] urea (USB) and 1-[(2,5-Dioxopyrrolidin-1-yl)(phenyl)methyl] thiourea (TSB) formed by the condensation of succinimide, benzaldehyde and urea/thiourea and its  $Mn^{II}$ ,  $Co^{II}$ ,  $Cu^{II}$ ,  $Zn^{II}$ ,  $Cd^{II}$  and  $Hg^{II}$  complexes have been synthesized. Their structures have been elucidated on the basis of analytical, magnetic, electrical conductivity and spectral study as well as elemental analysis. The complexes exhibit octahedral, tetrahedral and tetragonally distorted octahedral geometries. The monomeric and non-electrolytic nature of the complexes is evidenced by their magnetic susceptibility and conductance data. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. © 2010 Trade Science Inc. - INDIA

#### **INTRODUCTION**

It is well known from literature that the compounds containing amide moiety have a strong ability to form metal complexes and exhibit a wide range of biological activities<sup>[1-4]</sup>. The coordination chemistry of amide group has received much attention due to its diverse coordinating behavior and the role it plays in biological process<sup>[5]</sup>. An amide group offers two potential binding sites i.e., through oxygen/sulphur and nitrogen for complexation with protons and metal ions. Urea and related compounds have long been studied for their biological activities<sup>[6-9]</sup>. Also since N-containing compounds generally exhibit biological activity, an attempt is made to find out the biocidal activity of these complexes against a wide range of antibacterial and antifungal agents.

### KEYWORDS

Mannich bases; Complexes; Octahedral; Tetrahedral; Antimicrobial activity.

#### EXPERIMENTAL

All the reagents used for synthesizing the complexes were of A.R Grade and the solvents used were commercial products of the highest available purity. The micro elemental analysis was carried out on Vario EL III CHNS Elemental Analyzer at STIC, Kochi. Infrared spectrum was recorded in KBr medium on a Spectrum-One Perkin Elmer FTIR instrument. UV-Visible spectrum was recorded in DMF on EZ301 Perkin Elmer spectrophotometer. <sup>1</sup>H NMR spectrum was recorded in DMSO-d<sub>6</sub> using Bruker AVIII 500 MHz NMR at SAIF, IIT Chennai. Magnetic susceptibility measurements of the complexes were carried on Auto Magnetic Susceptibility Balance. Molar conductivity was measured on Systronics Direct Reading Digital Con-

# - Full Paper

ductivity Meter 304 with dip type conductivity cell using  $\sim 10^{-3}$  M DMF solution of the complexes.

### Antimicrobial activity

The *in vitro* biological screening effects were carried out at C.L. Baid Metha College of Pharmacy, Chennai. The complexes were tested against the bacterial species *Staphylococcus aureus*, *Micrococcus luteus*, *Escherichia coli* and *Pseudomonas aeruginosa* and fungal species *Aspergillus niger* and *Aspergillus fumigates* by paper disc diffusion method using nutrient agar and sabouraud dextrose agar as the medium. The test solutions were prepared by dissolving the compounds in DMSO. Ciprofloxacin and Ketoconazole were used as the standard for anti-bacterial and anti-fungal activities respectively.

### Synthesis of mannich base (USB)

Urea (12g, 0.2M), succinimide (19.8g, 0.2M) and benzaldehyde (22ml, 0.2M) were taken in equimolar ratio. A concentrated aqueous solution of urea and succinimide was prepared. Benzaldehyde was added in drops with continuous stirring of the solution. The mixture first became oily and slowly turned into a white crystalline mass which was separated by suction filtration and washed several times with distilled water. The product was dried in the air oven at 80°C and recrystallised using acetone by slow evaporation. The percentage yield of the compound was 53 with a melting point in the range 188-190°C.

#### Synthesis of mannich base (TSB)

Thiourea (15.2g, 0.2M), succinimide (19.8g, 0.2M) and benzaldehyde (22mL, 0.2M) were taken in equimo-

lar ratio. A concentrated aqueous solution of thiourea and succinimide was prepared. Benzaldehyde was added in drops with continuous stirring of the solution. The mixture first became oily and slowly turned into a white crystalline mass which was separated by suction filtration and washed several times with distilled water. The product was dried in the air oven at 80°C and recrystallised using acetone by slow evaporation. The percentage yield of the compound was 15 with a melting point in the range 197-199°C.

### Synthesis of metal complexes

All the complexes of USB and TSB were isolated from non-aqueous media using methanol and ethanol. The divalent metal salts were used as such without dehydrating them. The metal chlorides and nitrates were dissolved in ethanol and the metal sulphates were dissolved in methanol. The ligand was dissolved in DMF. The hot ethanolic/methanolic solution of the metal salt was added slowly with constant stirring to the hot DMF solution of the ligand in 1:1 mol ratio. The insoluble complex formed was filtered, washed with appropriate solvent to remove the unreacted metal and ligand, dried in air and then in an air over at 80°C.

#### **RESULTS AND DISCUSSIONS**

The analytical data of USB and TSB and its metal complexes are summarized in TABLE 1 and 2. The elemental analyses show that metal ions form 1:1 complexes. All the complexes are coloured except  $Zn^{II}$  and  $Cd^{II}$  complexes which is purely white and stable at room temperature. All the complexes are soluble in DMF and

| Complex                                                  | % C          | % H<br>Obs (Cal.) | % N<br>Obs (Cal.) | %Metal       | μ <sub>eff</sub><br>Β Μ |
|----------------------------------------------------------|--------------|-------------------|-------------------|--------------|-------------------------|
| USB                                                      | 58 16(58 35) | 5 29(5 30)        | 16.96(17.01)      |              | D.IVI                   |
| $Mn(NO_3)_2$ .USB. $2H_2O$                               | 32.00(31.18) | 3.10(3.71)        | 15.21(15.15)      | 12.10(11.89) | 5.92                    |
| MnSO <sub>4</sub> .USB. 2H <sub>2</sub> O                | 34.50(33.19) | 4.00(3.95)        | 9.18(9.68)        | 11.87(12.65) | 5.72                    |
| CoSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 34.72(32.89) | 3.66(3.91)        | 9.02(9.59)        | 13.90(13.45) | 4.89                    |
| CuCl <sub>2</sub> .USB.2H <sub>2</sub> O                 | 34.09(34.50) | 3.81(4.10)        | 9.91(10.06)       | 14.98(15.21) | 1.54                    |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .USB.2H <sub>2</sub> O | 30.02(30.61) | 3.26(3.64)        | 14.35(14.87)      | 13.36(13.50) | 1.70                    |
| ZnSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 31.19(32.41) | 3.34(3.85)        | 9.65(9.45)        | 14.67(14.70) | -                       |
| CdCl <sub>2</sub> .USB                                   | 32.89(33.47) | 3.15(3.04)        | 9.34(9.76)        | 26.03(26.11) | -                       |
| CdSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 30.00(29.31) | 3.24(3.48)        | 8.23(8.54)        | 22.74(22.86) | -                       |
| HgCl <sub>2</sub> .USB                                   | 27.56(27.78) | 2.95(2.53)        | 8.04(8.10)        | 38.47(38.67) | -                       |

| TABLE 1 : Analytical data of USB and its complexes |
|----------------------------------------------------|
|----------------------------------------------------|

Inorganic CHEMISTRY Au Iudiau Journal

| TABLE 2 : Analytical data of TSB and its complexes        |                  |                   |                   |                      |                         |  |  |  |  |  |
|-----------------------------------------------------------|------------------|-------------------|-------------------|----------------------|-------------------------|--|--|--|--|--|
| Complex                                                   | % C<br>Obs(Cal.) | % H<br>Obs.(Cal.) | % N<br>Obs.(Cal.) | %Metal<br>Obs.(Cal.) | μ <sub>eff</sub><br>B.M |  |  |  |  |  |
| TSB                                                       | 54.60(54.75)     | 4.75(4.94)        | 15.11(15.97)      |                      |                         |  |  |  |  |  |
| Mn(NO <sub>3</sub> ) <sub>2</sub> .TSB. 2H <sub>2</sub> O | 31.06(30.13)     | 3.10(3.58)        | 14.21(14.64)      | 11.10(11.49)         | 5.85                    |  |  |  |  |  |
| NiSO <sub>4</sub> .TSB.H <sub>2</sub> O                   | 33.85(33.05)     | 3.15(3.47)        | 9.56(9.64)        | 13.78(13.46)         | 3.59                    |  |  |  |  |  |
| CuCl <sub>2</sub> .TSB.H <sub>2</sub> O                   | 34.09(34.66)     | 3.81(3.64)        | 9.91(10.11)       | 15.98(15.28)         | 1.95                    |  |  |  |  |  |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .TSB.2H <sub>2</sub> O  | 29.17(29.60)     | 3.20(3.52)        | 14.13(14.38)      | 13.54(13.05)         | 1.98                    |  |  |  |  |  |
| ZnSO <sub>4</sub> .TSB. H <sub>2</sub> O                  | 31.79(32.55)     | 3.34(3.41)        | 9.65(9.49)        | 14.67(14.77)         | -                       |  |  |  |  |  |
| CdCl <sub>2</sub> .TSB.H <sub>2</sub> O                   | 31.89(31.02)     | 3.08(3.25)        | 9.44(9.04)        | 25.05(24.19)         | -                       |  |  |  |  |  |
| HgCl <sub>2</sub> .TSB.H <sub>2</sub> O                   | 26.56(26.07)     | 2.95(2.73)        | 7.04(7.60)        | 36.47(36.28)         | -                       |  |  |  |  |  |

DMSO. Molar conductances of the complexes reveal their non-electrolytic nature. The crystal structures of the ligands USB and TSB are already reported<sup>[10,11]</sup>.

In all the complexes of USB, the  $v_{_{NH}}$  band appeared in the region 3390-3542cm<sup>-1</sup> at a much higher frequency than the free ligand. The  $v_{C-0}$  band of succinimide appeared at a lower frequency than the free ligand, indicating the coordination of carbonyl oxygen to the metal atom.  $Mn^{II}$ ,  $Co^{II}$ ,  $Cu^{II}$ ,  $Cd^{II}$  and Hg^II complexes show an increase in  $\nu_{_{NH}},\delta_{_{NH}}$  and  $\nu_{_{CNC}}$ frequencies and lowering of  $v_{C=0}$  of succinimide and urea, indicating that the ligand (USB) acts as a bidentate ligand coordinating through carbonyl oxygen of succinimide and urea. CuCl<sub>2</sub> and ZnSO<sub>4</sub> complexes show a decrease in  $\nu_{_{NH}}, \delta_{_{NH}}$  and  $\nu_{_{CNC}}$  frequencies, indicating that the amide N is coordinated to the metal atom in these complexes. TABLE 3 shows the IR absorption bands of USB and its complexes. Mn<sup>II</sup> and  $Cu^{\rm II}$  nitrate complex exhibits  $\nu_{_{as(NO2)}}, \nu_{_{s(NO2)}}$  and  $\nu_{_{NO}}$ bands at 1384, 1383  $(v_5)$ , 1341, 1340  $(v_1)$  and 1005,  $1046 (v_2) \text{ cm}^{-1}$  respectively due to the nitrato group. The difference between the  $v_5$  and  $v_1$  bands is 43 cm<sup>-1</sup>

in both the complexes suggesting unidentate behavior<sup>[12-14]</sup> of the nitrato group. Mn<sup>II</sup> and Co<sup>II</sup> sulphato complexes shows bands due to 'SO' stretching mode  $v_3$  of sulphato group at 1125,1018 and 1118, 1019 cm<sup>-1</sup>. The OSO bending mode  $v_{4}$  appears at 668,653,625 and 669,627, 606 cm<sup>-1</sup> respectively. The  $v_1$  and  $v_2$  mode of coordinated sulphato group occurs at 821,468 and 874, 562 cm<sup>-1</sup> in both these complexes. Absorption bands observed due to sulphato group in the Mn<sup>II</sup> and Co<sup>II</sup> sulphato complex are consistent with those normally associated with the bidentate chelating sulphato group<sup>[15,12]</sup>. Zn<sup>II</sup> and Cd<sup>II</sup> sulphato complexes



 $M = Mn^{II}$ ,  $Co^{II}$ ,  $Cu^{II}$ , and  $Zn^{II}$  $X = NO_{3}$  and  $SO_{4}$ Figure 1 : USB and Mn<sup>II</sup>, Co<sup>II</sup>, Cu<sup>II</sup>, Zn<sup>II</sup> complexes

| Compound                                                  | v <sub>NH</sub> | $v_{\rm C = 0}$ | $\delta_{\rm NH}$ | V <sub>CNC</sub> | <b>v</b> <sub>3</sub> | $v_4$         | <b>v</b> <sub>1</sub> | <b>v</b> <sub>2</sub> | <b>v</b> <sub>5</sub> | <b>v</b> <sub>6</sub> |
|-----------------------------------------------------------|-----------------|-----------------|-------------------|------------------|-----------------------|---------------|-----------------------|-----------------------|-----------------------|-----------------------|
| USB                                                       | 3364            | 1771, 1689      | 1533              | 1111             | -                     | -             | -                     | -                     | -                     | -                     |
| Mn(NO <sub>3</sub> ) <sub>2</sub> .USB. 2H <sub>2</sub> O | 3410            | 1714            | 1553              | 1141             |                       |               | 1341                  | 1005                  | 1384                  | 823                   |
| MnSO <sub>4</sub> .USB. 2H <sub>2</sub> O                 | 3424            | 1689            | 1542              | 1125             | 1125, 1018            | 668, 653, 625 | 821                   | 468                   | -                     | -                     |
| CoSO <sub>4</sub> .USB.2H <sub>2</sub> O                  | 3390            | 1638            | 1547              | 1118             | 1118, 1019            | 669, 627, 606 | 874                   | 562                   |                       |                       |
| CuCl <sub>2</sub> .USB.2H <sub>2</sub> O                  | 3338            | 1634            | 1384              | 1102             | -                     | -             | -                     | -                     | -                     | -                     |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .USB. 2H <sub>2</sub> O | 3434            | 1761            | 1595              | 1117             | -                     | -             | 1340                  | 1046                  | 1383                  | 869                   |
| ZnSO <sub>4</sub> .USB.2H <sub>2</sub> O                  | 3353            | 1666            | 1524              | 1106             | 1151, 1141, 1020      | 659, 635, 623 | 877                   | 564                   | -                     | -                     |
| CdCl <sub>2</sub> .USB                                    | 3542            | 1742            | 1583              | 1153             | -                     | -             | -                     | -                     | -                     | -                     |
| CdSO <sub>4</sub> .USB.2H <sub>2</sub> O                  | 3420            | 1623            | 1566              | 1111             | 1129, 1111, 993       | 642, 618      | 883                   | 594                   |                       |                       |
| HgCl <sub>2</sub> .USB                                    | 3434            | 1693            | 1533              | 1177             | -                     | -             | -                     | -                     | -                     | -                     |

TABLE 3 : IR absorption bands of the complexes of USB

Inorganic CHI

Full Paper

101

shows bands due to 'SO' stretching mode  $v_3$  of sulphato group at 1151, 1141, 1020 and 1129, 1111, 993 cm<sup>-1</sup>. The OSO bending mode  $v_4$  appears at 659,635, 623 and 642,618 cm<sup>-1</sup> respectively. The  $v_1$ and  $v_2$  mode of coordinated sulphato group occurs at 877,564 and 883, 594 cm<sup>-1</sup> in both these complexes. Absorption bands observed due to sulphato group in the Zn<sup>II</sup> and Cd<sup>II</sup> sulphato complexes are consistent with those normally associated with the bidentate chelating sulphato group<sup>[12]</sup>.

In all the complexes of TSB, the  $v_{\rm NH}$  band appeared at a higher frequency than the free ligand except in the case of NiSO<sub>4</sub>, CuCl<sub>2</sub> and HgCl<sub>2</sub> complexes where the  $v_{\rm NH}$  band appeared at a lower frequency than the free ligand. TABLE 4 shows the IR absorption bands of TSB and its complexes. The  $v_{\rm C=0}$  band of succinimide displayed substantial negative

shifts than the free ligand, indicating the coordination of carbonyl oxygen to the metal atom. The  $\delta_{_{NH}}$  and  $v_{CNC}$  bands also suffer negative shifts than the free ligand. The ligand TSB acts as a bidentate ligand coordinating through the carbonyl oxygen of succinimide and one of the amide N in the case of  $Mn^{II}$  and  $Cu^{II}$ nitrate complexes. In the case of NiSO<sub>4</sub>, CuCl<sub>2</sub>, ZnSO<sub>4</sub>, CdCl<sub>2</sub> and HgCl<sub>2</sub> complexes, the ligand TSB acts as a tridentate ligand coordinating through the carbonyl oxygen of succinimide, amido S and one of the amido N of thiourea. Mn<sup>II</sup> and Cu<sup>II</sup> nitrate complex exhibits  $\nu_{as(NO2)}, \nu_{s(NO2)}$  and  $\nu_{NO}$  bands at 1384, 1384 ( $v_5$ ), 1352, 1337 ( $v_1$ ) and 1018, 1107 ( $v_2$ ) cm<sup>-1</sup> respectively due to the nitrato group. The difference between the  $v_5$  and  $v_1$  bands is 32 and 47 cm<sup>-1</sup> in both the complexes suggesting unidentate behavior<sup>[12-14]</sup> of the nitrato group. Ni<sup>II</sup> and Zn<sup>II</sup> sulphato complexes

TABLE 4 : IR absorption bands of the complexes of TSB

| Complex                                                   | v <sub>NH</sub> | v <sub>co</sub> | $v_{C=S+}v_{CN}$<br>+ $\delta_{C-N}$ | v <sub>C-S</sub> | $\delta_{NH}$ | v <sub>C-N-C</sub> | <b>v</b> <sub>3</sub> | <b>v</b> <sub>4</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>2</sub> | <b>v</b> <sub>5</sub> | v <sub>6</sub> |
|-----------------------------------------------------------|-----------------|-----------------|--------------------------------------|------------------|---------------|--------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|
| TSB                                                       | 3399            | 1770, 1694      | 1382                                 | 753              | 1540          | 1117               |                       |                       |                       |                       |                       |                |
| Mn(NO <sub>3</sub> ) <sub>2</sub> .TSB. 2H <sub>2</sub> O | 3408            | 1605            | 1384                                 | 765              | 1529          | 1117               |                       |                       | 1352                  | 1018                  | 1384                  | 835            |
| NiSO <sub>4</sub> .TSB. H <sub>2</sub> O                  | 3348            | 1635            | 1352                                 | 631              | 1470          | 1098               | 1152, 1098            | 659, 631              | 823                   | 470                   |                       |                |
| CuCl <sub>2</sub> .TSB.H <sub>2</sub> O                   | 3341            | 1631            | 1352                                 | 708              | 1506          | 1103               | -                     | -                     | -                     | -                     |                       |                |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .TSB.2H <sub>2</sub> O  | 3397            | 1598            | 1418                                 | 757              | 1494          | 1107               |                       |                       | 1337                  | 1107                  | 1384                  | 881            |
| ZnSO <sub>4</sub> .TSB. H <sub>2</sub> O                  | 3409            | 1616            | 1340                                 | 742              | 1482          | 1112               | 1151, 1112, 1020      | 647, 619              | 874                   | 458                   | -                     | -              |
| CdCl <sub>2</sub> .TSB.H <sub>2</sub> O                   | 3459            | 1651            | 1376                                 | 680              | 1492          | 1113               | -                     | -                     | -                     | -                     |                       |                |
| HgCl <sub>2</sub> .TSB. H <sub>2</sub> O                  | 3364            | 1768            | 1376                                 | 738              | 1495          | 1106               | -                     | -                     | -                     | -                     |                       |                |

shows bands due to 'SO' stretching mode  $v_3$  of sulphato group at 1152 and 1098 and 1151, 1112, 1020 cm<sup>-1</sup>. The OSO bending mode  $v_4$  appears at 659 and 631 and 647 and 619 cm<sup>-1</sup> respectively. The  $v_1$  and  $v_2$  mode of coordinated sulphato group occurs at 823,470 and 874, 458 cm<sup>-1</sup> in both these complexes. Absorption bands observed due to sulphato group in the Ni<sup>II</sup> and Zn<sup>II</sup> sulphato complexes are consistent with those normally associated with the bidentate chelating sulphato group<sup>[12]</sup>.

<sup>1</sup>H NMR spectra of the ligand USB and its Zn<sup>II</sup>, Cd<sup>II</sup> and Hg<sup>II</sup> complexes were recorded in DMSO-d<sub>6</sub>. In the free ligand the amide protons occur at  $\delta$  6.009 and 6.91-6.889 ppm. On coordination to the metal atom the amide protons are shifted downfield. The downfield shift is due to the decrease in electron density on the atoms involved in coordination and consequent



Figure 2 : TSB and Mn<sup>II</sup>, Cu<sup>II</sup> complexes

deshielding of the protons. The methylene protons of succinimide are shifted upfield. Presence of a broad peak at  $\delta$  3.35-3.36 ppm suggests the presence of lattice water in the complex or bulk water in DMSO-d<sub>6</sub>. These support the coordination suggested by IR data.

<sup>1</sup>H NMR spectra of the ligand TSB and its Zn<sup>II</sup>, Cd<sup>II</sup> and Hg<sup>II</sup> complexes were recorded in DMSO-d<sub>6</sub>. In the free ligand the amide protons occur at  $\delta$  7.84

> Inorganic CHEMISTRY An Indian Journal

# Full Paper

and 7.89-7.92 ppm. On coordination to the metal atom the amide protons are shifted upfield. The upfield shift is due to modification of electron density upon coordination and the deshielding zone developed around these protons. The methylene protons of succinimide are shifted downfield. These suggest the coordination of amido N or S to the metal atom. Presence of a broad peak at  $\delta$  3.34-3.36 ppm suggests the presence of lattice water in the complex or bulk water in DMSO-d<sub>6</sub>. These support the coordination suggested by IR data.

The manganese (II) complexes of USB show magnetic moments in the range 5.72-5.92 B.M at room temperature corresponding to five unpaired electrons. The electronic spectra of the Mn<sup>II</sup> complexes exhibit four weak intensity absorption bands in the range 17605-18049, 23255-23684, 25445-26315 and 32154-36764 cm<sup>-1</sup>. These bands may be assigned to<sup>[16]</sup> transitions:  ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$  (<sup>4</sup>G),  ${}^{6}A_{1g} \rightarrow {}^{4}E_{1g}$ ,  ${}^{4}A_{1g}$  (<sup>4</sup>G),  ${}^{6}A_{1g} \rightarrow {}^{4}E_{g}$  (<sup>4</sup>D),  ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$  (<sup>4</sup>P). The position of these bands suggests a high spin octahedral environment around the Mn<sup>II</sup> ion.

The Mn<sup>II</sup> nitrate complex of TSB show a magnetic moment of 5.85 B.M at room temperature corresponding to five unpaired electrons. The electronic spectra of the Mn<sup>II</sup> nitrate complex exhibit four weak intensity absorption bands in the range 18021, 24986, 29135 and 31293 cm<sup>-1</sup>. These bands may be assigned to<sup>[16]</sup> transitions:  ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$  (<sup>4</sup>G),  ${}^{6}A_{1g} \rightarrow {}^{4}E_{1g}$ ,  ${}^{4}A_{1g}$  (<sup>4</sup>G),  ${}^{6}A_{1g} \rightarrow {}^{4}E_{g}$  (<sup>4</sup>D),  ${}^{6}A_{1g} \rightarrow {}^{4}T_{1g}$  (<sup>4</sup>P). The position of these bands suggests a high spin octahedral environment around the Mn<sup>II</sup> ion.

At room temperature the Co<sup>II</sup> sulphate complex of USB show a magnetic moment of 4.89 B.M. corresponding to three unpaired electrons. The electronic spectra of the Co<sup>II</sup> sulphate complex recorded in DMF solution exhibit absorption in the region 7127, 14945, 18761 and 27624, 34246 cm-1. These bands may be assigned to  ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}(F)$ ,  ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(F)$  and  ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$  respectively. The fourth band is due to charge transfer. The position of these bands suggests an octahedral environment around the Co<sup>II</sup> ion<sup>[17]</sup>.

The magnetic moments of the Cu<sup>II</sup> complexes of USB were recorded at room temperature. The complexes show magnetic moments in the range 1.54-1.70 B.M. corresponding to one unpaired electron. The electronic spectra of Cu<sup>II</sup> complexes in DMF exhibit bands

in the range 9141-9174, 12019-12114, 14706-15106 and 24791-26596, 30030-32623 cm<sup>-1</sup>. These bands may be assigned to  ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ ,  ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$  and  ${}^{2}Eg \rightarrow {}^{2}T_{2g}$  (F) respectively. The fourth band may be due to charge transfer. The position of these bands suggests a tetragonally distorted octahedral environment around the Cu<sup>II</sup> ion.

The magnetic moment of NiSO<sub>4</sub> complex of TSB were recorded at room temperature. The complex shows a magnetic moment of 3.59 B.M. The electronic spectra of NiSO<sub>4</sub> complex in DMF exhibit bands in the region 9090, 14903, 25252, 11848, 20661 and 36101 cm<sup>-1</sup>. These bands may be assigned to  ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F), {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F), {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F), {}^{3}A_{2g}(F) \rightarrow {}^{1}E_{g}$  and  ${}^{3}A_{2g}(F) \rightarrow {}^{1}T_{1g}$ . The fourth band may be due to charge transfer. The position of these bands suggests a octahedral environment around the Ni<sup>II</sup> ion.

The magnetic moments of the Cu<sup>II</sup> complexes of TSB were recorded at room temperature. The complexes show magnetic moments in the range 1.95-1.98 B.M corresponding to one unpaired electron. The electronic spectra of Cu<sup>II</sup> complexes in DMF exhibit bands in the range 10449-10526,11820-12020, 15948-16181 and 23365,36232-26584,31034 cm<sup>-1</sup>. These bands may be assigned to  ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ ,  ${}^{2}B_{1g} \rightarrow {}^{2}B_{2g}$  and

 

 TABLE 5 : IR Absorption bands due to coordinated water molecules in USB complexes

| Complex                                                  | VOH  | $\delta_{HOH}$ | $ hor_{HOH}$ | $ ho w_{HOH}$ | М-О |
|----------------------------------------------------------|------|----------------|--------------|---------------|-----|
| Mn(NO <sub>3</sub> ) <sub>2</sub> .USB.2H <sub>2</sub> O | 3410 | 1714           | 823          | 600           | 476 |
| MnSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 3424 | 1689           | 821          | 605           | 468 |
| CoSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 3428 | 1707           | 823          | 602           | 488 |
| CuCl <sub>2</sub> .USB.2H <sub>2</sub> O                 | 3440 | 1634           | 848          | 607           | 484 |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .USB.2H <sub>2</sub> O | 3434 | 1761           | 869          | 679           | 471 |
| ZnSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 3421 | 1666           | 877          | 623           | 564 |
| CdSO <sub>4</sub> .USB.2H <sub>2</sub> O                 | 3420 | 1623           | 883          | 618           | 594 |

 TABLE 6 : IR Absorption bands due to coordinated water

 molecules in TSB complexes

| Complex                                                  | v <sub>oh</sub> | $\delta_{HOH}$ | $ hor_{HOH}$ | $\rho w_{HOH}$ | М-О |
|----------------------------------------------------------|-----------------|----------------|--------------|----------------|-----|
| Mn(NO <sub>3</sub> ) <sub>2</sub> .TSB.2H <sub>2</sub> O | 3408            | 1605           | 823          | 620            | 467 |
| NiSO <sub>4</sub> .TSB.H <sub>2</sub> O                  | 3348            | 1635           | 823          | 631            | 470 |
| CuCl <sub>2</sub> .TSB.H <sub>2</sub> O                  | 3441            | 1631           | 847          | 633            | 477 |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .TSB.2H <sub>2</sub> O | 3397            | 1598           | 881          | 623            | 470 |
| ZnSO <sub>4</sub> .TSB.H <sub>2</sub> O                  | 3409            | 1616           | 874          | 619            | 458 |
| CdCl <sub>2</sub> .TSB.H <sub>2</sub> O                  | 3459            | 1651           | 864          | 680            | 535 |
| HgCl <sub>2</sub> .TSB. H <sub>2</sub> O                 | 3364            | 1768           | 847          | 659            | 458 |

# - Full Paper

 ${}^{2}\text{Eg} \rightarrow {}^{2}\text{T}_{_{2g}}$  (F) respectively. The fourth band may be due to charge transfer. The position of these bands suggests a tetragonally distorted octahedral environment around the Cu<sup>II</sup> ion<sup>[18]</sup>.

#### Antimicrobial activity

Antibacterial activities of USB and its metal complexes such as CuCl<sub>2</sub>.USB.2H<sub>2</sub>O (1C1), Cu(NO<sub>2</sub>)<sub>2</sub>.USB.2H<sub>2</sub>O (1C8), Mn(NO<sub>2</sub>)<sub>2</sub>.USB.2H<sub>2</sub>O (1C10) and  $CoSO_4$ . USB.2H<sub>2</sub>O (1C14) were studied. These complexes were tested in-vitro against four bacterial species Staphylococcus aureus, Micrococcus luteus, Escherichia coli and Pseudomonas aeruginosa by paper disc diffusion method. The results obtained are tabulated in the TABLE 5. The zone of inhibition of the compounds is given in millimeters. The comparative study of the ligand and its complexes indicates that the metal chelates exhibit higher activity than the free ligand. The order of activity towards Staphy*lococcus aureus*: 1C14 > 1C8 > 1C1> 1C10 > USB; *Micrococcus luteus:* 1C14 > 1C10 > 1C8 > 1C1 >USB; *Escherichia coli*: 1C8 > 1C10 > 1C1 > 1C14 > USB; Pseudomonas aeruginosa: 1C1 > 1C8 > 1C14 > 1C10 > USB. Co<sup>II</sup> sulphate complex shows the highest activity against the Staphylococcus aureus and Micrococcus luteus bacterial species. The least active against the Staphylococcus and Micrococcus bacterium is manganous nitrate and cupric chloride com-

plexes. The highest activity against Escherichia coli bacterium is shown by cupric nitrate and least by Co<sup>II</sup> sulphate. The highest activity against Pseudomonas aeruginosa is shown by cupric chloride and least by manganous nitrate complexes. The Cu<sup>II</sup> nitrato complex is having a pseudo tetrahedral geometry and coordinately unsaturated, and hence it exhibits a tendency to get saturated by linking with the protein, leading to the inhibition of its growth. Morever, steric constraints are less for a tetrahedral complex than for an octahedral complex and so the tetrahedral complexes are more active than the octahedral complexes. Coll is an essential micronutrient during transcription and transformation of nucleic acids, and hence its complex has higher activity. These complexes were tested in-vitro against two antifungal species namely Aspergillus niger and Aspergillus fumigates. The antifungal activities of these compounds were determined by sabouraud dextrose agar medium in paper disc diffusion method. The order of activity towards Aspergillus niger: 1C1>1C8>1C14>1C10>USB; Aspergillus fumigates: 1C1>1C8>1C10>1C14>USB. The Cu<sup>II</sup> complexes showed higher activity against both the fungal species. The increase in antimicrobial activity is due to faster diffusion of metal complexes as a whole through the cell membrane or due to combined activity effect of the metal and the ligand. Such increased activity of the metal chelates can be explained on the basis of

| Compound                                                        | Conc<br>(µl) | S. aureus<br>(mm) | M. luteus<br>(mm) | E. coli<br>(mm) | P. aeru<br>(mm) | A.niger<br>(mm) | A.fumigates<br>(mm) |
|-----------------------------------------------------------------|--------------|-------------------|-------------------|-----------------|-----------------|-----------------|---------------------|
| USB                                                             | 25           | 13                | 17                | 13              | 15              | 12              | 10                  |
|                                                                 | 50           | 19                | 19                | 18              | 18              | 23              | 17                  |
|                                                                 | 100          | 15                | 21                | 15              | 17              | 27              | 21                  |
| CuCl <sub>2</sub> .USB.2H <sub>2</sub> O (1C1)                  | 25           | 13                | 16                | 13              | 19              | 19              | 14                  |
|                                                                 | 50           | 19                | 19                | 19              | 23              | 23              | 18                  |
|                                                                 | 100          | 21                | 21                | 24              | 28              | 29              | 22                  |
| Cu(NO <sub>3</sub> ) <sub>2</sub> .USB.2H <sub>2</sub> O (1C8)  | 25           | 14                | 19                | 15              | 17              | 16              | 13                  |
|                                                                 | 50           | 22                | 22                | 21              | 20              | 20              | 19                  |
|                                                                 | 100          | 25                | 24                | 26              | 21              | 23              | 23                  |
| Mn(NO <sub>3</sub> ) <sub>2</sub> .USB.2H <sub>2</sub> O (1C10) | 25           | 13                | 19                | 14              | 15              | 14              | 13                  |
|                                                                 | 50           | 15                | 23                | 18              | 19              | 19              | 17                  |
|                                                                 | 100          | 23                | 26                | 20              | 22              | 21              | 20                  |
| CoSO <sub>4</sub> .USB.2H <sub>2</sub> O (1C14)                 | 25           | 15                | 19                | 12              | 16              | 15              | 12                  |
|                                                                 | 50           | 18                | 24                | 15              | 21              | 18              | 18                  |
|                                                                 | 100          | 24                | 27                | 18              | 24              | 22              | 20                  |

TABLE 7 : Antibacterial and antifungal activity of USB and its complexes (zone of inhibition in mm)

Inorganic CHEMISTRY An Indian Journal

# Full Paper

Overtone's concept<sup>[19]</sup> and the Tweedy's chelation theory<sup>[20]</sup>. The lipid membrane that surrounds the cell favours the passage of only lipid soluble materials due to which lipophilicity is an important factor which controls the antimicrobial activity. On chelation the polarity of the metal ion will be reduced to a greater extent due to overlap of the ligand orbital and partial sharing of the positive charge of the metal ion with the donor groups. Further it increases the delocalization of the  $\pi$ -electron over the whole chelate ring and enhances the liposolubility of the complexes. This increased liposolubility enhances the penetration of the complexes into the lipid membrane and blocks the metal binding sites in the enzymes of the microorganisms. These complexes also disturb the respiration process of the cell and thus block the synthesis of proteins, which restrict further growth of the organisms.

#### ACKNOWLEDGEMENTS

The first author wishes to acknowledge SAIF, IIT, Chennai for the NMR analyses, Regional Sophisticated Instrument Facility, Central drug Research Institute, Lucknow, India for recording the CHN values and C.L. Baid Metha College of pharmacy, Chennai for carrying out the antimicrobial study.

#### REFERENCES

- [1] A.N.M.Kasim, D.Venkappayya, G.V.Prabhu; J.Indian Chem.Soc., **76**, 67 (**1999**).
- [2] P.S.Desai, K.R.Desai; J.Indian Chem.Soc., 70, 177 (1993).
- [3] J.B.Gandhi, N.D.Kulkarni; Polyhedron., 18, 1735 (1999).
- [4] N.Raman, S.Ravichandran; Asian J.Chem., 15, 255 (2003).
- [5] H.Seigel, R.B.Martin; Chem.Rev., 82, 385 (1982).
- [6] R.B.Penland, S.Mizushima, C.Curran, J.V.Quagliano; J.Am.Chem.Soc., 79, 1575 (1967).
- [7] R.C.Aggarwal, P.P.Singh; J.Inorg.Nucl.Chem., 27, 2593 (1965).
- [8] A.G.M.Al-Daher, K.W.Bagnall; J.Chem.Soc., Dalton Trans., 4, 843 (1986).
- [9] Koracik, Langfelderova, Hanusik; Proc.Conf.Coord. Chem., 12, 169 (1989).
- [10] S.Rajeswari, G.Venkatesa Prabhu, K.Krishnakumar, V.Ramkumar, Babu Varghese; Acta Cryst., E63, 02929 (2007).
- [11] S.Rajeswari, G.Venkatesa Prabhu, D.Tamilvendan, V.Ramkumar; J.Chem.Crystallogr., **39**, 650 (**2009**).
- [12] K.Nakamoto; 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', 3<sup>rd</sup> Edn., Wiley Interscience, New York, (1978).
- [13] C.C.Addison, R.Davis, N.Logan; J.Chem.Soc., 3333 (1970).
- [14] M.Choca, J.R.Ferraro, K.Nakamoto; J.Chem.Soc., DaltonTrans., 2297 (1972).
- [15] R.H.Nuttall; Talanta, 15, 157 (1968).
- [16] A.B.P.Lever; 'Inorganic Electronic Spectroscopy', Elsevier, Amsterdam, (1968).
- [17] C.Preti, G.Tosi; Aust.J.Chem., 20, 543 (1976).
- [18] B.J.Hathaway, D.E.Billing; Coord.Chem.Rev., 5, 143 (1970).
- [19] N.Dharmaraj, P.Viswanathamurthi, K.Natarajan; Trans.Met.Chem., 26, 105 (2001).
- [20] L.Mishra, V.K.Singh; Indian J.Chem., 32A, 446 (1997).