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ABSTRACT 

Thermal conductivity of molecular fluids of non-spherical molecules interacting via the Gaussian 

overlap with constant energy (GOCE) potential are studied using a perturbation theory. The thermal 

conductivity λ of the molecular fluid are expressed in terms of the hard sphere (HS) fluid of properly 

chosen hard sphere diameter. The thermal conductivity λ of a dense HS fluid are obtained by the Revised 

Enskog theory (RET). Theory is applied to estimate λ of fluid N2. The agreement is good at low density 

limit. 
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INTRODUCTION 

The present paper is concerned with the evaluation of thermal conductivity of 

molecular fluids composed of non-spherical molecules; such molecules interact via the 

Gaussian overlap with constant energy (GOCE) potential1. The complexity of all transport 

mechanism has made it difficult to obtain analytic results for realistic interaction potentials. 

Enskog expression’s for the thermal conductivity of dense hard sphere (HS) gases are 

available2. Enskog theory was revised for real system and the perturbation theory1 was used 

to determine the effective hard sphere diameters for the real molecular fluids. 

Dey3 employed the perturbation theory of Singh et al.1 to determine the effective 

hard sphere diameter, which is a function of density ρ and temperature T, and radial 

distribution function (RDF) )(dg eHS of the HS fluid. They used the revised Enskog theory 
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(RET) of van Beijeren and Ernst4 to study the thermal conductivity of the molecular fluids of 

non-spherical molecules in terms of the HS fluid. 

In the present work, we estimate the RDF )(dg eHS  under different approximations 

and extend this approach to study the thermal conductivity of the molecular fluids. 

Theoretical scheme 

The thermal conductivity λ  of a dense hard sphere (HS) gas as a function of the 

number density ρ  and absolute temperature T can be obtained by the revised Enskog theory 

(RET)2. They are expressed as - 
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e=  is the packing fraction, de is the hard sphere diameter and )(dg eHS is 

the contact value of the equilibrium radial distribution function (RDF) of the HS fluid. Here 

m is the mass of sphere, k the Boltzmann constant and T the absolute temperature. 

Thermalconductivity of non- spherical molecules  

The idea is to apply the theory, a first approximation for molecular fluid of non-

spherical molecules with axial symmetry, such molecules interact via the GOCE potential1 
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Here the anisotropy parameter χ  is defined as 

1)(K/1)(K χ 22 +−=  …(5) 

K being the length to width ration of a molecule i.e. K = 2a/2b. 
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In order to proceed, we need to determine the value of the effective hard sphere 

diameter de for each value of ρ  and T using some perturbative scheme. Singh et al.
1 have 

divided the GOCE potential into reference and perturbation parts and the properties of the 

reference system are obtained in terms of the hard Gaussian overlap (HGO) system, where 

do is a function of density and temperature. For the GOCE model, 00

*

0 σ/dd =  is expressed 

as1,5 - 

δ]ξ[1dd *

B

*

0 +=   …(6) 

where 

0.4293T*][1/0.3837/T*][1.068d*B ++=  …(7) 

1-T*] / 404.6  [210.31δ +=  …(8) 

and 

η)(1η/2)2(1

)1.51η5.7865η0.5η7.5η-(2
ξ

432

−−

−−+
=  …(9) 

with 

3

0m dKρ/6)(πVρη == . 

η  is the packing fraction of the HGO fluid of the reduced density 3

0σρ*ρ = . We 

assume that the hard sphere of volume 
3

0m d/6)(πV =  is equal to that of the HGO molecule. 

Hence, the effective hard sphere diameter de is given by 0

1/3

e dKd = . 

We have calculated the effective hard sphere diameter 0e

*

e σ/dd =  for N2 with K = 

1.30 at T = 130 K and 250 K. These are reported in Table 1. It is found that 
*

ed  decreases 

with increase of density ρ and increase of T. 

Then the RDF 
)(dg eHS =  is given by5 - 

η)(1η/2)/(1)(dg eHS −−=  (method 1) …(10) 

The RDF )(dg eHS can also be obtained from the compressibility factor ZHGO of the  
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HGO fluid3,6 

)(dgαη41Z eHSHGO +=  (method 2) …(11) 

where 

32222

HGO η)]/(1ηα2)ηα3(3αη2)-α(3[1Z −−+−++=  …(12) 

and the shape factor α is defined by6 - 

mvS/3Rα=  …(13) 

Here R is the π)(1/4  multiple of the mean curvature integral, S the surface integral 

and vm is the volume of the HGO molecule. 

The RDF )(dg eHS  can be obtained from the expression of ZHS. For high density 

regimes, we use the Pade [4,3] for ZHS as
7 - 
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 (method 3) 

The RDF )(dg eHS for N2 (K = 1.30) can be calculated using Eq. (10), (11) and (14). 

These are shown in Table 2 at T = 250 K and 130 K. They are in close agreement. 

The thermal conductivity λ  for fluid N2 has been calculated using the RDF )(dg eHS  

obtained under different approximations. Theoretical values agree well among themselves. 

However, when compared with experimental data, they are in agreement in low density 

regions only. 

The values of thermal conductivity λ of fluid N2 are compared in Fig. 2 at T = 130 K 

with the experimental data4. The agreement is good at low density only. 

Concluding remarks 

The RET has been employed to determine the thermal conductivity λ  for the fluid 

N2, using the values of the RDF )(dg eHS  under different approximations. Identical results 

were obtained. When compared with the experimental data, the agreement is good only at 
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low density. By improving the expression, better results are expected at liquid density. 

However, it is not attempted in this case. 

Table 1: Values of 
*

ed  for N2 (K = 1.30) using the GOCE model  

d
*
e  

ρρρρ (gm/cm3) 

T = 250 K T = 130 K 

0.1 1.06775 1.09689 

0.2 1.06730 1.09651 

0.3 1.06675 1.09651 

0.4 1.06606 1.09545 

0.5 1.06519 1.09467 

0.6 1.06404 1.09365 

0.7 1.06265 1.09229 

0.8 1.06082 1.09050 

Table 2: Values of RDF gHS (de) for N2 (K = 1.30) using the GOCE model 

g
HS 

(de) at T = 250 K g
HS 

(de) at T = 130 K 

ρρρρ (gm/cm3) 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

0.1 1.145 1.139 1.145 1.160 1.155 1.160 

0.2 1.321 1.317 1.322 1.359 1.355 1.360 

0.3 1.538 1.535 1.540 1.601 1.599 1.604 

0.4 1.808 1.808 1.813 1.931 1.932 1.936 

0.5 2.150 2.152 2.157 2.350 2.354 2.358 

0.6 2.586 2.593 2.597 2.866 2.876 2.880 

0.7 3.153 3.166 3.171 3.656 3.675 3.683 

0.8 3.893 3.918 3.929 4.692 4.724 4.752 
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Fig. 2: The thermal conductivity λ of N2 as a function of density ρ at T = 130 K 
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