

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF SOME SCHIFF'S BASES OF SULPHAMIDO COUMARIN

P. VALENTINA*, K. ILANGO, M. G. RAJANANDH, R. VIJAYAN and ANKIT KUMAR SITOKE

Department of Pharmaceutical Chemistry, S. R. M. College of Pharmacy, S. R. M. University, KATTANKULATHUR - 603203 (T. N.) INDIA

ABSTRACT

Some new Schiff's base of methyl sulphamido-7-hydroxy-4-methyl coumarin were synthesized and the anti nociceptive and *in vitro* anti-inflammatory activities were evaluated. The Mannich reaction between 7-hydroxy-4-methyl coumarin, sulphanilamide and formaldehyde gives 7-hydroxy-4-methyl-8[sulphamidomethyl] coumarin (1). The compound (1) with various aromatic aldehydes gives Schiff's base (2a-2g). All the synthesized compounds were characterized by spectral analysis. The *in vitro* anti-inflammatory activity was carried by HRBC membrane stabilization method and the antinociceptive activity was carried by Writhing reflux method and hot plate method. All the compounds shows significant anti-inflammatory and anti-nociceptive activity.

Key words: Schiff's base, Mannich reaction, Anti-inflammatory, Anti-nociceptive.

INTRODUCTION

Various substituted coumarins are known for their antibacterial¹, analgesic^{2,3}, anti-inflammatory⁴⁻⁵ and antioxidant⁶ activities. Literature review reveals that introduction of amino methyl group in coumarin gives rise to biological active compounds Coumarin, Mannich base^{7,8}, sulphonamide⁹ and Schiff's base^{10,11} have also been reported to have diverse biological properties. Considering the biological potential of coumarin and sulphonamide herein, the synthesis of some of these derivatives are reported and evaluated for *invitro* anti-inflammatory¹² and *in vivo* anti-nociceptive activities¹³.

EXPERIMENTAL

Melting points were determined in Veego Digital melting point apparatus and are uncorrected. IR spectra were recorded on Perkin Elmer FTIR spectrometer using KBr. ¹H-

^{*} Author for correspondence; E-Mail: valentina 7 srm@yahoo.com

NMR spectra were recorded on Mitz-FTNMR. The chemical shifts were reported as parts per million downfield from tetramethyl silane. The purity of the compound was checked by TLC using precoated silica gel G plate.

Synthesis of 7-hydroxy-4-methyl 8-(sulphamido methyl) coumarin (Mannich reaction) (1)

A solution of sulphanilamide (0.01M in 10 mL ethanol) was added slowly into warm solution of 7-hydroxy-4-methyl coumarin (0.01M in 20 mL ethanol) and 0.01M of formaldehyde and kept overnight in refrigerator. The product obtained was collected; recrystallized with ethanol. [Yield : 98%; m. p. 120^{0} C; IR(KBr, cm⁻¹) 3445, 3320 (NH₂), 3100(ArC-H), 1600(ArC=C), 1667(ArC=O), 1158(C-O), 3400(OH), 985 (ArCH), 2974(CH), 1175(SO₂NH) cm⁻¹; ¹H-NMR (δ) 6.58-8.2(m, 11H, Aromatic); 8.1 (s, 1H, N=CH); 2.1 (s, 1H, NH); 1.71 (s, 3H, CH₃); 4.42 (s, 2H, CH₂); 3.7 (d, 1H, CH); 5.0 (s, 1H, OH).

General method of synthesis of Schiff's base (2a-2g)

An equimolar mixture of compound (1) and various substituted aldehydes were refluxed for 1-2 hrs at 100^oC. After cooling, it was poured into a beaker containing 20 mL ethanol. The product separated out was recrystallized with ethanol.

Physical and spectral data

2a : Yellowish white crystal; Yield 85%; M. P. 194^{0} C; IR(KBr, cm⁻¹) 3442(NH), 3100(ArC-H), 1608(ArC=C), 1667(C=O), 1158(C-O), 3403(OH), 985(ArCH), 2974(CH), 1175(SO₂NH), 1676(C=N) cm⁻¹; ¹H-NMR(δ) 6.37-7.9 (m, 10H, Aromatic); 8.9(s, 1H, N=CH); 2.0(s, 1H, NH); 1.72(s, 3H, CH₃); 4.38(s, 2H, CH₂); 3.7(d, 1H, CH); 5.2(s, 1H, OH).

2b: Yellow crystal, Yield 57%; M. P. 56°C; IR(KBr, cm $^{-1}$) 3448(NH), 3104 (ArC-H), 1600(ArC=C), 1657(C=O), 1138(C-O), 3369(OH), 989(ArCH), 2984(CH), 1136 (SO₂NH), 1606(C=N) cm $^{-1}$; 1 H-NMR(δ) 6.37-7.9 (m, 9H, Aromatic); 3.20(s, 3H, OCH₃); 5.2(s, 2H, OH); 8.3(s, 1H, N=CH); 2.0(s, 1H, NH); 1.79(s, 3H, CH₃); 4.48(s, 2H, CH₂); 3.1(d, 1H, CH).

2c : Pale yellow crystal, Yield 81%; M. P. 97^{0} C; IR(KBr, cm⁻¹) 3451(NH), 3108(ArC-H), 1609(ArC=C), 1669(C=O), 1132(C-O), 3406(OH), 965(ArCH), 2976(CH), 1135(SO₂NH), 1609(C=N) cm⁻¹; ¹H-NMR(δ) 6.22-8.1(m, 10H, Aromatic); 8.9(s, 1H, N=CH); 2.85(s, 6H, N(CH₃)₂); 2.0(s, 1H, NH); 1.75(s, 3H, CH₃); 4.31(s, 2H, CH₂); 3.1(d,

1H, CH); 5.5(s, 1H, OH).

$$HO$$
 O
 H_2NO_2S
 $+$
 CH_2
 $+$
 NH_2

7-Hydroxy-4-methyl coumarin Fo

Formaldehyde

Sulphanilamide

Reaction scheme

2d : Pale yellow crystal, Yield 84%; M. P. 122⁰C; IR(KBr, cm⁻¹) 3449(NH), 3113(ArC-H), 1603(ArC=C), 1627(C=O), 1104(C-O), 3435(OH), 982(ArCH), 2994(CH), 1152(SO₂NH), 1661(C=N) cm⁻¹; ¹H-NMR(δ) 6.22-8.1(m, 10H, Aromatic); 8.6(s, 1H, N=CH); 2.2(s, 1H, NH); 1.63(s, 3H, CH₃); 4.23(s, 2H, CH₂); 3.3(d, 1H, CH); 5.5(s, 2H, OH).

- **2e :** Yellowish white crystal; Yield 57%; M. P. 63° C; IR(KBr, cm⁻¹) 3446(NH), 3110(ArC-H), 1602(ArC=C), 1653(C=O), 1174 (C-O), 3418(OH), 983(ArCH), 2989(CH), 1132 (SO₂NH), 1667(C=N) cm⁻¹; ¹H-NMR(δ) 6.32-8.8(m, 10H, Aromatic); 8.4(s, 1H, N=CH); 2.1(s, 1H, NH); 1.56(s, 3H, CH₃); 4.25(s, 2H, CH₂); 3.6(d, 1H, CH); 5.9(s, 1H, OH).
- **2f :** White crystal; Yield 62%; M. P. 74^{0} C; IR(KBr, cm⁻¹) 3450(NH), 3112(ArC-H), 1605(ArC=C), 1637(C=O), 1142(C-O), 3442(OH), 986(ArCH), 2985(CH), 1139(SO₂NH), 1669(C=N) cm⁻¹; ¹H-NMR(δ)) 6.25-8.9(m, 10H, Aromatic); 8.5(s, 1H, N=CH); 2.5(s, 1H, NH); 1.47(s, 3H, CH₃); 4.26(s, 2H, CH₂); 3.8(d, 1H, CH); 5.3(s, 2H, OH).
- **2g :** Pure white crystal; Yield 48%; M. P. 84^{0} C; IR(KBr, cm⁻¹) 3440(NH), 3101(ArC-H), 1606(ArC=C), 1647(C=O), 1162(C-O), 3412(OH), 982(ArCH), 2988(CH), 1169(SO₂NH), 1610(C=N) cm⁻¹; 1 H-NMR(δ)) 6.37-8.8(m, 10H, Aromatic); 8.2(s, 1H, N=CH); 2.5(s, 1H, NH); 1.60(s, 3H, CH₃); 4.42(s, 2H, CH₂); 3.8(d, 1H, CH); 5.1(s, 1H, OH).

Anti-inflammatory activity

The *in vitro* anti-inflammatory activity was carried for all the synthesized compounds **(2a-2g)** using HRBC membrane stabilization method. Diclofenac sodium (1 mg/mL) was used as standard. The reaction mixture containing 1 mg/mL of test solution or standard solution, 2 mL of 0.25% hypotonic saline, 1 mL of phosphate buffer (0.15M, pH 7.4) and 0.5 mL of HRBC in normal saline was incubated at 56°C for 30 min and centrifuged. The absorbance of supernatant was read at 560 nm with suitable blank. The stabilization percentage was calculated (Table 1).

Anti-nociceptive activity

This activity was carried out by thermal and chemical methods.

Acetic acid induced Writhing method (Chemical method)

The anti-nociceptive activities of the compounds were carried out in Swiss albino mice using acetic acid induced writhing method. The animals (25-30 g) were divided into ten groups. Each group consists of five animals. One group served as a negative control (received vehicle), second group served as a positive control (received indomethacin 100 mg/mL) and the remaining groups were treated with synthesized compounds (2a-2g) 50 mg/mL in DMF, intraperitonially. Acetic acid solution (15 mg/mL) at the dose of 300

mg/kg body weight was injected intraperitonially and the number of writhes was counted for a period of 30 minutes. A significant reduction in the number of writhes by drug treatments as compared to vehicle control animals was considered positive anti-nociceptive response. The percentage inhibition of writhing was then calculated and are given in the Table 1

Table 1. Anti-inflammatory and anti-nociceptive activity of synthesied compounds (2a-2g)

Comp.	R	Anti- inflammatory – activity %of stabilization (Mean±SEM)	% of anti-nociceptive activity	
			Writhing reflux method (Mean±SEM)	Hot plate method (Mean±SEM)
2a	-H	81.26 ± 1.3	71.40 ± 0.5	66.20 ± 0.5
2 b	4-OH, 3-OCH ₃	81.14 ± 1.1	83.60 ± 0.9	60.80 ± 0.3
2 c	4-N(CH ₃) ₂	80.13 ± 1.0	79.50 ± 0.6	63.60 ± 0.8
2d	2-ОН	62.92 ± 0.9	66.62 ± 0.3	58.10 ± 0.9
2 e	$2-NO_2$	80.08 ± 1.2	79.52 ± 0.5	50.30 ± 1.2
2f	4-OH	80.30 ± 0.7	70.82 ± 0.4	53.40 ± 1.0
2 g	3-NO ₂	78.64 ± 0.8	72.70 ± 0.8	48.20 ± 0.9
Standard	l -	82.29 ± 0.1	98.78 ± 0.5	93.40 ± 0.6

Eddy's hot plate method (Thermal method)

All the synthesized compounds were screened for anti-nociceptive activity by Eddy's hot plate method. Swiss albino mice (25-30 g) were divided into ten groups with five in each. Groups I served as a control and groups II received pentazocin 5 mg/kg, served as a standard. The remaining groups received the synthesized compounds (2a-2g) at a dose of 20 mg/kg in DMF. Thirty minutes after intraperitonial administration of the standard and test compounds, animal were individually placed on a hot plate (maintained at 55 ± 2 °C) and the response such as paw licking or jump response, whichever first appeared

were noted. A cut off period of 15 sec. was maintained to prevent the damage or lesion to animal paw. The anti-nociceptive activity was expressed in terms of percentage inhibition and are reported in the Table 1.

RESULTS AND DISCUSSION

The Mannich reaction between 7-hydroxy 4-methyl coumarin, formaldehyde and sulphanilamide gives the compound (1). The stretching at 3509, 1136 and 1597 cm⁻¹ shows the presence of aromatic amino group and SO₂-NH in the compound (1). The characteristic signal between 1.5-1.9 in the entire compound may be due to -CH₂ proton. The imino stretching between1660 to 1676 cm⁻¹ confirm the Schiff base formation. All the compounds were screened for *in vitro* anti-inflammatory and *in vivo* anti-nociceptive activities. The compounds showed a significant *in vitro* anti-inflammatory activity except the compound (2d). Among all the compounds (2b), (2c) and (2f) exhibited significant anti-inflammatory and analgesic activity.

ACKNOWLEDGEMENT

The authors express their sincere thanks to Dr. K. S. Lakshmi, Principal, SRM College of Pharmacy for providing the necessary facilities to carry out this work.

REFERENCES

- 1. M. S. Gaikakaroad, A. S. Hane and V. P. Chavan, Ind. J. Heterocyclic Chemistry, **2**, 315 (2000).
- 2. M. Ghate, R. A. Kusanur and M. V. Kulkarni, Eur. J. Chem., 9, 882 (2005).
- 3. R. N. Venugopal and B. S. Jayashree, Ind. J. Heterocyclic Chemistry, 12, 197 (2003).
- 4. C. M. Lin, S. T. Huang, F. W. Lee, Kubhs and M. H. Lin, Bioorg. Med. Chem., **13**, 4402 (2006).
- 5. G. A. Kontogioxgis and D. J. Hadjiparlour Litina, J. Med. Chem., 20, 6400 (2005).
- 6. K. C. Fylaktakidoo, D. J. Hadjiparlour Litina, K. E. Liinas and D. N. Licolaides, Curr. Pharma., Des., **30**, 3813 (2004).
- 7. S. Han, V. Zhou, S. Pan and D. Mc Mullan, Bioorg. Med. Chem., **24**, 5467 (2005).
- 8. Devikidesai and R. H. Mehta, Ind. J. Heterocyclic Chemistry, **14**, 355 (2004).
- 9. I. R. Ezabadi, Camoutsis, P. Zoumpoulakis, A. Geronikaki, M. Sokovic, A. Ciric and J Glamocilija, Bioorg. Med. Chem., **16** (3), 1150 (2008).

- 10. Foye's, Principal of Medicinal Chemistry, 6th Edition, Wolters Kluwer Pvt. Ltd., New Delhi, (2008) p. 1036.
- 11. V. V. Mulwad and I. H. Shirodkar, Ind. J. Heterocyclic Chemistry, 11, 199 (2002).
- 12. D. K. Arulmozhi, A. Veeranjaneyulu, S. L. Bodhankar and S. K. Arora, Ind. J Pharmacol, 37, 96 (2005).
- 13. R. A. Turner, Screening Methods in Pharmacology, 1st Edition, Academic Press, New York, (1965) p. 105.

Accepted: 11.01.2009