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ABSTRACT 

This paper presents an investigation into the growth of a radially symmetrical spike, 

superimposed on a Gaussian laser beam propagating in unmagnetized plasma. Here we consider a 

collisionless plasma, where nonlinearity arising through the relativistic electron ponderomotive force in 

addition to the relativistic increase in mass.. The density depression is due to transverse pondromotive 

force on the electrons is larger than on the ions by the mass ratio. The electrons forced out of the 

radiation beam region set up an electrostatic restoring force which, on a slower time scale, causes the 

ions to be expelled. This density depression creates a local increase in the effective index of refraction 

and acts as an optical guide for the radiation beam. In addition to this self-focusing mechanism, a further 

reduction in the plasma frequency occurs in regions of high field intensity due to the relativistic mass 

increase of the electrons in the presence of the radiation beam. The small radius spike on the axis of the 

main beam grows very rapidly with the distance of propagation as compared to the self-focusing of the 

main beam. At higher intensities, the saturation effects of nonlinearity become predominant, making the 

nonlinear refractive index in the paraxial region have slower r dependence, and thus, letting the spike 

attract relatively less energy from its neighborhood. 

Key words: Plasma, Guassian rippled, Self-focusing, Steady state, Electromagnetic beam, Relativistic 

nonlinearity  

INTRODUCTION 

There has been considerable interest in the interaction of electromagnetic radiations 

with plasmas. Such interactions have assumed importance on account of their relevance to 

the controlled thermonuclear fusion1. Besides, it has also importance in modern 
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communication network as there we have interaction of radio wave / micro waves with the 

ionosphere. Among the nonlinear optical effects, the self-interaction of powerful laser 

beam occupies an important place. The interaction of intense laser beam with plasma 

modifies the dielectric constant of the medium. Moreover, the refractive index of the 

medium becomes intensity dependent2 which further affects the propagation characteristics 

of the beam. Laser beam propagating in plasma can create its own waveguide in which 

geometric and diffraction divergence are removed and beam is self-focused. The 

phenomena of self-focusing and filamentation of laser beams in plasmas are closely related 

to each other3. Self focusing is the tendency of a laser beam (of definite width) to reduce its 

own transverse spatial dimension through interaction with the plasma medium. 

Filamentation, on the other hand, is the plane-wave analogue of this phenomenon and 

results in a spatially periodic distribution of the energy of the incident (uniform) plane 

wave. Most of the theoretical investigations of the self-focusing of laser beams in nonlinear 

media have been confined to cylindrical beams with a Gaussian intensity profile. However, 

direct and indirect experimental evidence reveals that an apparently Gaussian laser beam 

has intensity spikes that may lead to distortion of self –focusing in nonlinear media4-6. 

Most of the studies of filamentation instability have been carried out, when the main laser 

beam has uniform illumination7-9. However, energy exchange between the ripple and the 

main beam needs a little more serious consideration. The speckled intensity pattern of the 

beam leads to some important effects, which can significantly alter the propagation and 

energy deposition characteristic of the incident laser beam. Even though the large-scale 

intensity fluctuations are removed, the probability distribution of speckles produces a 

statistically significant number of highly intense speckles or hot spots. These intense 

localizations of laser intensity may initiate laser beam instabilities such as stimulated 

Raman scattering (SRS), stimulated Brillouin scattering (SBS), and filamentation10-15. 

More recently, growth of a spike on a Gaussian laser beam in collisionless and collisional 

plasma and dielectrics have been described by a number of authors16-18. Studies of laser 

focusing have revealed that the spike exchanges energy from main beam leading to a rapid 

growth of the spike. In collisionless plasma, relativistic nonlinearity exhibits a major effect 

on the nonlinear dynamics of the propagation of intense electromagnetic waves; hence, it 

would be worthwhile to examine its consequence on the growth of the spike.  

In this paper we investigate the growth of a Gaussian spike of small radius on a 

high power Gaussian laser beam in a plasma properly accounting for the transfer of energy 

from the main beam to ripple. Here, we consider a collisionless plasma, where nonlinearity 

arising through the relativistic electron ponderomotive force in addition to the relativistic 

increase in mass. The propagation of an intense laser beam in collisionless homogeneous 
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plasma can result in self-focusing by creating a density depression in the plasma as well as 

by increasing the electron mass by relativistic effects8. The density depression is due to 

transverse ponderomotive forces, which tend to expel plasma from high field regions. This 

density depression creates a local increase in the effective index of refraction and acts as an 

optical guide for the radiation beam. In addition to this self-focusing mechanism, a further 

reduction in the plasma frequency occurs in regions of high field intensity due to 

relativistic mass increase of the electrons in the presence of the laser beam. The self-

focusing due to the density depression occurs on a longer time scale than does the 

relativistic mass increase self-focusing effect. Some general equations for self-focusing of 

laser beam in a nonlinear medium are presented and coupled equations for the beam width 

parameter of the Gaussian beam are derived; the width of the spike b, and the amplification 

parameter α  of the spike for saturating nonlinearity profile. The equations are solved 

numerically to study the evolution of the spike with the distance of propagation. A

discussion of results is given. 

Propagation of a smooth Gaussian profile laser beam 

Consider the propagation of a cylindrically symmetric Gaussian laser beam in 

uniform, static and collisionless plasma.  A typical ansatz might be to assume the beam 

profile is Gaussian and that a Gaussian profile is maintained everywhere along the length 

of the beam. This is called the aberrationless approximation. For instance, at z = 0 the 

intensity distribution of the beam is given by   
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ponderomotive force on the electrons. Both these terms determine the nonlinear refraction 

force and promote self-focusing of the beam. In the absence of any spikes, we may express 

A as  

 A. = A0 exp (-ikS), …(3)  

where the real quantities A0 and S (the eikonal of the wave) are both functions of r 

and z.  Substituting for A in Eq. (2) we obtain the following two equations of A0 and S in a 

cylindrical coordinate system. 
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. It is important to mention here that the Gaussian distribution 

of intensity is realized when the laser is operating in the TEMoo mode and, indeed, most of 

the lasers do operate in this mode. Hence, Eq. (4) is applicable to a large number of 

experimental situations. Following Akhmanov et al.13, we express 
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where f is the ratio of the beam diameter to its value at z = 0, β  corresponds to the 

inverse radius of the curvature of the wave front and a/ = rof is the width of the main beam 

in the medium. The beam width parameter, f (z), scales the beam radius. As f (z) decreases, 

the intensity increases as 1/f2(z) in order to conserve energy. The eikonal gives an ordinary 

differential equation for f(z), if it is expanded to order r2. This expansion is known as the 

paraxial ray approximation since it emphasizes the importance of the paraxial (those near r

= 0) rays. The aberrationless and paraxial ray approximations are essentially synonymous 

since they yield a set of solutions characterized by a single parameter that scales the shape 

of the beam3. Using Eq. (6) in Eqs. (4) and (5), we obtain equation for the beam width 

parameter f : 
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where 
/φ  is the derivative of φ  with respect to its arguments and terms of order 

higher than r2 have been neglected. Eq. (7) is difficult to solve analytically and thus, it has

been solved numerically by the computer with appropriate boundary conditions. We may 

take f =1 and 0
dz

df
=  corresponding to an initially plane wave front. 

Treatment for Gaussian perturbation 

In the presence of a single spike of Gaussian profile propagating coaxially with the 

main electromagnetic beam, we may express A as- 

 A = (A0 + A1) exp (-ikS), …(8) 

where A1 = A1r + iA1i is the complex electric field of the perturbation with A1r, 

A1i<<Ao, Ao being the unperturbed amplitude of the main beam and  
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Using Eqs. (8) and (9) in Eq. (2) and employing Eqs. (4) and (5), we obtain two 
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We take the forms of Ao and S given by Eqs. (6) and A1r , A1i as-  
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Where α (z) is the amplification parameter and b (z) is the spike width. 

Substituting for A1r , A1i in Eqs. (10) and (11) and collecting r and r
2 terms independently 

on both sides, we get two pairs of coupled equations for ao and a1- 
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Multiplying Eq. (13) with Eq. (14) and Eq. (15) with (16), we obtain the following 

set of equations for α and b : 
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We solve these differential equations with initial conditions.     
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 b (z = 0) = bo ;  α (z = 0) = 0   …(19) 

 

Fig. 1: Variation of beam width parameter a, spike width b and amplification 

parameter α  with distance of propagation z (cm.) for ro = 0.1 cm, 01.0/ 2
po

2 =ωω ,  ω  = 

9.4 ×  1013 s-1, a (0) = 0.14, Pcrit = 17 x 10
11W and b(z = 0) ≈ 0.033 cm. 

One may define amplification length as ZA =
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. One may note from Eqs. (17)

and (18) that α  varies more rapidly with z than b varies with z and 
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The corresponding value of 
dz

dα
is-  
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We have solved Eqs. (7), (17) and (18) numerically with boundary conditions f (z 

= 0) = 1, df/dz |z=o = 0, b (z = 0) = bopt and α  (z = 0) = 0 for the following set of parameters 

ro = 0.1 cm., 01.0/ 2
po

2 =ωω ,  ω  = 9.4× 1013 s-1, a (0) = 0.14, Pcrit = 17 x 10
11W. and b

(z = 0) ≈  0.033 cm. The results are plotted in Fig. 1.  

For these parameters, a (r,z) acquires larger values as z increases; hence, saturating 

effects of nonlinearity are important. The nonlinearity in refractive index causes focusing 

of the main beam. For these parameters, the laser beam undergoes self focusing attaining 

fmin at z =17 cm. Beyond this point f increases. Initially the beam focuses due to nonlinear 

refraction due to relativistic ponderomotive effect and reduction in the plasma frequency 

occurs in regions of high field intensity due to the relativistic mass increase of the electrons 

in the presence of the intense beam. However, as the intensity in the axial region builds up 

the plasma is almost fully depleted from this region weakening the self-focusing effect. 

The diffraction effect becomes quite severe at this stage leading to divergence of the main 

beam. The spike width (b) decreases with distance of propagation. Eq. (21) gives the 

growth parameter for the fastest growing perturbation. Eq. (17) indicates that amplification 

parameter (α ) increases with the distance of propagation; however, 
dz

df
decreases slowly 

as a result of the self focusing of the main beam. 

DISCUSSION  

An on-axis spike in the intensity distribution of a Gaussian laser beam grows 

rapidly as the beam propagates in plasma. The nonlinearity arises through the combined 

effect of relativistic electron ponderomotive force in addition to the relativistic increase in 

mass. For lower value of z, α  increases linearly. For higher values of z, α  increases 

asymptotically to infinity. Our theory gives a smooth matching between the exponential 

growth of perturbations in a linearized instability theory and the sharp self-focusing 

thresholds expected for smooth Gaussian profile electromagnetic beams propagating in 

nonlinear medium.  
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