
 Int. J. Chem. Sci.: 7(4), 2009, 2477-2483 

________________________________________ 

*
Author for correspondence; E-mail: tkdeyphy@gmail.com 

SHEAR VISCOSITY OF POLAR LENNARD– JONES FLUIDS 

ANJANA KUMARI
a
, PRABHAT K. SINHA

b
, MUKESH K. SINHA and 

TARUN K. DEY
*
 

Post Graduate Department of Physics, L. S. College, B. R. A. Bihar University,  

MUZAFFARPUR – 842001 (Bihar) INDIA  
a
Department of Physics, Purnia Mahila College, PURNIA – 854301 (Bihar) INDIA 

b
Dr. J. M. M. College, MUXAFFARPUR – 842001 (Bihar) INDIA 

ABSTRACT 

An effective pair potential for the modified Lennard-Jones (LJ) (12-6) model with embedded 

point dipole and linear quadrupole is expressed in the LJ (12-6) form. This theory is employed to estimate 

the shear viscosity ξ  of the modified LJ (12-6) fluid with µ*
 = µ/(εσ3

) = 2 for different range of damping 

factor K. These TP's decrease due to the polar moments. This deviation decreases with the increase of 

damping factor K. 
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INTRODUCTION 

The purpose of the present work is to develop a theory for estimating the shear 

viscosity of polar fluid consisting of modified Lennard-Jones (LJ) (12-6) spheres with 

embedded point dipole and linear qadrupoles. This model is of great theoretical interest in 

studying the effect of the dispersive forces on the phase equilibria of polar fluid 1. In one of 

the theoretical method to deal with the problem of real or model fluids, the reference system 

is often represented by the LJ (12-6) potential and the effective pair potential is expressed in 

the LJ (12-6) potential form 2. Recently, Singh and Sinha 3 have derived the effective LJ (12-

6) potential, when the reference potential is the modified LJ (12-6) potential and studied the 

effect of the dispersive forces on the phase equilibria of the polar system. 

The transport properties (TPs) of the effective LJ (12-6) fluid may be estimated 

through the evolution of the TP's of the hard sphere (HS) fluid with the properly chosen hard 

sphere diameter2. The effective diameter hard sphere theory (EDHST) 4 is an important 
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method for studying the TPs of dense real fluids in terms of the HS fluid. Karki and Sinha 4 

have employed the EDHST for estimating the TP's of the molecular fluid. 

In the present work, we extend this approach to study the shear viscosity of the 

effective LJ (12-6) fluid, when the reference potential is the modified LJ (12-6) potential. 

Basic theory  

We consider a molecular fluid (of linear axially symmetric molecules), whose 

molecules interact via pair potential of the form 

                                     u(rω1ω2) = uo (r) + ua (rω1ω2)  …(1) 

where  r = |r1- r2| and ωi represents the orientation coordinates (θi φi) of molecule i. 

Here u0(r) is the spherically symmetric central potential and ua is the angle dependent 

electrostatic potential. For the central potential, we take the modified LJ(12-6) potential 1. 

                                    u0 (r) = 4∈ [(σ/r)12 – K (σ/r)6 ]  …(2) 

where ∈ and σ are, respectively, the well depth and molecular diameter and K the 

modified  parameter (varying between 0 and 1). For angle-dependent part, we take 

                                           ua = uµµ + uµQ + uQQ  …(3) 

where uµµ , uµQ and uQQ are contributions due to dipole-dipole, dipole-quadrupole 

and quadrupole-quadrupoles, respectively. They are given by2 - 

uµµ = (µ2/r3) [sinθ1 sinθ2 cosφ – 2cosθ1 cosθ2]  …(4a) 

uµQ = (3µQ/2r4) [cosθ1 (3cos2θ2–1) –2sinθ1 sinθ2 cosθ2 cosφ]  …(4b) 

uQQ = (3Q2/4r5) [1–5(cos2θ1 + cos2θ2) –15cos2θ1 cos2θ2                                                                            

+ 2 (sinθ1 sinθ2 cosφ – 4 cosθ1 cosθ2)
2]  …(4c) 

where θ1, θ2 and φ = φ1 – φ2 are the Euler angles, µ and Q are, respectively, the 

dipole moment and quadrupole moment of the molecule. 

The partition function QN in this case is defined as 5 - 

QN = (N! Λ3N q-N ) –1 ∫ … ∫  exp [– β ∑
i< j 

u(xi, xj)
N

i=1
∏ dxi  …(5) 



Int. J. Chem. Sci.: 7(4), 2009 2479 

where Λ is the thermal wavelength and q the rotational partition function of a single 

molecule and the vector xi = (riωi) represents both the position of the centre of mass and 

orientation of molecule i. Here dxi = (4π)-1dridωi and β = (kT)-1 (k being the Boltzmann 

constant and T absolute temperature). Using Eq. (1) in Eq. (5), we follows the method of 

Karki and Sinha 4 and write the partition function in the form - 

QN =  ( N! Λ3N q-N ) –1 ∫ … ∫  exp [– β  ∑
i< j

Ψ(rij) ] 
N

i=1
∏

 

dri  …(6) 

where Ψ(rij) is the orientation-independent 'preaveraged' potential. This 

effective pair potential can be expressed in the LJ(12-6) potential form 3 - 

                                     Ψ(r) =  4∈T [(σT/r)12 – (σT/r)6 ] …(7) 

Where 

σ̂  (K, T*) = σT (K, T*) / σ = F-1/6 …(8a) 

∈̂ (K, T*) = ∈T (K, T*) / ∈ =  [1 + (b/T*2) + (c/T*3)] F2  …(8b) 

and  F = [K + (a/T*) ]/ [1 + (b/T*2) + (c/T*3)] …(8c) 

Thus, the polar fluid in the presence of the 'modified' LJ (12-6) potential can be 

expressed as the LJ(12-6) potential. Recently, Singh and Sinha3 have employed this theory 

to study the phase equilibria of polar LJ (12-6) fluid. 

In the following sections, we apply this theory to estimate the shear viscosity of the 

modified polar LJ (12-6) fluid. 

As the exact results for the reduced second and third virial coefficients are available 

only for the dipolar LJ (12-6) fluid with K = 1.0, we calculate B*(T*) and C*(T*) for the 

dipolar LJ(12-6) fluid with K = 1.0 as a function of µ*2 for different values of T*. They are 

compared with the exact results 6 in Table 1. The agreement is found to be good particularly 

for high value of T* (T* ≥ 2.0). We calculate B*(T*) and C*(T*) of the polar LJ(12-6) fluid 

for different values of K at T* = 3.0. These are reported in Table 2. We find that in both the 

cases (i) µ*2 = 2.0, Q*2 = 0 and (ii) µ*2 = 0.0, Q*2 = 2.0, B* increases as K decreases. The 

values of C* depend on K. 
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Table 1: The reduced second and third virial coefficients for the polar LJ (12-6) fluid 

with K = 1 as a function of µµµµ*2. Here Q*2 = 0.0 

B* C* 
T* µµµµ*2 

Present Exact Present Exact 

1.00 0.848 -3.013 -3.010 0.746 0.740 

 1.414 -3.935 -3.941 - - 

2.00 0.848 -0.717 0.717 0.525 0.549 

 1.414 -0.880 -.0880 0.782 0.796 

3.00 0.848 -0.153 -0.153 0.386 0.392 

 1.414 -0.220 -0.220 -0.468 0.476 

Table 2: The reduced second and third virial coefficients for the polar LJ (12-6) fluid 

with µµµµ*2 = 2.0, Q*2 = 0.0 and µµµµ*2 = 0.0, Q*2 = 2.0 at T* = 3.0 for different 

values of K 

B* C* 

K µµµµ*
2 
= 2.0       

Q*
2 
= 0.0 

µµµµ*
2 
= 0.0       

Q*
2 
= 2.0 

µµµµ*
2 
= 2.0          

Q*
2 
= 0.0 

µµµµ*
2 
= 0.0          

Q*
2 
= 2.0 

1.0 -1.0175 -2.5861 0.3906 -0.0954 

0.8 -0.9867 -1.9399 0.4349 0.3540 

0.6 -0.1657 -1.3910 0.3566 0.4535 

0.4 0.1655 -0.9186 0.3949 0.4387 

0.2 0.5063 -0.3012 0.4810 0.4118 

0.1 0.6464 -0.3126 0.5411 0.4072 

0.0 0.7666 -0.1325 0.6143 0.3795 

Shear viscosity of dense polar fluid 

We assume that the structure of a dense fluid is very similar to that of a hard sphere 

(HS) fluid and attractive forces play a minor role in the dense fluid behaviour. The polar 
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fluid can be expressed in terms of HS fluid with properly chosen effective hard sphere 

diameter de. The HS fluid can be handled with the revised Enskog theory (RET) of van 

Beijeren and Ernst 7 to predict the TP's such as the shear viscosity ξ. These are expressed as 

ξ = [g
HS 

(de)]–1
[1+(4/5) (4ηg

HS
(de)) + 0.7615 (4ηg

HS 
(de))

2
] ξ 0  …(9) 

where 

ξ0 = (5/16 π de
2
) (πmkT)

1/2  …(10) 

η = (πρde
3
/6) is the packing fraction and g

HS
(de) is the equilibrium radial distribution 

function (RDF) of the HS fluid at the contact. Here ρ is the number density and m is the 

mass of a particle. 

In order to obtain the effective hard sphere diameter de, we divide the effective 

LJ(12-6) potential Ψ(r) according to the Weeks-Chandler-Andersen (WCA) scheme 8 and 

following the method of Verlet and Weis 9. Thus, the expression for de is given as 

                                              de = dB [ 1 + Aδ ]  …(11) 

where 

dB = σT[1.068 + 0.383 T
T
*  ] / [1 + 0.4293 T

T
*  ]  …(12) 

δ = [210.31 + 404.6 / T
T
*  ]-1 …(13) 

A = [1 – 4.25 ηω + 1.363 η
 ω

2
  – 0.8757 η

 ω

3
  ] / (1 – ηω)2  …(14) 

with    ηω = η – η2 / 16 

Knowing the packing fraction η, the RDF g
HS

(de) of the HS fluid is given by 10 

g
HS

(de) =  (1 – η / 2) / (1 – η )3  …(15) 

CONCLUSION 

We calculate the shear viscosity ξ for the modified LJ (12-6) fluid with embedded 

point dipole (µ*2 =2) and linear quadrupole (Q*2 = 2) for different values of damping factor 

K). The values of ξ* = ξσ2 / (m∈)1/2 for the modified LJ(12-6) fluid with (i) µ* = 2.00, Q* = 
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0.0 and (ii) µ* = 0.0, Q* = 2.0 are compared with the modified LJ(12-6) fluid in Fig. 1 for ρ* 

= 0.6 at T* = 3.0. Shear viscosity decreases due to the polar moments. The deviation 

decreases with the increase of K. 

     The effective pair potential for the modified LJ(12-6) fluid with the embedded 

point dipole and linear quadrupole is expressed in the LJ(12-6) potential form simply by 

replacing σ → σT (K,T*) and ∈ → ∈T (K,T*). This potential is employed to study the virial 

coefficients and shear viscosity for µ*
 
= 2 and Q*

 
= 2 for different values of K

 
 of the 

dispersive force. 
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Fig. 1: Shear viscosity ξξξξ*
 
for the modified LJ (12-6) model with embedded point dipole 

and linear quadrupole as a function of K for ρρρρ*
 
= 0.6 at T*

 
= 3.0. Here –– represents µµµµ*

 

= 2.0, Q* = 0.0, - - - - - µµµµ*
 
= 0.0, Q* = 2.0 and xxx denotes the LJ (12-6) model 
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