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ABSTRACT 

An analysis is performed to study numerical solution of MHD flow over a vertical porous plate 
with heat and mass transfer. The coupled nonlinear partial differential equations governing the flow, heat 
and mass transfer have been reduced to a set of coupled nonlinear ordinary differential equations by using 
similarity transformation. The reduced equations are solved numerically using Runge-Kutta fourth-order 
integration scheme together with shooting method. The effect of various physical parameters on the 
velocity, temperature, and concentration fields has been studied. 
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INTRODUCTION 

The study of convective flow with heat and mass transfer under the influence of 
magnetic field and chemical reaction with heat source has practical applications in many 
areas of science and engineering. This phenomenon plays an important role in chemical 
industry, petroleum industry, cooling of nuclear reactors, and packed-bed catalytic reactors. 
Natural convection flows occur frequently in nature due to temperature differences, 
concentration differences, and also due to combined effects. The concentration difference 
may sometimes produce qualitative changes to the rate of heat transfer. 

Bestman and Adjepong1 studied the unsteady hydro-magnetic free convection flow 
with radiative heat transfer in a rotating fluid. Jha2 studied MHD free convection and mass 
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transfer flow through a porous medium but did not consider the effect of radiation, which is 
of great relevance to astrophysical and cosmic studies. The effects of Hall current on hydro-
magnetic free convection with mass transfer in a rotating fluid was studied by Agarwal             
et al.3 Singh and Sacheti4 presented a study on the finite difference analysis of unsteady 
hydromagnetic free convection flow with constant heat flux, while Ram and Jain5 presented 
the result of a study on hydro-magnetic Ekman layer on convective heat generating fluid in 
slip flow regime. Helmy6 focused on MHD flow in a micro-polar fluid. Recently, Chamkha7 
investigated unsteady convective heat and mass transfer past a semi-infinite permeable 
moving plate with heat absorption where it was found that increase in solutal Grashoff 
number enhanced the concentration buoyancy effects leading to an increase in the velocity. 
In another recent study, Ibrahim et al.8 investigated unsteady magneto-hydrodynamic micro-
polar fluid flow and heat transfer over a vertical porous plate through a porous medium in 
the presence of thermal and mass diffusion with a constant heat source. Chamkha7 and 
Cookey et al.9 gave a good review on MHD flows through a porous medium. Das et al.10 
considered the effects of first order chemical reaction on the flow past an impulsively started 
infinite vertical plate with constant heat flux and mass transfer. Muthucumaraswamy and 
Meenakshisundaram11 studied chemical reaction effects on vertical oscillating plate with 
variable temperature. Thermal radiation effect on flow past a vertical plate with mass 
transfer is examined by Muralidharan and Muthucumaraswamy12 and Rajput and Kumar13. 
Natural convective flow past an oscillating plate with constant mass flux in the presence of 
radiation was studied by Chaudhary and Jain14. 

The coupled nonlinear partial differential equations governing the flow, heat and 
mass transfer have been reduced to a set of coupled nonlinear ordinary differential equations 
by using similarity transformation. Following15 the similarity solutions exist, if the 
convective heat transfer associated with the hot fluid on lower surface of the plate is 
proportional to the inverse square root of the axial distance. The reduced equations are 
solved numerically using Runge-Kutta fourth-order integration scheme together with 
shooting method. The effect of various physical parameters on the velocity, temperature, and 
concentration fields has been studied. 

Formulation of the problem 

We consider a steady two-dimensional boundary layer flow of a stream of cold 
incompressible electrically conducting fluid over a moving vertical porous flat plate at 
temperature T∞ in presence of heat source and chemical reaction. The left surface of the plate 
is being heated by convection from a hot fluid at temperature Tf that gives a heat transfer 
coefficient hf and T∞ is the temperature of the fluid away from the plate. The cold fluid in 
contact with the upper surface of the plate generates heat internally at the volumetric rate Q0. 
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Here, the x-axis is taken along the direction of plate and y-axis is normal to it. A magnetic 
field of uniform field strength B0 is applied in the negative direction of y-axis. 

The continuity, momentum, energy, and concentration equations describing the flow 
under the Boussinesq approximation can be written as – 

 
0u v

x y
∂ ∂

+ =
∂ ∂

 …(1) 

 

22
0

2 u g (T T ) g (C C )Bu u uu v v u
x y y K

σ ν β β
ρ

∗
∞ ∞

∂ ∂ ∂
+ = − − + − + −

′∂ ∂ ∂  
…(2) 

 

2
0

2 ( )
P

QT T Tu v T T
x y y C

α
ρ ∞

∂ ∂ ∂
+ = + −

∂ ∂ ∂  …(3) 

 

2
'

2

C C Cu v D Kr C
x y y

∂ ∂ ∂
+ = −

∂ ∂ ∂
 …(4) 

The symbols u and v denote the fluid velocity in the x- and y-direction. Here T and C 
are the temperature and concentration variables, γ is the kinematic viscosity, α is the thermal 
diffusivity, D is the mass diffusivity, β is the thermal expansion coefficient, i β* s the solutal 
expansion coefficient, ρ is the fluid density, g is the gravitational acceleration, σ is the 
electrical conductivity, Q0 is the heat source, Cp is the specific heat at constant pressure, and 
Kr1 is the chemical reaction rate on the species concentration. In the above equations, 
several assumptions have been made. First, the plate is non-conducting, and the effects of 
radiant heating, viscous dissipation, Hall effects, and induced fields are neglected. Second, 
the physical properties, that is, viscosity, heat capacity, thermal diffusivity, and the mass 
diffusivity of the fluid remain invariant throughout the fluid. The appropriate boundary 
conditions at the plate surface and far into the cold fluid are – 
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where C∞ is the species concentration at the plate surface, A is the constant, λ is the 
power index of the concentration, U0 is the plate velocity, k is the thermal conductivity 
coefficient, and  C∞ is the concentration of the fluid away from the plate. The boundary layer 
equations presented are nonlinear partial differential equations and, are in general, difficult 
to solve. However, the equations admit of a self-similar solution. Therefore, transformation 
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allows them to be reduced to a system of ordinary differential equations that are relatively 
easy to solve numerically. We look for solution compatible with (1) of the form – 
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where 0 / ( ) ,y U xη ν=  and prime denotes the differentiation with respect to η. Let 
us introduce the dimensionless quantities, that is – 
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Here Hax is the local magnetic field parameter, Grx is the local thermal Grash of 
number, Gcx is the modified Grashof number, BIx is the local convective heat transfer 
parameter, Pr is the Prandtl number, Sc is the Schmidt number, Sx is the local heat source 
parameter, Krx is the local chemical reaction parameter, and Nc is the concentration 
difference parameter. Using (6) and (7) in (2)–(4), we get the following equations: 
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The corresponding boundary conditions for equation (5) for velocity, temperature, 
and concentration fields in terms of non-dimensional variables are – 
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Solution of the problem 

It is observed that in the absence of local source parameter and chemical reaction 
parameter, that is, for Sx = 0, and Krx = 0; (8), (9), and (10) together with boundary condition 
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(11) are the same as those obtained by Makinde15. It is noticed that the concentration 
equation (10) in presence of the chemical reaction parameter (Krx) in the fluid yields 
nonhomogeneous differential equation, which is coupled with momentum equation (8), and 
in general, difficult to solve analytically. In order to overcome this difficulty, we solve these 
equations numerically by fourth-order Runge-Kutta method in association with shooting 
technique. Firstly, these equations together with associated boundary conditions are reduced 
to first-order differential equations. Since equations to be solved are the third order for the 
velocity and second order for the temperature and concentration, the values of f′, θ′, and φ′ 
are needed at η = 0. Therefore, the shooting method is used to solve this boundary value 
problem. The local skin friction coefficient, the local Nusselt number, the local Sherwood 
number, and the plate surface temperature are computed in terms of f″ (0), –θ′ (0), φ′ (0) and  
θ (0), respectively. It can be noted that the local parameters Hax, Grx, Gcx, Bix, Sx and Krx in 
(8)–(10) are functions of x and generate local similarity solution. In order to have a true 
similarity solution, we assume the following relation:  
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where a, b, c, d, e, and m are the constants with appropriate dimensions. In view of 
relation (12), the parameters Hax, Grx, Gcx, Bix, Sx and Krx are now independent of x and 
henceforth, we drop the index “ x ” for simplicity. 

RESULTS AND DISCUSSION 

In order to get physical insight into the problem, the numerical calculations are 
carried out to study the variations in velocity, temperature and concentration. The variation 
in skin-friction shear stress at the wall, rate of heat and mass transfer are computed.  

Figs. 1-7 exhibit the velocity profiles obtained by the numerical simulations for 
various flow parameters involved in the problem. The simulated parameters are reported in 
the Fig caption. It is evident from Figs. 1 and 2 that greater cooling of surface, an increase in 
Gr, and an increase in Gc result in an increase in the velocity. It is due to the fact that the 
increase in the values of Grashof number and modified Grashof number has the tendency to 
increase the thermal and mass buoyancy effect. The increase is also evident due to the 
presence of source and chemical reaction parameters. Furthermore, the velocity increases 
rapidly and suddenly falls near the boundary and then approaches the far field. The effect of 
magnetic parameter on the velocity field is shown in Fig 3. It illustrates that the velocity 
profile decreases with the increase of magnetic parameter, because Lorentz force acts against 
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the flow, if the magnetic field is applied in the normal direction. The velocity profiles for 
different values of the dimensionless permeability are shown in Fig. 4. The presence of 
porous media increases the resistance flow resulting in a decrease in the flow velocity. This 
behavior is depicted by the decrease in the velocity as permeability decreases and when               
k → ∞ (i.e., the porous medium effect vanishes) the velocity is greater in the flow field. 
These behaviors are shown in Fig 4. A little increase in the velocity profile near the 
boundary layer is marked in Fig. 5 with the increase in the convective heat parameter 
because the fluid adjacent to the right surface of the plate becomes lighter by hot fluid and 
rises faster. The boundary layer flows develop adjacent to vertical surface and velocity 
reaches a maximum in the boundary layer. Fig. 6 illustrates the velocity profiles for different 
values of Prandtl number.  

0 1 2 3 4
0.0

0.3

0.6

0.9

1.2

1.5

Gr = 0.5, 1.0, 1.5, 2.0

f′

η  
Fig. 1: Variation of the velocity component f′ with Gr 
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Fig. 6: Variation of the velocity component f′ with Pr 

The numerical results show that the effect of increasing values of Prandtl number 
results in a decreasing velocity field. For different values of the radiation parameter and heat 
source parameters on the velocity profiles are shown in Figs. 7 and 8. It is noticed that an 
increase in the radiation parameter and heat source parameter results an increase in the 
velocity within the boundary layer, also it increases the thickness of the velocity boundary 
layers. Fig. 9 shows the velocity profiles for different values of chemical reaction parameter. 
As the chemical reaction parameter increases, the velocity profiles decreases. 

Figs. 10-14 show the temperature profiles obtained by the numerical simulations for 
various values of flow parameters. Fig. 10 clearly demonstrates that the temperature profiles 
increase with the increase of the magnetic field parameter, which implies that the applied 
magnetic field tends to heat the fluid, and thus, reduces the heat transfer from the wall. 
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Fig. 10: Variation of the temperature θ with Ha 
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Fig. 11 illustrates the temperature profiles for different values of permeability 
parameter. The numerical results show that the effect of increasing values of permeability 
parameter, temperature profiles are increases. Fig. 12 illustrates the velocity profiles for 
different values of Prandtl number. The numerical results show that the effect of increasing 
values of Prandtl number results in a decreasing temperature profiles. Also, it is shown that 
an increase in the Prandtl number results tends to a decreasing of the thermal boundary layer 
and in general, it lowers the average temperature through the boundary layer. The reason is 
that, the smaller values of Pr are equivalent to increase in the thermal conductivity of the 
fluid and therefore, heat is able to diffuse away from the heated surface more rapidly for 
higher values of Pr. Hence in the case of smaller Prandtl numbers, the thermal boundary 
layer is thicker and the rate of heat transfer is reduced. For different values of the radiation 
parameter R, temperature profiles are shown in Fig. 13.  
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Fig. 11: Variation of the temperature θ with K 
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Fig. 12: Variation of the temperature θ with Pr 
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Fig. 13: Variation of the temperature θ with R 

It is noticed that an increase in the radiation parameter results an increase in the 
temperature within the boundary layer, also it increases the thickness of the temperature 
boundary layers. Fig. 14 illustrates the temperature profiles for different values of 
convective heat parameter. Further, it can be seen that temperature profile increases due to 
increase of heat source parameter. The thermal boundary layer thickness increases with an 
increase in the plate surface convective heat parameter. 
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Fig. 14: Variation of the temperature θ with Q 

CONCLUSION 

The present numerical study has been carried out for heat and mass transfer of MHD 
flow over a moving vertical porous plate in presence of heat source and chemical reaction 
along with convective surface boundary condition. The shooting method with Runge-Kutta 
fourth-order iteration scheme has been implemented to solve the dimensionless velocity, 
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thermal and mass boundary layer equations. It has been shown that the local Nusselt number 
increases whereas the plate surface temperature and Sherwood number decreases with an 
increase in source parameter. The increase in the strength of chemical reacting substances 
causes an increase in the plate surface temperature, and Sherwood number, but opposite 
behavior is seen for local Nusselt number. The velocity profile decreases by increasing the 
magnetic parameter and even the increase is more prominent with the increase in source and 
chemical reaction parameter. The thermal boundary layer thickness increases with the 
increase of source, chemical reaction parameter, plate surface convective heat parameter, 
and Schmidt number while the mass flux boundary layer thickness decreases. Moreover, the 
thermal boundary layer thickness, the mass boundary layer, and velocity decrease as the 
Prandtl number increases. 
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