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ABSTRACT 

The minimum energy control for the positive matrix sylvester dynamical system on time scales is 
formulated and obtain the solution. Also develop sufficient conditions for the existence of solution of the 
problem is proposed. Mathematics subject classification: 49K15, 93B05 and 37N35. 
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INTRODUCTION 

The study of positive matrix dynamical systems on time scales is an interesting area 
of current research. Hilger in 1990 introduced time scales to unify and extend the theory of 
differential equations, difference equations and other differential systems defined over non 
empty closed subset of real line1. The two main objectives of this paper are (i) to develop the 
theory and methods to formulate the problem and solve dynamical system on time scales             
(ii) to develop the sufficient conditions for existence of solution to the problem. 

Consider the time varying linear matrix Sylvester dynamic system  
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Δ X)X(t       (t)(t)U(t)FFt)B(t)μ(t)A(t)X(X(t)B(t)A(t)X(t)(t)X =+++=  …(1.1) 

where X(t) is an n × n matrix, U(t) is m × n input piecewise rd-continuous  matrix 
called control. Here A(t), B(t), and F1(t) are n × n, n × n, and n × m  rd-continuous matrices 
respectively. F2(t) is a rd-continuous matrix of order n × n andμ(t)  is a graininess function. 

This paper is organized as follows. In section 2, we study some basic properties of 
Kronecker product of matrices and develop preliminary results by converting the given 
problem into a Kronecker product problem. The solution to the corresponding initial value 
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problem obtained in terms of two transition matrices of the systems XΔ(t) = A(t)X(t) and 
XΔ(t) = B*(t)X(t) by using the standard technique of variation of parameters2. Also the 
minimum energy control problem of the matrix positive time varying dynamical system is 
formulated and obtain its solution. 

In Section 3, we address the sufficient conditions for the existence of solution of the 
problem are established and minimum value of the performance index are also presented. 

Positive matrix sylvester dynamical system 

In this section, we give a short over view on some basic results on the time scales 
and Kronecker product techniques that are important for the present treatment of minimum 
energy control of Kronecker product sylvester systems on time scales. 

Definition 2.13 If P, Q nnC ×∈ are two square matrices of order ‘n’ then their  

Kronecker product (or direct product or tensor product) is denoted by  P ⊗Q
2n2nC ×∈ is 

defined to be partition matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⊗

QpQpQp

QpQpQp
QpQpQp

QP

nnn2n1

2n2221

1n1211

L

MLMM

L

L

 

We shall make use of vector valued function denoted by Vec P of a matrix P 
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The Kronecker product has the following properties3. 

1.  P) of e  transpos thedenotes(PQPQ)(P **** ⊗=⊗  

2.  -1-1-1 QPQ)(P ⊗=⊗  

3. The mixed product rule ( QN).(PMN)((M Q)(P ⊗=⊗⊗ This rule holds good, 
provided the dimension of the matrices are such that the various expressions exist. 

4.  If P(t) and Q(t) are matrices, then d/dt)(QPQ)(P '''' =⊗=⊗  

5. Y Vec P)*(Q(PYQ) Vec ⊗=  

6.  If P and Q are matrices both of order n×n then 

     (i) P)VecX(IVec(PX) n ⊗=  

     (ii) )VecXI*(PVec(XP) n⊗=  

A time scale T is an arbitrary non empty closed subset of the real numbers. The 
calculus on time scales was introduced by Aulbach and Hilger1,4 in order to create a theory 
that can unify and extend discrete and continuous analysis. 

For general introduction to the calculus of time scales we refer reader to the 
textbooks by Bohner and Peterson5. Here we gave only those notations and facts connected 
to time scales, which we need for our purpose in this paper. 

A Timescale T is a closed subset of R; and examples of time scales include N; Z; R,  
Fuzzy sets etc. The set Q = { 1}tR/Q,0t ≤≤∈ are not time scales. Time scales need not 
necessarily be connected. In order to overcome this deficiency, we introduce the notion of 
jump operators. Forward (backward) jump operator  σ(t)of t for t < sup T (respectively ρ(t) 
at t for t >inf T) is given by σ(t) = inf{s  T : s > t} , ρ(t) = sup{s  T : s < t}, for all t  T. 
The graininess function μ : T → [0,∞) is defined by μ (t) = σ (t) − t. Throughout we assume 
that T has a topology that it inherits from the standard topology on the real number R. The 
jump operators σ and ρ allow the classification of points in a time scale in the way: If               
σ(t) > t, then the point t is called right scattered ; while if ρ(t) < t, then t is termed left 
scattered. If t < sup T and σ(t) = t, then the point ‘ t’ is called right dense: while if t > inf          
T and ρ(t) = t, then we say ‘t’ is left-dense. We say that f : T → R is rd-continuous provided 
f is continuous at each right-dense point of T and has a finite left-sided limit at each left-
dense point of T and will be denoted by Crd.  
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A function f : T → T is said to be differentiable at maxt)}),(ρρ(t)max(\{TTt k =∈    

if  sσ(t)
f(s))f((σ((σlim sσ(t) −

−
→  where s T-{ σ(t)} exist and is said to be differentiable on 

T provided it is differentiable for each t Tk.  A function F : T → T, with 

 FΔ (t) = f(t) for all t Tk is said to be integrable, if F(s)F(t)f(τ(τ)
t

s

−=∫  

where F is anti derivative of f and for all  s, t T. Let f: T → T, and if T=R and a, b 
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If f, g:  T → X(X is a Banach space) be differentiable in t Tk. Then for any two 
scalars α, β the mapping  α f+β g is differentiable in t and further we have: 

(i) (α f+β g)Δ(t)= α fΔ(t) +β gΔ(t) 

(ii) (fg)Δ(t)   =( f)Δ(t)g(t)+f(σ(t)) gΔ(t) 

(iii) f(σ(t))  =f(t)+ μ (t)fΔ(t) 

(iv) (kf)Δ(t) = k fΔ(t), for any scalar k.  

If f is Δ-differentiable, then f is continuous. Also if t is right scattered and f is 
continuous at t then 

)(
)())(()( t

tftftf μ
σ −=Δ  
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Now by applying the Vec operator to the Δ-differentiable matrix dynamical system 
(1.1) and using Kronecker product properties3, we have – 

 0012 )(t       );(ˆ][)()()( ZZtUFFtZtGtZ =⊗+=Δ  …(2.1) 

where Z(t) = Vec X(t), =)(ˆ tU Vec U(t) , and G(t) = A)]μ(t)(BAII[B ** ⊗+⊗+⊗ ,  
is a n2×n2 matrix. Let A(t) and B(t) be regressive and   rd-continuous. From the definition of  

Kronecker product 
2

: nk RTG → is regressive and rd-continuous.  

When T = R, the equation (2.1) is equivalent to  

0012 )(t       );(ˆ)]([)()()( ZZtUtFFtZtGtZ =⊗+=′  

and when T = Z, the equation (2. 1) is equivalent to 

0012 )(n       );(ˆ)]([)()()( ZZnUnFFnZnGnZ =⊗+=Δ  

System (2.1) is called the Kronecker product system associated with (1.1).  

Remark 2.12 It is easily seen that, if X(t) is the solution of (1.1) then VecX(t)= Z(t)  
is the solution of  (2.1) and vice-versa. 

Now, we confine our attention to corresponding homogeneous matrix dynamical 
system (2.1) on time scales is – 

 G(t)Z(t)(t)ZΔ =  …(2.2) 

Definition 2.12 Let A and B are rd-continuous matrices on time scale T, then 

(t)BA(σ(σ(t    B(t)(t)A  (t)B)(A ΔΔΔ ⊗+⊗=⊗  

)(tAΔ  is the  delta derivative of A, t is from a time scale T. 

Lemma 2.17 Let s)(t,φ1 and s)(t,φ2 denote state transition matrices of the systems  

XΔ(t) = A(t)X(t) and  XΔ(t) = B*(t)X(t) respectively. Then the matrix ),( stφ  defined  
by 
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 ),(),(),( 12 ststst φφφ ⊗=  …(2.3) 

is the state transition matrix of (2.2) and every solution of (2.2) is of the form  

CsttZ ),()( φ=  (where C is any constant vector of order n2). 

Proof.  Consider 

),()),((),(),(),( 1212 ststststst ΔΔΔ φσφφφφ ⊗+⊗=  

= ),(),( ))(1(),(),( 12
*

12 stAstBtststB φφμφφ ⊗++⊗∗  

= )),(()),()(),(()),(),()([( 12
*

212 stAstBtstststIB n φφμφφφ ⊗++⊗⊗∗  

)),(()),()()),((),(()),(),()(( 12
*

1212 stAstBtstAstststIB n φφμφφφφ ⊗+⊗+⊗⊗= ∗  

s))(t,φs)(t,A)(φμ(t)(B                                               

s))(t,φs)(t,A)(φ(Is))(t,φs)(t,)(φI[(B

12
*

12n12n

⊗⊗+

⊗⊗+⊗⊗= ∗

 

)),(),()]()(()()[( 12
* ststABtAIIB nn φφμ ⊗⊗+⊗+⊗= ∗  

= ),( stGφ  

Also 212 ),(),(),(
nnn IIItttttt =⊗=⊗= φφφ  

hence ),( stφ  is the transition matrix of (2.2). Moreover it can be easily seen that   
),( stφ  is a solution of (2.2) and every solution of (2.2) is of this form.  

Theorem 2.12 Let ),(),(),( 12 ststst φφφ ⊗=   be a transition matrix of (2.2), then the 
unique solution of (2.1), subject to the initial condition 00 )(t ZZ =  is – 

∫ ⊗+=
t

t

ssUsFFstZtttZ
0

12000 ])(ˆ))())((,()[,()( Δσφφ  …(2.4) 

 Lemma 2.28 The fundamental matrix satisfies 0
2n2n

0 tfor t T)tφ(t, ≥∈ ×
+  if and only 

if  the off-diagonal entries g i,j,  i≠j, i,j=1,2,..n of the matrix G(t) satisfy the condition 
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∫ =≠≥
t

t
ji dg

0
, 1,2,...nji, j,ifor  0)( ττ  

Definition 2.28 The system (2.1) is called the (internally) positive if and only if  

Z(t) .,)( 0
2

ttTtZ n ≥∈ +  for any initial condition .,)( 0
2

00 ttTZtZ n ≥∈= + and all inputs 

.,)(ˆ
0ttTtU mn ≥∈ +  

Theorem2.29 The time-varying linear Kronecker product system (2.1) is positive if 
and only if the off-diagonal elements of the matrix G(t) satisfy the condition (2.5) and  

nmnTFF ×
+∈⊗

2
12 )(  

 Definition 2.3 [9] The system(2.1) is called reachable in time  tf  to t0  if for any 

given final state ],[  , 0
2

f
n

f tttforTZ ∈∈ + that steers the state of the system from zero initial 

state Z(t0)=Z0. 

Definition 2.48 A real square matrix is called monomial if each of its row and each 
of its column contains only one positive entry and the remaining entries are zero. 

Theorem 2.3.  The positive system (2.1) is reachable in time tf  to to  if and only if  

 ∫ ⊗⊗=
ft

t
fff sstsFFsFFstttR

0

**
12120  ))(,()())()())((,(),( Δσφσφ  …(2.6) 

is a monomial matrix. The input vector which steers the state of the system (2.1) 
from Z(t0)=Z0 to the state Zf is given by 

 ]t,[t    t}),(){,())(,()()()(ˆ
f0000

1**
12 ∈−⊗−= −

ffff ZttZttRsttFFtU φσφ  …(2.7) 

Proof:  If the matrix R(t0, tf)  is monomial if and only if R-1(t0, tf ) is the inverse 
matrix  

R(t0, tf). Here the input )7.2(by  defined)(ˆ mnTtU +∈ steers the state of the system from 
Z(t0)=Z0 to the state Zf . Substituting (2.7) into (2.4) for t = tf and Z(t0)=Z0 we get 
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∫ −

⊗⊗
−=

−

ft

t fff

ff
ff

sZttZttR

stsFFsFFst
ZtttZ

0 000
1

**
1212

00
 ])},(){,(                                          

))(,()())()())((,(
)[,()(

Δφ

σφσφ
φ  

= ),( 0tt fφ ),( 0 fttφ = f Z . 

Hence the positive system (2.1) is reachable in time tf  to  t0  if and only if the matrix 
(2.6) is monomial. 

Minimum energy control problem 

Consider the matrix Sylvester dynamical system (2.1) reachable in time tf to t0. If the 

system is reachable in time  ]t,[tt f0∈ , then there exists many different inputs  mnTtU +∈)(ˆ  

that steers the state of the system from Z(t0)=Z0=0  to .)(
2n

ff TtZZ +∈= Among these inputs 

we are looking for an input  mnTtU +∈)(ˆ  that minimizes the performance index 

 ssUQIsUtUI
ft

t

T Δ∫ ⊗=
0

)(ˆ))((ˆ))(ˆ(  (3.1) 

where mmTQ ×
+∈ is a symmetric positive defined matrix and .1 mmTQ ×

+
− ∈  

The minimum energy control problem for the positive time varying linear systems 
(2.1) can be stated as follows: Given the matrices G(t), ][ 12 FF ⊗  and  Q  of the performance 

index (3.1),  
2n

f TZ +∈ , t0 and tf > 0, find an input ]t,[tfor t ˆ
f0∈∈ +

mnTU that steers the state 

vector of the system from Z0 = 0 to  Zf  and minimizes the performance index (3.1). 

Now we define the matrix for solving the problem 

 ∫ ⊗⊗⊗== −
ft

t
fff sstsFFQIsFFstQtVV

0

**
12

1
12  ))(,()()())()())((,(),( Δσφσφ  …(3.2) 

from (3.2) and Theorem 2.3 it follows that the matrix (3.2) is monomial if and only 
if the fractional positive dynamical system (2.1) is reachable in time [t0,tf]. In this case, we 
define the input – 
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         ]t,[t t}),(){,())(,()()()()(ˆ
f0000

1**
12

1
1 ∈−⊗⊗−= −−

ffff ZttZttVsttFFQItU φσφ  …(3.3) 

 The input (3.3) satisfies the condition ]t,[tfor t ˆ
f01 ∈∈ +

mnTU  if  

 .1 mmTQ ×
+

− ∈ and  
21 n

f TZV +
− ∈  …(3.4) 

Theorem 3.1. Let the positive matrix Kronecker product dynamical system (2.1) be 
reachable in time [t0, tf] and let ]t,[tfor t ˆ

f02 ∈∈ +
mnTU  be an input that steers the state of the 

positive system(2.1) from Z0  to  Zf  and minimizes the performance index (3.1), 
i.e., ).ˆ()ˆ( 21 UIUI ≤  

     The minimal value of the performance index (3.1) is equal to –  

 f
T
f ZVZUI 1

1)ˆ( −=  …(3.5) 

Proof: If the conditions (3.4) holds then the input (3.3) is well defined and 
]t,[tfor t ˆ

f01 ∈∈ +
mnTU . Now  we  prove the input steers the state of the system from  

Z0 = 0 to  Zf .  

Substitute (3.3) into (2.4) for t=tf and Z(t0)=Z0=0, we get 

∫ ⊗=
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t
ff ssUsFFsttZ

0

112 .)(ˆ))())((,()( Δσφ  

∫ −⊗⊗−×

⊗
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t ffff

f

sZttZttVsttFFQI

sFFst

0 000
1**
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1
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. }]),(){,())(,()()()([             

))())((,(

Δφσφ

σφ
           

= ),( 0tt fφ ),( 0 fttφ = f Z  

Since (3.2) holds.  Assume that the inputs )(ˆ and )(ˆ
21 tUtU , ]t,[tt f0∈  steers the state 

of the system from  Z(t0) = Z0 = 0 to Zf. 

Hence 
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∫

∫

⊗=

⊗=
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f
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t
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ssUsFFstZ
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112
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 …(3.7) 

or 

 ∫ =−⊗
ft

t
f ssUUsFFst

0

1212 .0)](ˆˆ)[)())((,( Δσφ  …(3.8) 

Taking transpose of (3.8) and post multiply with V-1 Zf we get 

∫ =⊗− −
ft

t
ff ZsVstsFFsUU

0

1
1212 .0))(,(*)(*)(*)](ˆˆ[ Δσφ  

Substitution of (3.3) into (3.9) yields 
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  …(3.9) 

From (3.9), it is easy to verify that 

∫∫∫ −⊗−+⊗<⊗
ft

t

ft

t
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t

sUUQIUUsUQIUsUQIU
0

1212

0

11

0

22 .]ˆˆ)[(*]ˆˆ[.ˆ)(*ˆ[ˆ)(*ˆ[ ΔΔΔ  …(3.10) 

From (3.10) it follows that ).ˆ()ˆ( 21 UIUI ≤  Since the second term in the right hand 
side of the inequality is nonnegative. 

To find the minimal value of the performance index (3.1) we substitute (3.3) into 
(3.1) and we obtain – 



Int. J. Chem. Sci.: 14(2), 2016 761

.

 }]),(){,())(,()()()([

))())((,(

)(ˆ))((ˆ))(ˆ(

1
0 000

1**
12

1

121

0

111

f
T
f

ft

t ffff

fT
f

ft

t

T

ZVZ

sZttZttVsttFFQI

sFFst
VZ

ssUQIsUtUI

−

−−
−

=

−⊗⊗−×

⊗
=

⊗=

∫

∫

Δ

Δ

φσφ

σφ
 

since (3.2) holds. 
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