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ABSTRACT 

This paper establish the various properties of solution of fourth order difference equation of the 
form 

∆ଶሺ݌௡∆ଶݕ௡ሻ ൅ ௡ାଵݕ௡ାଵ∆ଶݍ ൅ ௡ାଶݕ௡ାଶݎ ൌ 0 

Where ݌௡, ௡݌ ௡ are real sequences satisfyingݎ &௡ݍ ൐ 0, ௡ݍ ൒ ௡ݎ &0 ൐ 0 for each n ≥ 0. 

Key words: Oscillation, Non-oscillation, Difference equation, Trivial and nontrivial solution, Generalized 
zero. 

INTRODUCTION 

Consider the fourth order difference equation of the  

 ∆ଶሺ݌௡∆ଶݕ௡ሻ ൅ ௡ାଵݕ௡ାଵ∆ଶݍ ൅ ௡ାଶݕ௡ାଶݎ ൌ 0 …(1) 

Where ݌௡, ௡ݎ &௡ݍ  are real sequences satisfying ݌௡ ൐ 0, ௡ݍ ൒ ௡ݎ &0 ൐ 0  for each             
n ≥ 0 and the forward difference operator ∆ is defined by ∆ݕ௡ ൌ ௡ାଵݕ െ ௡ݕ ௡  alsoݕ ൌ  .ሺ݊ሻݕ

Definition 1: Let ݕ௡be a function defined on N, we say ݇ א ܰ is a generalized zero 
for ݕ௡ if one of following holds: 

ሺiሻ  ݕ௡ ൌ 0    

ሺiiሻ ݇ ܰሺ1ሻ ܽ݊݀ ݕ௡ିଵݕ௡ 0, ݇ ܰሺ1ሻ, and there exists an integer m, such that  1 ൏
݉ ൑ ݇. 
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 ሺiiiሻ ሺെ1ሻ௠ݕ௞ି௠ݕ௡ ൐ 0, ௝ݕ ݀݊ܽ ൌ ݆ ݈݈ܽ ݎ݋݂ 0 א ܰሺ݇ െ ݉ ൅ 1, ݇ െ 1ሻ 

A generalized zero for ݕ௡ is said to be of order 0, 1, or ݉ ൐ 1, according to whether 
condition (i), (ii) or (iii), respectively, holds. In particular, a generalized zero of order 0 will 
simply be called a zero, and a generalized zero of order one will again be called a node. 

Obviously, if ݕሺܽሻ ൌ ሺܽݕ ൅ 1ሻ ൌ ሺܽݕ ൅ 2ሻ ൌ ሺܽݕ ൅ 3ሻ ൌ 0 for some  ܽ א ܰ , then 
௡ݕ ؠ 0 is the only solution of (1). Thus, a nontrivial solution of (1) can have zeros at no 
more than three consecutive values of k. In Definition 1 we shall show that a nontrivial 
solution of (1) cannot have a generalized zero of order ݉ ൐ 3. However, a solution of (1) 
can have arbitrarily many consecutive nodes, as it is clear from ݕ௡ ൌ ሺെ1ሻ௡, which is a 
solution of (1).  

The following properties of the solutions of (1) are fundamental and will be used 
subsequently. 

ሺ ଵܵሻ  If ݕ௡ is a nontrivial solution of (1) and if  

ሺܽሻ ݕ௡ ൒ 0          ሺܾሻ ∆ݕ௡ ൒ 0          ሺܿሻ ∆ଶ ݕ௡ାଵ ൒ 0         ሺ݀ሻ∆ଷݕ௡ାଶ ൒ 0  

For some ݇ ൌ ܽ א ܰሺ2ሻ, then ሺܽሻ, ሺܾሻ, ሺܿሻ&ሺ݀ሻ holds for all ݇ א ܰሺܽሻ, with strict 
inequality in (a) for all ݇ א ܰሺܽ ൅ 2ሻ, strict inequality in (b) for all ݇ א ܰሺܽ ൅ 1ሻ, and strict 
inequality in (c) and (d) for all ݇ א ܰሺܽ ൅ 3ሻ. Furthermore, 

 ∆ଶሺ݌௡∆ଶݕ௡ሻ ൅ ௡ାଵݕ௡ାଵ∆ଶݍ ൅ ௡ାଶݕ௡ାଶݎ ൒ ݇ ݈݈ܽ ݎ݋݂  0 א ܰሺܽሻ …(2) 

With strict inequality for all ݇ א ܰሺܽ ൅ 2ሻ, and ݕ௡, ,௡ݕ∆ and ∆ଶݕ௡ all tend 
to ∞ ܽݏ ݇ ՜ ∞. 

ሺܵଶሻ ݕ ݂ܫ௡ ݅ݏ ܽ  Nontrivial solution of (1) and if  

ሺܽଵሻ ݕ௡ ൒ 0       ሺܾଵሻ ∆ݕ௡ ൒ 0       ሺܿଵሻ ∆ଶݕ௡ ൒ 0        ሺ݀ଵሻ ∆ଷݕ௡ ൒ 0  

For some ݇ ൌ ܽ א ܰ, then ሺܽଵሻ, ሺܾଵሻ, ሺܿଵሻ & ሺ݀ଵሻ holds for all ݇ א ܰሺܽሻ, with strict 
inequality in ሺܽଵሻ, ሺܾଵሻ, ሺ݀ଵሻ  for all ݇ א ܰሺܽ ൅ 3ሻ , and in ሺܿଵሻ  for all ݇ א ܰሺܽ ൅ 4ሻ. 
Furthermore, 

 ∆ସݕ௡ ൒ ݇ ݈݈ܽ ݎ݋݂ 0 א ܰሺܽሻ …(3)  

With strictly inequality for all ݇ א ܰሺܽ ൅ 2ሻ, and ݕ௡, ,௡ݕ∆ &∆ଶݕ௡ all tend to ∞ k→∞. 
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ሺܵଷሻ   If ݕ௡ is a nontrivial solution of (1) and if  

ሺܽଶሻݕ௡ ൒ 0       ሺܾଶሻ ∆ݕ௡ାଵ ൑ 0       ሺܿଶሻ ∆ଶ ݕ௡ାଵ ൒ 0        ሺ݀ଶሻ ∆ଷݕ௡ାଵ ൑ 0   

For some ݇ ൌ ܽ א ܰሺ3ሻ,  then (2) holds for all ݇ א ܰሺ2, ܽሻ,  and  

 ∆ଶሺ݌௡∆ଶݕ௡ሻ ൅ ௡ାଵݕ௡ାଵ∆ଶݍ ൅ ௡ାଶݕ௡ାଶݎ ൒ ݇ ݈݈ܽ ݎ݋݂  0 א ܰሺ2, ܽሻ …(4)  

Furthermore, ݕሺ0ሻ ൐ ሺ1ሻݕ ൐ 0, ሺ0ሻݕ∆ ݀݊ܽ ൏ 0. Strict inequality holds in ሺܽଶሻ and 
(3) for all ݇ א ܰሺ2, ܽ െ 2ሻ ݂݅ ܽ א ܰሺ4ሻ, in ሺܾଶሻ for all ݇ א ܰሺ2, ܽ െ 1ሻ,  and in ሺܿଶሻ for all 
݇ א ܰሺ2, ܽ െ 3ሻ if ܽ א ܰሺ5ሻ.  

ሺܵସሻ  Let ܽ א ܰሺ2ሻ. ௡ݕ ݂ܫ  is a solution of (1) with ݕሺܽሻ ൌ 0, ሺܽݕ െ 1ሻ ൒
0, ሺܽ ݕ ൅ 1ሻ ൒ 0, ሺܽݕ െ 1ሻ and ݕሺܽ ൅ 1ሻ not both zero, then at least one of the following 
conditions must be true. (i) Either ௡ݕ ൐ ݇ ݈݈ܽ ݎ݋݂ 0 א ܰሺܽ ൅ 2ሻ , or (ii) ݕ௡ ൏ 0  for all 
݇ א ܰሺ0, ܽ െ 1ሻ. In particular, ݕ௡  cannot have generalized zeros of any order at both α 
and ߚ  , where ߙ א ܰሺ0, ܽ െ 1ሻ ܽ݊݀ ߚ א ܰሺܽ ൅ 2ሻ. An analogous statement holds for the 
hypotheses ݕሺܽ െ 1ሻ ൑ ሺܽݕ ݀݊ܽ 0 ൅ 1ሻ ൑ 0.  

RESULTS AND DISCUSSION 

Theorem 1.1. If ݕ௡  is a nontrivial solution of (1) with zeros at three consecutive 
values of k, say ܽ, ܽ ൅ 1& ܽ ൅ 2  then ݕ௡  has no other generalized zeros. If ݕሺܽ ൅ 3ሻ ൐
0ሺ൏ 0ሻ, then ∆ݕ௡ ൒ 0ሺ൑ 0ሻ foe all k, and the inequality is strict if ݇ א ܰሺܽ ൅ 2ሻ ݎ݋ ݇ א
ܰሺ0, ܽ െ 1ሻ. In particular, if  

ߙ א ܰሺ0, ܽ െ 1ሻ and ߚ א ܰሺܽ ൅ 3ሻ,  then ݕሺߙሻݕሺߚሻ ൏ 0. 

Proof. Clearly ∆ݕሺܽሻ ൌ ∆ଶݕሺܽሻ ൌ 0.  Since the solution ݕ௡  is nontrivial, we may 
assume that ݕሺܽ ൅ 3ሻ ൐ 0.  Thus, ∆ଷݕሺܽሻ ൐ 0  and by ሺܵଶሻ , ௡ݕ   is positive and strictly 
increasing on ܰሺܽ ൅ 3ሻ.  Next, let ௡ݒ  ൌ െݕ௡ . Then ݒሺܽ ൅ 1ሻ ൌ 0, ሺܽሻݒ∆ ൌ 0, ∆ଶݒሺܽሻ ൌ
0 ܽ݊݀ ∆ଷݒሺܽሻ ൏ 0. If ܽ א ܰሺ2ሻ, then ሺܵଷሻ  implies that ݒ௡ is positive and strictly decreasing 
on ܰሺܽ, 0ሻ.  Thus ݕ௡  is negative and strictly increasing on ܰሺܽ, 0ሻ.  If a=1, then we again 
assume that ݕሺܽ ൅ 3ሻ ൌ ሺ4ሻݕ ൐ 0.  Then by (1) ∆ସݕሺ0ሻ ൌ ሺ2ሻݕሺ2ሻݎ ൌ 0.  But, ∆ସݕሺ0ሻ ൌ
ሺ4ሻݕ ൅ ሺ0ሻݕ ሺ0ሻ, soݕ ൌ െݕሺ4ሻ ൏ ሺ0ሻݕ∆ ݀݊ܽ 0 ൌ ሺ1ሻݕ െ ሺ0ሻݕ ൐ 0, as claimed. If a=0, then 
the part of the conclusion concerning ݇ ൑ ܽ െ 1 is empty. This completes the proof. 

Theorem 1.2. Let ܽ א ܰሺ1ሻ, suppose that ݕ௡  is a solution of (1) with ݕሺ0ሻ ൌ
0, ሺܽݕ ൅ 1ሻ ൌ 0, ሺܽݕ ൅ 2ሻ ് 0, ܽ ݐݑܾ ൅ 2 is a generalized zero for ݕ௡. Then ݕ௡ has no other 
generalized zeros. 
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If ݕሺܽ ൅ 2ሻ ൐ 0ሺ൏ 0ሻ, then ∆ݕ௡ ൒ 0ሺ൑ 0ሻ for all ݇ א ܰ,  with strict inequality               
for all ݇ א ܰሺܽ ൅ 2ሻݎ݋ ݇ א ܰሺ0, ܽ െ 1ሻ.  In particular, if ߙ א ܰሺ0, ܽ െ 1ሻ and ߚ א
ܰሺܽ ൅ 2ሻ, ሻߚሺݕሻߙሺݕ ݄݊݁ݐ ൏ 0.  

Proof. Since ݕሺܽ ൅ 2ሻ ് 0, we can assume that ݕሺܽ ൅ 2ሻ ൐ 0.  since ݕሺܽሻ ൌ
ሺܽݕ ൅ 1ሻ ൌ 0, ܽ ൅ 2 cannot be a generalized zero of order 1 or 2, and theorem (1) implies 
that the order cannot be greater than 3. Thus, a+2 is a generalized zero of order 3, which 
implies that ݕሺܽ െ 1ሻ ൏ 0, now since from (1), we have ∆ሺ݌௡∆ଶݕ௡ሻ ൐ 0, it follows that  

∆ଷݕሺܽሻ ൐ 0, ሺܽሻݕଶ∆ ݕ݈ݎ݈ܽ݁ܿ ൐ 0, ሺܽሻݕ∆ ൌ 0 and ሺܽሻݕ ൌ 0, thus by ሺܵଶሻ, ௡ݕ is 
positive and strictly increasing on ܰሺܽ ൅ 3ሻ.  For ݇ א ܰሺ0, ܽሻ, ௡ݒ ݐ݈݁ ൌ െݕ௡. Then ݒሺܽሻ ൌ
0, ሺܽݒ∆ െ 1ሻ ൏ 0, ∆ଶݒሺܽ െ 1ሻ ൐ 0 and ∆ଷݒሺܽ െ 1ሻ ൏ 0.  If ܽ א ܰሺ3ሻ, then as in equation 
(1), ሺܵଷሻ yields the results. If a=2, then ݕሺ2ሻ ൌ ሺ3ሻݕ ൌ 0, ሺ1ሻݕ ൏ 0, ሺ4ሻݕ ൐ 0 and ∆ݕሺ1ሻ ൐
0.  By (1) we have ∆ସݕሺ0ሻ ൌ 0. But, ∆ସݕሺ0ሻ ൌ ሺ4ሻݕ െ ሺ3ሻݕ4 ൅ ሺ2ሻݕ6 െ ሺ1ሻݕ4 ൅ ሺ0ሻݕ ൌ
ሺ4ሻݕ െ ሺ1ሻݕ4 ൅ ,ሺ0ሻݕ and so 4ݕሺ1ሻ െ ሺ0ሻݕ ൌ ሺ4ሻݕ ൐ 0.  Hence, ݕሺ0ሻ ൏ ሺ1ሻݕ4 ൏ 0,  and 
ሺ0ሻݕ െ ሺ1ሻݕ ൏ ሺ1ሻݕ3 ൏ 0. 

Therefore, ݕሺ0ሻ ൏ 0 and ∆ݕሺ0ሻ ൐ 0,  as claimed. If a=1, then ݕሺ1ሻ ൌ ሺ2ሻݕ ൌ
0, ሺ3ሻݕ ് 0, and ܽ ൅ 2 ൌ 3  is a generalized zero. It follows from the definition of a 
generalized zero that this must be a generalized zero of order 3, so that if ݕሺ3ሻ ൐ 0 then 
ሺ0ሻݕ ൏ 0. Hence ∆ݕሺ0ሻ ൐ 0, which complete the proof. 

Corollary 1.3.If ݕ௡ is a nontrivial solution of (1) with generalized zeros at ߙ and ߚ 
and a zero at a, where ߙ ൅ 1 ൏ ܽ ൏ ߚ െ 1,  then ݕሺܽ െ 1ሻݕሺܽ ൅ 1ሻ ൏ 0.  In particular, ݕ௡ 
does not have a generalized zero at a+1. 

Proof. Since ߙ ൅ 1 ൏ ܽ ൏ ߚ െ 1 , from theorem (1.1) it follows that ݕሺܽ ൅
1ሻ and ݕሺܽ െ 1ሻ both cannot be zero. If ݕሺܽ ൅ 1ሻݕሺܽ െ 1ሻ ൒ 0, then ሺܵସሻ implies that ݕ௡ 
cannot have generalized zeros at both ߙ and ߚ,  which is a contradiction. Thus, ݕሺܽ െ
1ሻݕሺܽ ൅ 1ሻ ൏ 0. 

Corollary 1.4. If ࢔࢟ is a nontrivial solution of (1) with ݕሺߙሻ ൌ ሺܽሻݕ ൌ ሻߚሺݕ ൌ 0, 
where  

ߙ ൏ ܽ ൏ ߚ െ 1, then ݕሺܽ ൅ 1ሻ ് 0. 

Corollary 1.5. If a nontrivial solution ݕ௡  of theorem (1.1) has a zero at ߙ and a 
generalized zero at ߚ, where ߙ ൏ ,ܽ ௡ cannot have consecutive zeros atݕ then ,ߚ ܽ ൅ 1 where 
ߙ ൏ ܽ ൏ ߚ െ 1. 
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Theorem 1.6.  If two nontrivial solutions ݕ௡ and  ݒ௡  of (1.1) have three zeros in 
common, then ݕ௡  and ݒ௡  are linearly dependent, i.e. specifying any three zeros uniquely 
determines a nontrivial solution up to a multiplicative constant. 

Proof.  If  ݕሺߙሻ ൌ ሺܽሻݕ ൌ ሺܽݕ ൅ 1ሻ ൌ ሻߙሺݒ ൌ ሺܽሻݒ ൌ ሺܽݒ ൅ 1ሻ ൌ 0, for some α 
and a, where 0 ൑ ߙ ൏ ܽ,  then by theorem 1.1, ሺܽݑ  ൅ 2ሻ ് ሺܽݒ ݀݊ܽ 0 ൅ 2ሻ ് 0.  Define 
ሺ݊ሻݓ ൌ ሺܽݒ ൅ 2ሻݕሺ݊ሻ െ ሺܽݕ ൅ 2ሻݒሺ݊ሻ. Since ݓሺ݊ሻ  is a linear combination of 
ሻߙሺݓ ,ሺ݊ሻ, it is a solution of (1.1). Howeverݒ ሺ݊ሻܽ݊݀ݕ ൌ ሺܽሻݓ ൌ ሺܽݓ ൅ 1ሻ ൌ ሺܽݓ ൅ 2ሻ ൌ
0, ሺ݊ሻݓ ݋ݏ ݀݊ܽ  must be the trivial solution of (1.1) by theorem (1.1). Since ݑሺܽ ൅
2ሻ ܽ݊݀ ݒሺܽ ൅ 2ሻ are nonzero, ݑሺ݊ሻܽ݊݀ ݒሺ݊ሻ must be constant multiples of each other. 

Next, if ݕሺߙሻ ൌ ሺܽሻݕ ൌ ሻߚሺݕ ൌ ሻߙሺݒ ൌ ሺܽሻݒ ൌ ሻߚሺݒ ൌ 0,  where ߙ ൏ ܽ ൏ ߚ െ 1, 
then by corollary 1.5, ሺܽݕ ൅ 1ሻ ് ሺܽݒ ݀݊ܽ 0 ൅ 1ሻ ് 0 . Define ݓሺ݊ሻ ൌ ሺܽݒ ൅ 1ሻݕሺ݊ሻ െ
ሺܽݕ ൅ 1ሻݒሺ݊ሻ. 

Clearly, ݓሺߙሻ ൌ ሺܽሻݓ ൌ ሺܽݓ ൅ 1ሻ ൌ ሻߚሺݓ ൌ 0,  which contradicts corollary 1.4 
unlessݓሺ݊ሻ ؠ 0.But this means ݕሺ݊ሻ ܽ݊݀ ݒሺ݊ሻ are constant multiples of each other. This 
completes the proof. 

Definition 1.7. A solution ݕሺ݊ሻ of (1.1) is called recessive if there exists an ܽ א ܰ 
such that for all ݇ א ܰሺܽሻ. 

ሺ݊ሻݕ  ൐ 0, ሺ݊ሻݕ∆ ൑ 0,    ∆ଶݕሺ݊ሻ ൒ 0 ܽ݊݀   ∆ଷݕሺ݊ሻ ൑ 0 …(5)  

Let ݕ௠ሺ݊ሻ  be the solution of (1.1) satisfying ݕ௠ሺ݉ሻ ൌ ௠ሺ݉ݕ ൅ 1ሻ ൌ ௠ሺ݉ݕ ൅
2ሻ ൌ ௠ሺ0ሻݕ ݀݊ܽ 0 ൌ 1 and where ݉ א ܰሺ1ሻ. For each m,ݕ௠ሺ݊ሻ exists and is unique. The 
existence is clear from theorem 1.1 and a normalization. While the uniqueness follows from 
theorem 1.6.Note that by construction. 

 0 ൑ ௠ሺ݊ሻݕ ൑ ݇   ݈݈ܽ ݎ݋݂   1 א ܰሺ0, ݉ ൅ 2ሻ  …(6) 

Also, Theorem (1.1) implies that  

௠ሺ݊ሻݕ  ൒ ௠ሺ݊ݕ ൅ 1ሻ    ݂ݎ݋ ݈݈ܽ ݇ א ܰ  …(7) 

We now consider m sequence ሼݕ௠ሺ1ሻሽ. By (5), 0 ൑ ௠ሺ1ሻݕ ൑ 1  for all ݉ א ܰሺ1ሻ, 
thus  

lim௠՜∞݌ݑݏሼݕ௠ሺ1ሻሽ  exists, we call it ݕሺ1ሻ . Then, there exists a subsequence 
ሼ݉ଵ௟ሽ ك ܰሺ1ሻ such that  
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௠ሺ݇ݕ    ൅ 2ሻሺ݌௠ା௞∆ଶݕ௠ା௞ሻ ൅ ௠ሺ݇ݕ ൅ 1ሻሺݍ௠ା௞∆ଶݕ௠ା௞ሻ ൌ െݎ௠ା௞ݕ௠ା௞ …(8) 

Consider (8) with ݇ ൌ 2 and m replaced by ݉ଷ௟.  we can conclude that 
lim௟՜∞ ௠య೗ሺ5ሻݕ ൌ ∞ሺ5ሻ. Proceeding inductively, we conclude that lim௟՜ݕ ௠య೗ሺ݇ሻݕ ൌ  ሺ݇ሻݕ
exists for any ݇ א ܰ. 

Replacing m by ݉ଷ௟ in (8) and letting ݈ ՜ ∞, we conclude that ݕሺ݇ሻ is a solution of 
(1). Also,  

ሺ݇ሻݕ  ൒ ሺ݇ݕ ൅ 1ሻ ൒ 0  …(9) 

This follows from (7) by replacing ݉ by ݉ଷ௟, fixing k, and letting ݈ ՜ ∞. From (9) 
we conclude that  

 lim௞՜∞  ሺ݇ሻ exists, and we shall call it L …(10)ݕ

We will now show that this ݕሺ݇ሻ is a recessive solution of (1). 

Theorem 1.7. The solution ݕሺ݇ሻ constructed above is a recessive solution of (1). In 
addition ∆ݕሺ݇ሻ, ∆ଶݕሺ݇ሻ ܽ݊݀ ∆ଷݕሺ݇ሻ all monotonically approach zero as ݇ ՜ ∞. 

Proof. We will first show that (5) is satisfied. By (7) and theorem 1.1,  ݕ௠య೗ሺ݉ଷ௟ ൅
3ሻ ൏ 0.  

Choosing ݉ଷ௟ ൒ 3 and using ሺܵଷሻ with ܽ ൌ ݉ଷ௟ ൅ 1, we can conclude that for any k 
such that 2 ൑ ݇ ൑ ݉ଷ௟ ൅ 1, ௠య೗ሺ݇ݕ∆ െ 1ሻ ൑ 0, ∆ଶݕ௠య೗ሺ݇ െ 1ሻ ൒ 0 and ∆ଷݕ௠య೗ሺ݇ െ 1ሻ ൑ 0. 

Letting ݈ ՜ ∞ implies that ݕሺ݇ሻ satisfies (5) for a=1 and is recessive. We note that 
݇ ሺ݇ሻ also satisfies (5) for a=0. Concerning the monotonicity, we choose anyݕ א ܰሺ2ሻ and 
any ݉ଷ௟ ൒ ݇. 

Then, ∆ଶݕ௠య೗ሺ݇ െ 1ሻ ൒ 0  which means ∆ݕ௠య೗ሺ݇ሻ ൒ ௠య೗ሺ݇ݕ∆ െ 1ሻ,  and hence 
0 ൑ െ∆ݕ௠య೗ሺ݇ሻ ൑ െ∆ݕ௠య೗ሺ݇ െ 1ሻ.  Taking the limit as ݈ ՜ ∞  implies that ∆ݕሺ݇ሻ  is 
monotonically decreasing in absolute value. By (1.1), Since ݕሺ݇ሻ monotonically approaches 
a finite limit, ∆ݕሺ݇ሻ ՜ 0 as ݇ ՜ ∞.  The argument that ∆ଶݕሺ݇ሻ ܽ݊݀ ∆ଷݕሺ݇ሻ. monotonically 
approach zero is similar. By theorem 1.7 this recessive solution ݕሺ݇ሻ of (1.1) can be return 
as – 
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 ∆ଶሺ݌௡∆ଶݕ௡ሻ ൅ ௡ାଵݕ௡ାଵ∆ଶݍ ൌ ݈ ൅ ଵ
଺

 ∑ ሺ݈ െ ݇ ൅ 1ሻሺ݈ െ ݇ ൅ 2ሻ∞
௟ୀ௞   

 ሺ݈ െ ݇ ൅ 3ሻݎሺ݈ሻݕሺ݈ሻ …(11) 

Corollary.1.8. If ∑ ݈ଷݎሺ݈ሻ ൌ ∞,∞
ଵ  then the recessive solution ݕሺ݇ሻ  of (1.1) 

constructed above approaches zero as ݇ ՜ ∞. 

Corollary 1.9. Suppose that ݕሺ݇ሻ ܽ݊݀ ݒሺ݇ሻ are two recessive solutions of (1.1) such 
that ݕሺܽሻ ൌ ሺ݇ሻݕ ሺܽሻ. Ifݒ ൒ ݇ ሺ݇ሻ for allݒ א ܰሺܽሻ, ሺ݇ሻݕ ݄݊݁ݐ ؠ   .ሺ݇ሻݒ

Proof. Let ݈ ൌ lim௞՜∞ ݄ ሺ݇ሻ andݕ ൌ lim௞՜∞ ݈ ,ሺ݇ሻ. By hypothesisݒ ൒ ݄ . Thus, if 
ሺ݇ሻݓ ൌ ሺ݇ሻݕ െ ݇ ሺ݇ሻ, than from (11) withݒ ൌ ܽ ൅ 2  we have 

 0 ൒ ݈ െ ݉ ൅ ଵ
଺

∑ ሺ݈ െ ܽ െ 1ሻሺ݈ െ ܽሻሺ݈ െ ܽ ൅ 1ሻݎሺ݈ሻݓሺ݈ሻ ൒ 0∞
௟ୀ௔ାଶ   

From this we conclude that ݕሺ݇ሻ ൌ  .ሺ݇ሻݒ

CONCLUSION 

The oscillatory properties of Fourth order Difference Equation become Oscillate. 
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