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ABSTRACT 

The antimalarial activity of natural and synthetic prodiginines has been quantitatively analyzed in terms of 
chemometric descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models provided 
rationale to explain the activity against Plasmodium falciparum D6 strain of these compounds. The descriptors identified 
through combinatorial protocol in multiple linear regression (CP-MLR) analysis have highlighted the role of various 
chemometric 2D-descriptors. The main contributing descriptors were the information content index of 5-order 
neighbourhood symmetry (IC5), the mean topological charge indices of order 5 (JGI5), the Moran autocorrelation – lag 6/ 
weighted by atomic masses (MATS6m) and the Geary autocorrelation–lag 5/weighted by atomic Sanderson 
electronegativities (GATS5e). The higher values of the descriptors IC5 and JGI5 and lower values of the descriptors 
MATS6m and GATS5e are required to further improve the antimalarial activity of a compound. From the evolved strategy, a 
few potential congeners have been suggested for further investigation. The partial least squares (PLS) analysis has further 
corroborated the results obtained from CP-MLR study. 

Key words: Antimalarial activity, Prodiginines, Chemometric descriptors, Combinatorial protocol in multiple linear 
regression (CP-MLR) analysis, QSAR. 

INTRODUCTION 

The development of resistance of Plasmodium falciparum to conventional antimalarial drugs caused 
a serious global problem to combat malaria. Despite increased attention to malaria eradication, the disease 
causes more than a million deaths each year1. P. falciparum, the protozoan agent responsible for cerebral 
malaria, is the most worrying parasite, in particular with chloroquine and multi-resistant strains. Besides the 
worldwide development of chloroquine-resistant P. falciparum, resistance has also developed to a variety of 
quinoline analogues, antifolates, inhibitors of electron transport and perhaps now to artemisinin2,3. It is 
obvious that the haunt for effective novel antimalarial compounds must be comprehensive and must focus on 
explorations of chemotypes distinct from the prototypes in clinical use. Under prevailing circumstances, the 
research may be targeted to investigate new pharmacophores and to develop low cost antimalarial 
compounds, which could significantly contribute to improve the hygienic condition of many developing 
countries. Since ancient times, natural products have provided great contribution in antimalarial drug 
discovery, the most notable examples being cinchona alkaloids and artemisinin4. Likewise the naturally 
occurring prodiginines, representing another class, are a family of linear and cyclic oligopyrrole red-
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pigmented compounds, which are produced by actinomycetes and other eubacteria. These compounds 
possess the antibacterial5, anticancer6 and immunosuppressive activity7. A few of them induce apoptotic 
effects, breaking genomic eoxyribonucleic acid (DNA) strands8. These compounds are also shown to have 
potent in vitro activity against Plasmodium species, at much lower concentration than observed with 
mammalian cells9-13. However, the reported efficacy of naturally occurring prodiginines in vivo is associated 
with toxicity thus hindering their consideration as antimalarial agents. 

The earlier studies were limited to naturally occurring prodiginines, leaving open the possibility that 
some synthetic analogues may have improved in vitro activity or in vivo efficacy or reduced toxicity. In 
view of this, Papireddy et al.14 have recently undertook a more comprehensive assessment of the 
antiplasmodial activity of  prodiginines, initially reassessing the activity of four naturally occurring 
prodiginines 1-4 (Fig. 1) and subsequently assessing a series of synthetic analogues.  
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Fig. 1: Natural alkyl prodiginines (Compounds 1-4 listed in Table 1) 

However, their structure-activity relationship (SAR) study on synthetic analogues was mainly based 
on the alteration of substituents at different positions and provided no rationale to reduce the trial-and-error 
factors. Hence, the present study is aimed at to establish the quantitative SAR (QSAR) between 
experimental antimalarial activity and chemometric 2D-descriptors which may focus on the molecular 
structures of the compounds. Such a 2D-QSAR may provide the rationale for drug-design and help to 
explore the possible mechanism of action at the molecular level. In a congeneric series, where a relative 
study is being carried out, the 2D-descriptors may play important role in deriving the significant correlations 
with biological activities of the compounds. The novelty and importance of a 2D-QSAR study is due to its 
simplicity for the calculations of different descriptors and their interpretation (in physical sense) to explain 
the inhibition actions of compounds at molecular level. 
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EXPERIMENTAL 

Materials and methods 

The natural and synthetic prodiginines along with their antimalarial activity against P. falciparum D6 
and Dd2 strains under present investigation (Table 1) have been taken from the literature14. The naturally 
occurring prodiginines are included in Fig. 1, while generalized structure of synthesized compounds is 
shown in Fig. 2. The antimalarial activity has been expressed on the negative logarithm as pIC50 (–log IC50) 
on the molar basis and stand as the dependent descriptor for present quantitative analysis. For modeling 
purpose, the data-set was divided into training- and test-sets to insure external validation of models derived 
through identified descriptors. Additionally, leave-one-out (LOO) and leave-five-out (L5O) procedures were 
employed for internal validation of such models derived from the training set. 

N
R1

OCH3

HN

R3

R2  
Fig. 2: General structures for Compounds (5-60) listed in Table 1 

Table 1: Observed and modeled antimalarial activity of Prodiginines (Fig. 1 and 2 for structures) 

pIC50 (M) 

D6 Dd2 

Calcd. 
S. 

No. R1 R2 R3 

Obsd.a
Eq. (2) Eq. (5) PLS 

Obsd.a 

1    8.10 7.74 7.63 7.37 NDb 

2    8.11 5.85 5.81 5.85 NDb 

3c    8.77 8.46 8.41 7.98 NDb 

4    8.11 8.26 8.18 8.11 NDb 

5 1H-indol-2-yl CH3 CH3 5.37 5.73 5.71 5.71 5.31 

6 1H-indol-2-yl n-C11H23 H 5.39 6.18 6.14 5.39 5.21 

7 Phenyl n-C11H23 H 4.98 6.44 6.10 5.91 4.80 

8c Phenyl CH3 CH3 4.71 5.90 5.52 5.26 4.87 

9 Furan-2-yl n-C11H23 H 5.54 5.49 5.73 5.67 5.42 

10 Thiofuran-2-yl CH3 CH3 < 4.60 4.80 4.52 4.62 < 4.60 

11 Thiofuran-2-yl n-C11H23 H 5.23 5.41 5.20 5.34 5.11 

12 Furan-2-yl CH3 CH3 < 4.60 4.87 5.10 4.99 < 4.60 

Cont… 
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pIC50 (M) 

D6 Dd2 

Calcd. 
S. 

No. R1 R2 R3 

Obsd.a
Eq. (2) Eq. (5) PLS 

Obsd.a 

13 Pyrrol-2-yl n-C3H7 H 5.64 6.24 5.90 5.85 NDb 

14c Pyrrol-2-yl n-C4H9 H 5.75 7.24 7.04 6.94 5.80 

15c Pyrrol-2-yl n-C6H13 H 6.43 6.94 6.79 6.71 6.35 

16 Pyrrol-2-yl n-C8H17 H 7.10 6.96 6.85 6.74 6.89 

17 Pyrrol-2-yl n-C16H33 H 6.52d --- --- --- 6.40 

18 Pyrrol-2-yl n-C11H22NH2 H 5.77 6.08 6.04 5.98 NDb 

19c Pyrrol-2-yl H (CH2)3COOCH3 5.35 6.51 6.42 6.52 NDb 

20 Pyrrol-2-yl H CH2CH(CH3)2 6.34 6.95 6.85 6.63 6.64 

21 Pyrrol-2-yl H n-C4H9 7.10 7.54 7.48 7.50 7.75 

22c Pyrrol-2-yl H n-C6H13 7.55 7.24 7.21 7.24 8.16 

23c Pyrrol-2-yl H n-C8H17 8.34 7.26 7.25 7.29 8.75 

24c Pyrrol-2-yl H n-C10H21 8.10 6.63 6.65 6.77 8.00 

25 Pyrrol-2-yl H n-C16H33 < 4.60 4.04 4.20 4.43 < 4.60 

26 Pyrrol-2-yl H C6H5CH2 7.08 6.89 6.89 7.30 7.07 

27 Pyrrol-2-yl H 4-OCH3C6H4CH2 6.77 7.16 7.51 7.47 6.81 

28 Pyrrol-2-yl H 4-ClC6H4CH2 7.19 6.73 6.95 7.22 7.09 

29 Pyrrol-2-yl H 4-BrC6H4CH2 7.05 6.81 6.90 7.22 6.97 

30 Pyrrol-2-yl H 2-NaphthylCH2 7.25 7.64 7.60 8.02 NDb 

31 Pyrrol-2-yl CH3 CH3 5.05 5.45 5.39 5.36 5.09 

32 Pyrrol-2-yl n-C6H13 n-C3H7 8.35 8.80 8.58 8.30 8.40 

33c Pyrrol-2-yl n-C8H17 n-C3H7 8.54 8.85 8.65 8.40 8.57 

34 Pyrrol-2-yl n-C3H7 Cyclohexylethyl 8.77 8.88 8.74 8.51 8.89 

35 Pyrrol-2-yl n-C6H13 n-C6H13 8.77 8.18 8.06 8.14 8.96 

36 Pyrrol-2-yl n-C7H15 n-C6H13 8.68 8.23 8.11 8.22 8.92 

37 Pyrrol-2-yl n-C6H13 n-C8H17 8.31 8.19 8.08 8.19 8.70 

38 Pyrrol-2-yl n-C7H15 n-C8H17 8.21 8.12 8.01 8.18 8.54 

39 Pyrrol-2-yl n-C8H17 n-C8H17 7.04 7.85 7.75 8.00 6.89 

40 Pyrrol-2-yl Cyclohexylethyl Cyclohexylethyl 8.28 7.85 7.94 8.29 8.46 

41 Pyrrol-2-yl C2H5 4-ClC6H4CH2 8.20 7.96 8.18 8.05 8.21 

42 Pyrrol-2-yl n-C3H7 4-ClC6H4CH2 8.52 8.07 8.10 7.95 8.59 

43c Pyrrol-2-yl n-C6H13 4-ClC6H4CH2 8.70 8.63 8.74 8.75 8.75 

Cont… 
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pIC50 (M) 

D6 Dd2 

Calcd. 
S. 

No. R1 R2 R3 

Obsd.a
Eq. (2) Eq. (5) PLS 

Obsd.a 

44 Pyrrol-2-yl n-C7H15 4-ClC6H4CH2 8.55 8.79 8.90 8.86 8.66 

45c Pyrrol-2-yl n-C8H17 4-ClC6H4CH2 7.80 8.79 8.91 8.90 7.92 

45 Pyrrol-2-yl 4-ClC6H4CH2 Cyclohexylethyl 8.41 8.56 8.64 8.57 8.54 

47c Pyrrol-2-yl n-C6H13 4-FC6H4CH2 9.05 8.70 9.07 8.97 9.05 

48 Pyrrol-2-yl n-C8H17 4-FC6H4CH2 8.89 8.86 9.23 9.12 8.92 

49 Pyrrol-2-yl n-C6H13 4-BrC6H4CH2 8.54 8.70 8.69 8.75 8.55 

50c Pyrrol-2-yl n-C8H17 4-BrC6H4CH2 8.40 8.86 8.87 8.90 8.54 

51 Pyrrol-2-yl 4-ClC6H4CH2 4-ClC6H4CH2 8.22 7.37 7.54 7.50 8.32 

52 Pyrrol-2-yl 4-FC6H4CH2 4-FC6H4CH2 8.25 7.60 8.09 7.91 8.24 

53 Pyrrol-2-yl 4-BrC6H4CH2 4-BrC6H4CH2 7.85 7.44 7.41 7.46 7.96 

54 Pyrrol-2-yl 4-FC6H4CH2 4-ClC6H4CH2 8.22 8.07 8.43 8.25 8.22 

55 Pyrrol-2-yl 4-BrC6H4CH2 4-ClC6H4CH2 8.08 8.00 8.06 8.00 8.11 

56c Pyrrol-2-yl 4-BrC6H4CH2 4-FC6H4CH2 8.24 8.15 8.46 8.29 8.29 

57c Pyrrol-2-yl 2,4-Cl2C6H4CH2 2,4-Cl2C6H4CH2 7.90 8.39 8.51 8.45 7.96 

58 Pyrrol-2-yl 2,6-F2C6H4CH2 2,6-F2C6H4CH2 7.83 7.60 7.68 7.95 7.74 

59 Pyrrol-2-yl 3-FC6H4CH2 3-FC6H4CH2 8.29 8.69 8.21 8.12 8.17 

60 Pyrrol-2-yl 2-ClC6H4CH2 2-ClC6H4CH2 8.44 8.70 8.61 8.75 8.31 
aIC50 represents the concentration of a compound required to bring out 50% inhibition of D6 and Dd2                
strains of  P. falciparum.  

bND; Activity is not determined. cCompound in the test-set, d‘Outlier’ compound 

The selection of compounds for test-set has been made through SYSTAT15 using the single linkage 
hierarchical cluster procedure involving the Euclidean distances of the activity, pIC50 values. Nearly 25% of 
the compounds, from total population, were selected from the generated cluster tree in such a way to keep 
them at a maximum possible distance from each other. In SYSTAT, by default, the normalized Euclidean 
distances are computed to join the objects of cluster. The normalized distances are root mean-squared 
distances. The single linkage uses distance between two closest members in clustering. It generates long 
clusters and provides scope to choose objects at different intervals. Due to this reason, a single linkage 
clustering procedure was applied.  

Molecular descriptors 

The structures of the compounds under study have been drawn in 2D ChemDraw16 using the 
standard procedure. These structures were converted into 3D objects using the default conversion procedure 
implemented in the CS Chem3D Ultra. The generated 3D-structures of the compounds were subjected to 
energy minimization in the MOPAC component, using the AM1 procedure for closed shell systems, 
implemented in the CS Chem3D Ultra. This will ensure a well defined conformer relationship across the 
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compounds of the study. All these energy minimized structures of individual compounds have been ported 
to DRAGON software17 for computing the descriptors corresponding to 0D-, 1D- and 2D-classes. Table 2 
provides the definition and scope of these descriptor-classes in addressing the structural features, which were 
employed in present QSAR work. The combinatorial protocol in multiple linear regression (CP-MLR) 
computational procedure18 has been used for present work in developing QSAR models. Prior to application 
of the CP-MLR procedure, all those descriptors which are inter-correlated beyond 0.90 and showing a 
correlation of less than 0.1 with the biological endpoints (descriptor versus activity, r < 0.1) were excluded. 
The remaining descriptors, able to address the biological activity of these compounds, served as the database 
(pool). The descriptors of this database have been scaled19 so that the values of each descriptor would lies 
between 0 and 1. The scaled descriptors would then have equal potential to influence the QSAR models and 
none of them dominate simply because of its higher or lower pre-scaled values compare to the other 
descriptors. 

Table 2: Descriptor classes used for the analysis of antimalarial activity of Prodiginines 

Descriptor class 
(acronyms) Definition and scope 

Constitutional (CONST) Dimensionless or 0D descriptors; independent from molecular 
connectivity and conformations 

Topological (TOPO) 2D-descriptor from molecular graphs and independent conformations. 

Molecular walk counts 
(MWC) 

2D-descriptors representing self-returning walks counts of different 
lengths 

Modified Burden 
eigenvalues (BCUT) 

2D-descriptors representing positive and negative eigen values of the 
adjacency matrix, weights the diagonal elements and atoms 

Galvez topological charge 
indices (GLVZ) 

2D-descriptors representing the first 10 eigen values of corrected 
adjacency matrix 

2D-autocorrelations 
(2DAUTO) 

Molecular descriptors calculated from the molecular graphs by summing 
the products of atom weights of the terminal atoms of all the paths of the 
considered path length (the lag) 

Functional groups 
(FUNC) 

Molecular descriptors based on the counting of the chemical functional 
groups 

Atom-centred fragments 
(ACF) 

Molecular descriptors based on the counting of 120 atom-centred 
fragments, as defined by Ghose-Crippen 

Empirical (EMP) 1D-descriptors represent the counts of non-single bonds, hydrophilic 
groups and ratio of the number of aromatic bonds and total bonds in an H-
depleted molecule 

Properties (PROP) 1D-descriptors representing molecular properties of a molecule 

Model development 

The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR 
studies18. Its procedural aspects and implementation are discussed in some of our recent publications20-25. 
The thrust of this procedure is in its embedded ‘Filters’. They are briefly as follows: Filter-1 seeds the 
variables by way of limiting inter-parameter correlations to predefined level (upper limit ≤ 0.79); Filter-2 
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controls the variables entry to a regression equation through t-values of coefficients (threshold value ≥ 2.0); 
Filter-3 provides comparability of equations with different number of variables in terms of square root of 
adjusted multiple correlation coefficient of regression equation, r-bar; Filter-4 estimates the consistency of 
the equation in terms of cross-validated Q2 with leave-one-out (LOO) cross-validation as default option 
(threshold value 0.3 ≤ Q2 ≤ 1.0). All these filters make the variable selection process efficient and lead to 
a unique solution. In order to collect the descriptors with higher information content and explanatory 
power, the threshold of filter-3 was successively incremented with increasing number of descriptors (per 
equation) by considering the r-bar value of the preceding optimum model as the new threshold for next 
generation.  

Y-Randomization 

In order to discover any chance correlations associated with the models obtained through CP-MLR, 
each cross-validated model has been put to a randomization test26,27 by repeated randomization of the 
activity to ascertain the chance correlations, if any, associated with them. For this, every model has been 
subjected to 100 simulation runs with scrambled activity. The scrambled activity models with regression 
statistics better than or equal to that of the original activity model have been counted, to express the percent 
chance correlation of the model under scrutiny. 

Model validation 

Validation of the derived model is necessary to test the prediction and generalization of the method. 
In the present study, the data set has been divided into training-set for model development and test-set for 
external prediction. Goodness of fit of the models was assessed by examining the multiple correlation 
coefficient (r), the standard deviation (s), the F-ratio between the variances of calculated and observed 
activities (F). The internal validation of derived model was ascertained through the cross-validated index, Q2, 
from leave-one-out and leave-five-out procedures. The LOO method creates a number of modified data sets 
by taking away one compound from the parent data set in such a way that each observation has been 
removed once only. Then one model is developed for each reduced data set and the response values of the 
deleted observations are predicted from these models. In leave-five-out procedure a group of five 
compounds is randomly kept outside the analysis each time in such a way that all compounds, for once, 
become the part of the predictive groups. A value greater than 0.5 of Q2-index hints towards a reasonable 
robust model. 

Predictive power of a model 

The predictive power of a derived model is based on test-set compounds. The squared correlation 
coefficient between the observed and predicted values of compounds from test-set, r2

Test, has been calculated 
to ascertain the same. A value greater than 0.5 of r2

Test suggests that the model obtained from training-set has 
a reliable predictive power. 

Applicability domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model 
is valid only within its training domain and new compounds must be assessed as belonging to the domain 
before the model is applied. The applicability domain is assessed by the leverage values for each 
compound28,29. The Williams plot (the plot of standardized residuals versus leverage values, h) can then be 
used for an immediate and simple graphical detection of both the response outliers (Y outliers) and 
structurally influential chemicals (X outliers) in the model. In this plot, the applicability domain is 
established inside a squared area within ± x × (standard deviations) and a leverage threshold h*. The 
threshold h* is generally fixed at 3 (k + 1)/n (n is the number of training-set compounds and k is the number 
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of model parameters) whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a 
high leverage value (h > h*). On the other hand, when the leverage value of a compound is lower than the 
threshold value, the probability of accordance between predicted and observed values is as high as that for 
the training-set compounds. 

Partial least squares analysis 

Partial Least Squares30-32 (PLS) linear regression is a method suitable for overcoming the problems 
in MLR related to multicollinear or over-abundant descriptors. This is a modeling technique where 
information in the descriptor matrix X is projected onto a small number of latent variables (LV) called PLS 
components, which are linear combination of the original variables. The matrix Y is simultaneously used in 
estimating the “latent” variables in X that will be most relevant to predict the Y variables. All descriptor 
variables are preprocessed by autoscaling, using weights based on the variables’ standard deviation and the 
data are mean-centered prior to PLS processing. Scaling of descriptors is necessary because the values have 
different orders of magnitude. 

Cross-validation was employed to select the used optimum number of LVs. With cross-validation, 
some samples were kept out of the calibration and used for prediction. The process was repeated so that each 
of the samples was kept out once. The predicted values of left-out samples were then compared to the 
observed values using predicted residual sum of squares (PRESS). The PRESS obtained in the cross-
validation was calculated each time that a new LV was added to the model. The optimum number of LVs 
was concluded as the first local minimum in the PRESS versus LV plot. 

RESULTS AND DISCUSSION 

A total number of 487 descriptors, belonging to 0D-2D classes of DRAGON, have been computed 
for 60 compounds listed in Table 1. Next, the descriptors which were inter-correlated above 0.90 and 
exhibited correlation less than 0.1 with biological activities have been eliminated in the initial stage. The 
remaining 75 descriptors able to address antimalarial activity against P. falciparum strain D6 have been 
scaled and collated in a pool for CP-MLR analyses. A test-set has been selected through SYSTAT and the 
same was used for external validation of derived models. Fifteen compounds (S. Nos. 3, 8, 14, 15, 19, 22, 23, 
24, 33, 43, 45, 47, 50, 56 and 57; Table 1) were identified for the test-set while remaining compounds 
constitute the training-set which was then used for the development of statistical significant models. A 
number of models in two-, three- and four-descriptors have been derived in succession. In doing so, filter-3 
was in turn incremented with increasing number of descriptors (per equation) by considering the r-bar value 
of the preceding optimum model as the new threshold for next generation.  

From preliminary study of quantifying antimalarial activity (P. falciparum strain D6) in terms of 
molecular descriptors, compound 17 (Table 1) appeared to behave indifferently from other compounds of 
the series. In fact, it was the lone compound bearing a long aliphatic chain (n-C16H33) at R2 (Table 1, Fig. 2) 
which appeared to be unsuitable for proper binding at the receptor site. This compound has been treated as 
the “outlier”. The training-set was then employed to explore predictive models. 12 Models in two-
descriptors, 2 models in three-descriptors and 3 models in four-descriptors only remained statistically 
significant and the models, able to account for highest variances in observed activity, have been documented 
through Equations (1)-(5). 

pIC50 = 7.577 – 2.204 (0.403) MSD + 2.694 (0.420) IC5 – 1.824 (0.439) MATS 6 m 

n = 44, r = 0.883, s = 0.668, F (3, 40) = 47.209, Q2
LOO = 0.734, Q2

L5O = 0.731, 

 r2
randY (s.d.) = 0.263 (0.098), r2

Test = 0.686 …(1) 
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pIC50 = 4.883 + 3.221 (0.358) IC5 + 2.609 (0.371) JGI5 – 2.258 (0.382) MATS 6 m 

n = 44, r = 0.910, s = 0.592, F (3, 40) = 64.099, Q2
LOO = 0.790, Q2

L5O = 0.780, 

 r2
randY (s.d.) = 0.254 (0.096), r2

Test = 0.616 …(2) 
 

pIC50 = 7.415 – 1.956 (0.354) MSD +2.871 (0.366) IC5 – 1.960 (0.514) D/Dr09 

– 1.769 (0.379) MATS 6 m 

n = 44, r = 0.916, s = 0.578, F (4, 39) = 51.007, Q2
LOO = 0.799, Q2

L5O = 0.788, 

 r2
randY (s.d.) = 0.289 (0.096), r2

Test = 0.694 …(3) 
 

pIC50 = 5.748 + 3.133 (0.351) IC5 – 2.801 (0.502) D/Dr09 + 2.360 (0.416) JGI6 

– 2.273 (0.371) MATS 6 m 

n = 44, r = 0.918, s = 0.571, F (4, 39) = 52.560, Q2
LOO = 0.781, Q2

L5O = 0.792, 

 r2
randY (s.d.) = 0.303 (0.102), r2

Test = 0.605 …(4) 
 

pIC50 = 5.578 + 3.083 (0.345) IC5 + 2.546 (0.353) JGI5 – 2.348 (0.364) MATS 6 m 

– 0.912 (0.392) GATS5e 

n = 44, r = 0.921, s = 0.561, F (4, 39) = 54.739, Q2
LOO = 0.809, Q2

L5O = 0.806, 

 r2
randY (s.d.) = 0.288 (0.108), r2

Test = 0.668 …(5) 

In above models, the values given in the parentheses (in regression equation) are the standard errors 
of the regression coefficients. The r2

randY(s.d.) is the mean squared correlation coefficient of the regressions 
in the activity (Y) randomization study with its standard deviation from 100 simulations. In the 
randomization study (100 simulations per model), none of the identified models has shown any chance 
correlation.  

Models in three-descriptors (Equations 1-2) and in four-descriptors (Equations 3-5) have accounted, 
respectively, up to 83% and 85% of variances in observed antimalarial activity against P. falciparum strain 
D6 and the F-values for them remained significant at 99% level [F3,40 (0.01) = 4.313 and F4,39 (0.01) = 3.843]. 
The indices Q2

LOO and Q2
L5O (> 0.5) have accounted for internal robustness of these models, while the index 

r2
Test greater than 0.5 revealed that the specified test-set is fully accountable for external validation of above 

models. Above models have shared 7 descriptors among them and the class, brief description, average 
regression coefficient and total incidences, for individual descriptor, are given in Table 3. The descriptors 
appeared in individual model have been found poorly intercorrelated among themselves.  

The binding of a compound to a receptor site depends on its shape, size and on a variety of factors, 
such as the electronic, steric, hydrophobicity, lipophilicity, polarizability, solubility etc. Therefore, in a 
QSAR study the strategy for encoding molecular information, either explicitly or implicitly, should account 
for these physicochemical effects. These effects may be interpreted in terms of molecular descriptors of a 
compound. A major step in constructing the QSAR models is to find a set of molecular descriptors that 
represents variation in the structural properties, hence the biological activities, of the molecules.  

The descriptor MSD, representing the mean square distance (Balaban), is derived by applying 
different algebraic operators to the distance matrix which collects topological distances between pair of 
atoms. The topological distance between two atoms is the length (i.e., number of involved bonds) of the 
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shortest path between the two atoms. The descriptor can be sensitive to one or more structural features of the 
molecule such as size, shape, symmetry, branching and cyclicity and can also encode chemical information 
concerning atom type and bond multiplicity. The descriptor IC5, denoting the mean information content 
(neighbourhood symmetry of 5-order), is obtained for a H-included molecular graph. This index represents a 
measure of structural complexity per vertex. The descriptor D/Dr09, is the distance/detour ring index of 
order 9. It is calculated by summing up distance/detour quotient matrix row sums of vertices belonging to 
single rings in the molecule. This is considered as a special substructure descriptor reflecting local 
geometrical environments in the complex cyclic system. The descriptors JGI5 and JG6 are the mean 
topological charge indices of order 5 and order 6, respectively. The descriptor, MATS6m is the Moran 
autocorrelation – lag 6/weighted by atomic masses. Finally, the descriptor, GATS5e is the Geary 
autocorrelation – lag 5/weighted by atomic Sanderson electronegativities. The autocorrelation descriptors, 
representing the topological structure of the compounds, explain how the values of certain functions, at 
intervals equal to the lag (path), are correlated. The computation of these descriptors involves the 
summations of different autocorrelation functions corresponding to different structural lags and leads to 
different autocorrelation vectors corresponding to the lengths of the sub-structural fragments. Due to their 
greater applicability, physicochemical properties, such as, atomic masses, atomic van der Waals volumes, 
atomic Sanderson electronegativities and atomic polarizabilities were inserted as weighting components. As 
a result, these descriptors address the topology of the structure or parts thereof in association with a specific 
physicochemical property. 

Table 3: Identified descriptorsa along with their physical meaning, average regression coefficient and 
incidenceb, in modeling the antimalarial activity of Prodiginines 

S. 
No. Descriptor Descriptor 

class Physical meaning Average regression 
coefficient (incidence) 

1 MSD TOPO Mean square distance index (Balaban) -1.956 (1) 
2 IC5 TOPO Information content index (neighbourhood 

symmetry of 5-order 
3.029 (3) 

3 D/Dr09 TOPO Distance/ detour ring index of order 9 -2.381 (2) 
4 JGI5 GLVZ Mean topological charge index of order 5 2.546 (1) 
5 JGI6 GLVZ Mean topological charge index of order 6 2.360 (1) 
6 MATS6m 2DAUTO Moran autocorrelation – lag 6/weighted by 

atomic masses 
-2.130 (3) 

7 GATS5e 2DAUTO Geary autocorrelation – lag 5/weighted by 
atomic Sanderson electronegativities 

-0.912 (1) 

aThe descriptors have been identified from the models, emerged from CP-MLR protocol with a training-set 
of 44 for the antimalarial activity of prodiginines.  

bThe average regression coefficient of the descriptor corresponding to all four-descriptor models and the total 
number of its incidence. The arithmetic sign of the coefficient represents the actual sign of the regression 
coefficient in the models. 

The signs of the regression coefficients suggest the direction of influence of explanatory variables in 
a given model. For example in Equations (2) and (5), the regression coefficients associated to descriptors 
IC5 and JGI5 have positive signs. These descriptors impart positive influence and their higher values would 
be conducive in improving the antimalarial activity of a compound. On the other hand, the regression 
coefficients of descriptors, MATS6m and GATS5e have negative signs, thus imparting negative impact on 
activity. For a given compound, the lower values of these descriptors would help in improving its 
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antimalarial activity. Equation (2) and Equation (5), being highest significant amongst three- and four-
descriptor models, have been used to calculate the pIC50 values of all the compounds and the same are listed 
in Table 1 for the sake of comparison with observed ones. A close agreement between them has been 
observed. Moreover, the graphical display showing the variation of observed versus calculated activities 
(training- and test-sets) is given in Figure 3 to illustrate the goodness of fit for these two models. 

Compound 10, 12 and 25, having their observed pIC50 values less than 4.60 and remained the part of 
data set, have been evaluated correctly. Their calculated pIC50 values, using Equations (2) and (5), remained 
nearly in parity with the observed ones.    

Further, the PLS analyses have been performed on 7 identified descriptors related to antimalarial 
activity (P. falciparum strain D6) of the compounds and the results are summarized in Table 4. In the study, 
the descriptors were autoscaled (zero mean and unit standard deviation) to provide each one of them equal 
weightage. In the PLS cross-validation, two-components remained optimum for 7 descriptors and they have 
explained, 86% of variances in the observed antimalarial activity. The PLS equation of optimum two-
components and MLR-like PLS coefficients of identified descriptors, for antimalarial activity against           
P. falciparum strain D6, is given in Table 4. The calculated activity values of training- and test-set 
compounds remained in close agreement to that of the observed ones and are listed in Table 1. For 
comparison, the plot between observed and calculated activities (through PLS analyses) for the training- and 
test-set compounds is given in Fig. 3. Fig. 4 shows a plot of the fraction contribution of normalized 
regression coefficients of these descriptors to the activity (Table 4). In decreasing level of significance, 7 
descriptors, being the part of Equations (2) and (5) have been arrange as IC5, MATS6m, MSD, D/Dr09, 
JGI5, GATS5e and JGI6 for the inhibition of D6 strain of P. falciparum. Similar conclusions have been 
observed from MLR-like coefficients of the PLS model for this activity. Further the descriptors, IC5, JGI5 
and JGI6 have positive contribution to antimalarial activity while the descriptors MATS6m, MSD, D/Dr09 
and GATS5e have negative contribution to it. The descriptors, in a given significant model, having positive 
contributions will augment the activity and their higher values are desirable to further improve it. On the 
other hand, the descriptors having negative contributions will diminish the activity and their lower or more 
negative values may, therefore, improve it. 

Table 4: PLS and MLR-like PLS models from the descriptors of seven parameter CP-MLR models 
for antimalarial activity of Prodiginines 

A : PLS equation 

PLS components PLS coefficient (s.e.)a 

Component-1 0.744 (0.052) 

Component-2 -0.417 (0.070) 

Constant 7.257 

B : MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient (f. c.)b Order 

1 MSD -0.232(-0.146) 3 

2 IC5 0.516(0.324) 1 

3 D/Dr09 -0.184(-0.115) 4 

4 JGI5 0.141(0.089) 5 

Cont… 
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5 JGI6 0.045(0.028) 7 

6 MATS6m -0.387(-0.243) 2 

7 GATS5e -0.087(-0.054) 6 

 Constant     7.034  

C: PLS regression statistics Values  

n 44 

r 0.925 

s 0.534 

F 121.787 

Q2
LOO 0.832 

Q2
L5O 0.824 

r2
Test 0.685 

aRegression coefficient of PLS factor and its standard error.               
bCoefficients of MLR-like PLS equation in terms of descriptors for their original 
values; f.c. is fraction contribution of regression coefficient, computed from the 
normalized regression coefficients obtained from the autoscaled (zero mean and 
unit s.d.) data 
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Fig. 3: Plot of observed versus caculated pIC50 values relating to antimalarial activity against                    

D6 strain of P. Falciparum for training-set and test-set compounds 

 
Fig. 4: Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 7 identified 

descriptors (Table 4) associated with antimalarial activity against D6 strain of P. Falciparum 

The exploration of new antimalarial compounds with improved activity profiles prior to their actual 
synthesis is one of the important aspects of a QSAR study. This will minimize the time and cost associated 
with identifying new leads. A virtual screening was performed on present antimalarial compounds by 
insertion, deletion and substitution of different substituents on the original molecules and the effects of the 
structural modifications on the biological activity were investigated. A few new compounds have been 
suggested for further biological investigation (Table 5). These predicted compounds have higher pIC50 
values compared to the highest active compounds in the original data-set (Table 1).  

Table 5: Predicted compounds and their modeled antimalarial activity against D6 strain of               
P. Falciparum (Fig. 2, R1 = Pyrrol-2-yl) 

S. No. R2 R3 Eq. (2) Eq. (5) PLS 

1 n-C6H13 Cyclohexylethyl 9.41 9.34 9.29 

2 n-C7H15 Cyclohexylethyl 9.42 9.34 9.36 

3 n-C7H15 4-FC6H4CH2 8.86 9.23 9.08 

4 n-C8H17 Cyclohexylethyl 9.43 9.35 9.40 

5 n-C8H17 4-ClC6H4CH2 8.79 8.91 8.90 

6 n-C8H17 4-BrC6H4CH2 8.86 8.87 8.90 



J. Curr. Chem. Pharm. Sc.: 2(4), 2012 257

On analyzing the applicability domain (AD) in the Williams plot (Fig. 5) of the model based on the 
whole data set (Table 6; Eqs. 2a and 5a), one compound (17; Table 1) has been identified as an obvious 
‘outlier’ for the antimalarial activity against P. falciparum strain D6 if the limit of normal values for the Y 
outliers (response outliers) was set as 3 × (standard deviation) units. None of the compounds was found to 
have leverage (h) values greater than the threshold leverages (h*). For both the training-set and test-set, the 
suggested models match the high quality parameters with good fitting power and the capability of assessing 
external data. Furthermore, almost all of the compounds were within the applicability domain of the 
proposed models and were evaluated correctly.  

 

 
Fig. 5: Williams plot for antimalarial activity (D6) of training-set and test-set compounds (Table 1). 

The horizontal dotted line refers to the residual limit ± 3.0 × (standard deviation)                                 
and the vertical dotted line represents threshold leverage,                                                      

h* (= 0.200 and 0.250 for three- and four-descriptor models respectively) 

Table 6: Models derived from whole data set (n = 60) of prodiginines for antimalarial activity against 
D6 strain of P. falciparum  

Model r s F Q2
LOO Q2

L5O Eq. 

pIC50 = 5.046 + 3.385 (0.389) IC5 + 2.048 (0.439)       
JGI5 – 1.971 (0.437) MATS6m 

0.848 0.739 47.638 0.659 0.656 2(a)

pIC50 = 6.091 + 3.018 (0.389) IC5 + 2.007 (0.415) JGI5 
– 2.153 (0.417) MATS6m – 1.269 (0.451) GATS5e 

0.868 0.698 42.120 0.694 0.685 5(a)
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A considerable number of synthetic prodiginines have been tested alongside chloroquine (CQ) 
against multidrug-resistant (MDR) Dd2 strain. The activity profile has been included, as pIC50 (Dd2), in 
Table 1 on molar basis. In order to infer any significant change in the activity of each analogue between 
their in vitro antimalarial activity against P. falciparum pansensitive D6 with CQ as a reference drug, attempt 
has been made to find a relationship between their pIC50 values.  

To this effect, a highly significant correlation between pIC50s of D6 and Dd2 was obtained and the 
same is given through Equation (6). 

pIC50 (Dd2) = 1.034 (0.050) pIC50 (D6)  –  0.197 

 r = 0.992, s = 0.176, F (1, 50) = 3274.773  …(6) 

Above equation has reflected upon the fact the two activities are exactly inter-correlated and present 
synthetic prodiginines are equally effective against P. falciparum pansensitive D6 and MDR Dd2. 

CONCLUSION 

The activity against P. falciparum D6 strain of natural and synthetic prodiginines has been 
quantitatively analyzed in terms of chemometric descriptors. The statistically validated QSAR models 
provided rationales to explain the antimalarial activity of these congeners. The descriptors identified through 
CP-MLR analysis have highlighted the role of the mean square distance index (Balaban) (MSD), the 
information content index (neighbourhood symmetry of 5-order (IC5), the distance/ detour ring index of 
order 9 (D/Dr09), the mean topological charge indices of order 5 and order 6 (JGI5 and JGI6), the Moran 
autocorrelation – lag 6/ weighted by atomic masses (MATS6m) and the Geary autocorrelation – lag 5/ 
weighted by atomic Sanderson electronegativities (GATS5e). The statistical significant models in three- and 
four-descriptors have been derived to explain the antimalarial activity against P. falciparum D6 and the main 
contributors in the highest significant models were the descriptors IC5, JGI5, MATS6m and GATS5e. For a 
compound to be more potent, the higher values of descriptors IC5 and JGI5 and lower values of descriptors 
MATS6m and GATS5e are conducive. The statistics emerged from the test-set have validated the identified 
significant models. A few new compounds, having activity more the highest active congener, have been 
suggested for further exploration. PLS analysis has further confirmed the dominance of the CP‐MLR 
identified descriptors. Applicability domain analysis revealed that the suggested models have acceptable 
predictability. Except one “outlier” (S.No. 17, Table 1), all the compounds remained within the applicability 
domain of the proposed models and were evaluated correctly. 
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