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ABSTRACT 

Using two theoretical models (Ando formalism and Vinter formalism) an evaluation of effective 
mass (m*/mo) of electron as a function of Ns (concentration of electrons) in n-channel inversion layer has 
been performed. Our theoretical result of (m*/mo) decreases with Ns as per experimental observation. 
However, the theoretical values evaluated from Ando formalism are in better agreement with the 
experimental data 
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INTRODUCTION 

In this paper, we have presented the method of evaluation of effective mass (m*/mo) 
as a function of concentration of electron in n-channel inversion layer Ns. Inversion layer is 
a two-dimensional system. As we know that in two dimensional system, electrons are 
confined to move within a plane placed in vacuum, the Fourier transform V (q) of electron-
electron interaction is given by 2 πe2/q in contrast to 4 πe2/q2  in three dimension. 

The electron-electron interaction affects various properties of the two-dimensional 
electron gas. Among them are the quasi-particle properties such as effective mass and the g 
factor. These quantities have attracted much attention because these are directly observable 
experimentally. The g-factor was first obtained by Fang and Stiles1 in n-channel inversion 
layer on Si (100) and was found to be enhanced from the bulk value close to 2. Smith and 
Stiles2 determined the effective mass in the same system and showed that effective mass first 
enhanced then decreased with the electron concentration.  
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The theoretical studies of effective mass of electron in 2D electron gas starts with 
Landau Fermi liquid theory3 in which the so-called f function plays a central role. Random 
phase approximation4 has been used to calculated f-function as a function of electron 
concentration. In this approximation the quasi particle energy of an electron with a spin (±1) 
and valley index v is obtained from the total energy by taking the functional derivative with 
respect to the Fermi function. The quasi particle energy is related with the Green’s function 
and the dielectric function is obtained by further taking propagator π (q, ω). The f function is 
obtained by further taking the functional derivative of quasi particles energy with respect to 
Femi derivation function. One obtains m/m* and g/g* with respect to f function. Such 
scheme for two dimensional system was given by Suzuki and Kawamoto5 and Ting, Lee and 
Quninn6. 

m* and g* were also calculated from different approximation schemes7-14. In these 
approximation schemes, one treats the self-energy shift to the lower order by screened 
Coloumb interaction, taking the image effect in the electron-electron interaction by 
neglecting the dynamical screening and replacing ε (q, ω) by ε (q, o). One also determines 
the difference of exchange interactions of up and down spin electron in the vicinity of the 
Fermi surface where the effective mass is determined by virtual excitation of electron-hole 
pairs and plasmons with wide range of energy. The effective mass were also calculated with 
the renormalization constant Z which is defined as – 

Z =
1

E
ω)(H,1

−

⎥⎦
⎤

⎢⎣
⎡

∂
∑∂−  …(1) 

Where Σ (H, ω) is the self-energy evaluated to the lower order in the dynamically 
screened interaction. 

R
*
D m

m1  Z
m
m1 −=−  …(2) 

The subscripts D and R refer to the results obtained by the Dyson equation8 and 
Rice’s approximation9 written in the following equation, respectively. 

E(k) = ε(k) + Σ(k, ε (k)) …(3a) 

and 

E(k) = ε(k) + Σ(k, E (k)) …(3b) 
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with 

ε(k) = 2m
k 22h  …(3c) 

Since Z varies from 0.3 to 0.8 in the density range 1011-1013 cm-2 in the n-channel 
inversion layer on the Si (100) surface therefore the different between *

Dm and *
Rm are 

important. A density functional formulation15,16  has also been used to calculate the effective 
mass and the g-factor. 

A recent calculation of renormalization factor (constant) Z and effective mass of the 
two-dimensional electron gas was performed by Holdzman et al.17 They calculated the 
momentum distribution of the Fermi liquid phase of the homogeneous two-dimensional 
electron gas. They showed that close to the Fermi surface, the momentum distribution of a 
finite system with N electron approaches its thermodynamic limit slowly, with leading order 
correction scaling as N-1/4. These corrections dominate the extrapolation of the 
renormalization factor Z and the single particle effective mass m* to the infinite system size. 
They showed that in the range 1≤ rs ≤ 10, one gets a lower renormalization factor Z and the 
higher effective mass m*> m compared to the perturbative random phase approximation 

value18,19. Here rs = ( ) 2
1

2
Bπna −  is the Wigner-Seitz density parameter, n is the density and aB 

= ħ2/me2  is the Bohr radius. Similar type of calculation was also performed by Asgari and 
Tanatar.20 They calculated many body effective mass as a function of rs for 0(rs ≤ 8)  for 
quasi two dimensional electron as (Q2D) confined in a GaAs/A1GaAs triangular quantum 
well. Their results show that effective mass enhancement is smaller in the Dyson equation 
calculation than in the OSA (On Shell Approximation). When results, were compared with 
the experimental data of Tan et al.21,22,  the following conclusions were drawn. 

(a) RPA and the local field factors beyond the RPA are similar in the weak 
coupling (rs≤1). 

(b) Theoretical calculations in the strong coupling region are not so close to 
experimental data. 

De Palo et al.23 have a similar calculations in the same range of coupling strengths. 

In this paper, we have evaluated (m*/m0) of electrons as a function of Ns 
(concentration of electrons in n-channel inversion layer). We have used two theoretical 
formalism (Ando formalism) and (Vinter formalism). Experimental results show that (m*/m0) 
of electron decrease with Ns. The evaluated results in both formalism indicate that (m*/m0) 
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decrease with Ns. However, the value calculated under Ando formalism are in better 
agreement with the experimental data. 

Mathematical formula used in the evaluation 

One starts with the quasi particle enerty24,25 Eσv (k) of an electron with a spin σ (±1) 
and valley index v 

Eσν(k) = ε(k) – ω)ε(k)q,(kGω)ε(q,
V(q)

i2
dω 0

σv −−∑∫ qπ  …(4) 

with ε(k) =ħ2k2/2m. Green function is given by – 

i0  ε(k)E
(k)n 1

i0  ε(k)E
(k)n  E)(k,G σνσν0

σv +−
−+

−−
=  …(5) 

nσν (k)  is the Fermi distribution function. ε (q, ω) is the dielectric function, given by- 

ε(q,ω) = 1 + V(q) П (q,ω) …(6) 

with 

П (q,ω) = ω)Eq,(kG E) (k, G 2
(0)
σv

(0)
σvkσv ++∫ ∑∑− i

dE
π  …(7) 
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Where 

F(q)
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⎜
⎝
⎛ π  

k~  = k~ sc + k~ sc/2 …(9) 

Here insk~ is the dielectric constant of semiconductor and insk~ is that of insulator. One 
consider a 2 D model in which half z > 0 space is filled with semiconducting medium and 
other half z < 0 is filled with insulating medium.      
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F (q) is the form factor given by26 – 

F(q) = 
⎪⎭
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k~1)g(z)g(z'dz'2

1  …(10) 

g (z) is the charge distribution for inversion27. 

g(z) = bz2
3

ez2
b −  …(11) 

Where b is the adjustable parameter. The Landau f-function is obtained by taking the 
functional derivative of equation (4) with respect to nσ’v’ )k( ′  

fσν; σ'ν'  )'k ,k( ƒ0  )'k ,k( + δσσ' δvv' ƒe  )'k ,k(  ...(12) 

Then one gets 

m/m* = 1 – θ cos )( dθ
)2

m
σσ' vv'

v'σ'σv;2 θ
π

∑∑ ∫ f
h

 …(13) 

and 

g/g* = 1 + )( dθ
)2
*m

2 θ
π ∫ f
h

 …(14) 

Where f (θ) = f )k,k( ′  with k = k' = kF and k.k' = kF
2 cos θ. The effective mass m* 

and effective g factor g* are defined as usual by - 

Fv kkkE =
∂
∂= )(kk

1
m
1

F
2* σ
h

 ...(15) 

With 

Eσν (kF) = E (kF) Hσμ*2
1

B−  …(16) 

H is a weak magnetic field and μB is the Bohr magneton. 

In the density function formalism15,16,   the quasi particle effective mass is given by - 
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m*/m1 = ∫ ∫
∞ ∞ −
0 0

1

op

*

dzn(z)] [ n(z)m
z)(n(z);mdz  …(17) 

Where m*(z (z); z) is the effective mass of the homogeneous three dimensional 
electron gas mop is an isotropic mass defined by - 

)/3m(2mm 1
1

1
τ

1
op

−−− +=  …(18) 

mt and ml are transverse and longitudinal mass, respectively. 

One also calculates effective mass of 2D electron gas by calculating quasi particle 
excitation energy δεQP (k), which is the quasi particle energy measured from the chemical 
potential μ of the interacting system by solving self-consistency the Dyson equation28,29. 

δε ε ω ω δεQP K
R

rel
QPK R k K( ) ( , ) / ( ) /= + =∑ h  …(19) 

Where    

R k R k kR R

relrel
F

rel

( , ) ( , ) ( , )ω ω= −∑∑ ∑ 0  …(20) 

This is called on shell approximation (OSA). Once the QP (quasi particle) excitation 
energy is known, the effective mass m*(k) can be calculated by means of the relationship 

k
(k)dz

 
k

1
(k)*m

1 Qp
2 dh

=  …(21) 

Evaluating m*(k) at k = kF, one gets the QP effective mass at the Fermi surface. 

RESULTS AND DISCUSSION 

In this paper, we have presented a method of evaluation of effective mass (m*/mo) of 
electron in n-channel inversion layer on Si (100) surface as a function of concentration of 
electrons in the inversion layer NS. The calculation has been performed with the help of two 
theoretical models theoI (Vinter Formalism)8,9 and theoII (Ando formalism)15,16 and the 
results are compared with the experimental results of Smith and Stiles2. These results have 
been given in Table 1. In the first theoretical model, (m*/mo) is rather low as compared to the 
experimental data for each value of NS. The theoretical results evaluated from Ando 
Formalism15,16 is rather in better agreement with the experimental data. However, the 
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evaluated results decrease with NS as per experimental observations. Vinter for formalism 
(theoI)8,9 is based on a model in which a   semiconductor, with a dielectric constant KSC fills 
the half space z > 0 and other half space z < 0 is filled with an insulating medium of 
dielectric constant Kins. Using the dielectric function ε(q,ω) given by equation (6) one 
obtains the effective mass equation (13). By computing Eq. (13) as a function of NS, one 
obtains the values of (m*/mo) as a function of NS shown in Table 1. On the other hand, the 
Ando formalism is a density functional formalism. In the density functional formalism, the 
density distribution of an interacting electron gas under an external field can be obtained by 
a one body Schrödinger type equation containing an exchange correlation potential in 
addition to the usual Hartree potential and external potential. One can take the exchange 
correlation potential Uxc. The exchange correlation potential is obtained by a functional 
derivative of the exchange correlation part of the ground state energy )]R([n Exc is not 

known and is replaced by a product )]R([n E )R(n xc  in the usual local approximation where 

)R(Exc is the exchange-correlation energy per electron of a uniform electron gas with the 

density n. In this approximation, )R(xcU becomes the exchange-correlation part of the 
chemical potential xcμ of the uniform electron gas. In the density function formalism, the 
quasi-particle effective mass is given by equation (17) and (18). 

Table 1: An evaluated results of effective mass (m*/mo) of electron in n-channel 
inversion layer on Si (100) surface as a function of concentration of electron 
in the inversion layer NS. The calculation has been performed with the help 
of two theoretical models theorI and theorII and are compared with 
experimental results 

(m*/mo) 
Ns (1012 cm-2) 

TheoI TheoII Expt. 

0.5 0.226 0.246 0.268 

1.0 0.220 0.232 0.259 

1.2 0.206 0.228 0.255 

1.4 0.200 0.217 0.248 

1.6 0.187 0.212 0.244 

1.8 0.172 0.208 0.240 

2.0 0.160 0.205 0.238 

Cont… 
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(m*/mo) 
Ns (1012 cm-2) 

TheoI TheoII Expt. 

2.1 0.155 0.202 0.232 

2.6 0.152 0.200 0.230 

2.8 0.147 0.197 0.227 

3.0 0.142 0.195 0.227 

3.2 0.140 0.192 0.222 

3.5 0.132 0.187 0.220 

In Table 2, we have shown the theoretical results of the renormalization factor z and 
effective mass (m*/mo) calculated from VMC (Variational quantum Monte Carlo)30 and 
perturbative  RPA31 calculations as a function of rs (Winger-Seitz density parameter) in the 
calculation, it appears that in the range 1 ≤ rs ≤ 10, one gets a lower renormalization factor Z 
and a higher effective mass (m*/mo) compared to the perturbative random phase 
approximation value. In Table 3, we have reported the many-body effective mass (m*/mo) as 
a function of rs for a Q2D electron gas confined in a GaAs/AlGaAs triangular quantum well 
with four theoretical formalism I (OSA), II (Dyson), III (OSA-RPA) and IV (Dyson-RPA)32. 
Theoretical results20 were compared with the recent experimental data21,22. After comparison 
it appears that III (OSA-RPA) and IV (Dyson-RPA) are in right trend with experimental data 
although the values are quite less. In Table 4, we have given experimental results of 
effective mass or band mass of electrons of some two dimensional systems33-35. These results 
show band mass of electron m*/mo (bare mass) in hetro -structures and quantum well 
systems. These results are very similar to QMC results36 of 2D electron gas for rs = 1. 

Table 2: Theoretical results of renormalization function Z and effective mass (m*/mo) 
calculated from VMC (Variational quantum Monte Carlo)31 and pertubative 
RPA calculation32 as a function of rs 

rs ZVMC ZRPA (m*/mo)VMC (m*/mo)RPA 

1 0.627 0.663 1.267 1.025 

3 0.348 0.442 1.398 1.116 

5 0.225 0.348 1.547 1.168 

8 0.165 0.272 1.686 1.195 

10 0.090 0.247 1.729 1.219 
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Table 3: Many-body effective mass (m*/mo) as a function of rs for a Q2D electron gas 
confined in a GaAs/AlGaAs triangular quantum well with four theoretical I 
(OSA), II (Dyson), III (OSA-RPA) and IV (Dyson-RPA). Theoretical results20 
were compared with experimental data21,22 

(m*/mo) 
rs 

I (OSA) II (Dyson) III (OSA-RPA) IV (Dyson-RPA) Expt. 

0.5 0.987 0.962 0.992 0.976 0.852 

1 0.923 0.978 1.023 0.985 0.985 

3 0.974 1.038 1.086 1.049 1.125 

4 1.085 1.052 1.102 1.054 1.224 

5 1.110 1.063 1.184 1.067 1.358 

6 1.168 1.077 1.238 1.078 - 

7 1.248 1.084 1.339 1.087 - 

8 1.369 1.092 1.386 1.096 - 

Table 4: Experimental results of effective mass of electrons or band mass of electron  
(m*) of two dimensional system32-34 

Systems Effective mass or band mass of electron (m*) 

HxGa1-x/GaN                 
x = 0.13 0.215 ± 0.006 m0 

Undoped AlGaN/GaN          
heterostructures 0.2 ± 0.01 m0 

Modulation doped             
In0.65 Ga0.35 As/ n0.52Al0.48As     

single quantum well 
0.05869 m0 
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