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ABSTRACT 

Using the theoretical formulism developed by Pintschovius16, we have presented a method of 
evaluation of temperature dependent resistivity ρe-ph (electron-Phonon), ρer (Inter molecular Phonon), ρra 
(Intra molecular Phonon), total resistivity ρ(T) and ρdiff (Difference between theoretical-experimental) for 
K3C60 fluoride. Our theoretical results are in good agreement with experimental data and also with other 
theoretical workers. 
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INTRODUCTION 

In this paper, we have presented the method of evaluation of temperature dependent 
resistivity due to electron-phonon interaction (ρe-ph), temperature variation of total resistivity 
ρ(T) and temperature variation of ρdiff (measured ρ-calculated ρ) for K3C60 fluoride. As we all 
know that electrical resistivity ρ can be caused by various scattering mechanism. An 
important mechanism is the electron-phonon interactions. In this mechanism electrons are 
scattered under the simultaneous excitations of phonons. The equally important mechanism 
is electron-electron interaction. The contribution of these two mechanisms1,2 goes to zero as 
T → 0. 

In case of metal, electron-phonon scattering is the major source of temperature 
dependent resistivity. The other scattering mechanisms are electron impurities scattering due 
to defects, grain and disorder regions. Unfortunately, all these mechanisms give temperature 
independent contributions. For the evaluation of resistivity of alkali metal doped fluoride 
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one uses zero temperature scattering rate related to upper critical magnetic field Hc2 (0)3, 
modified BCS  theory and the use of Matsubara gap function4, which uses to square well 
potential model. In these calculations the zero temperature resistivity is expressed as – 

 
* 1 2(0) 4 pρ πτ ω− −=  …(1) 

Here ωp is the plasma frequency τ is the impurity scattering time. In this calculation, 
the zero temperature resistivity has been calculated by keeping the parameter5 

TC = 22K 

VF = 1.9 x 107 cm/sec 

ωp = 1.2 eV 

HC2 (0) = 49 Tesla 

τ = 1.23 x 10-14 sec-1 

These all parameters are taken from the reference6,7. 

Our theoretical evaluated results of temperature variation resistivity ρe-eh (due to 
electron-phonon), ρer (due to intermolecular phonon) and ρra (due to intra molecular phonon), 
we have taken the intermolecular frequency ωer = 9K and intramolecular frequency               
ωra = 1455K. Our theoretical results show that ρer increases linearly with T and ρra increases 
exponentially with T*. When these resistivities are combined together to calculated resultant 
resistivity ρe-eh then it was found that ρe-eh varies exponentially with low T and linearly with 
high T. Our other calculation ρdiff shows that it has a power dependence of temperature as 
low T and it becomes almost saturated at high T. 

Mathematical formula used in the evaluation 

Now, one can estimate zero temperature limited resistivity with the help of zero 
temperature elastic scattering rate and plasma frequency. The zero temperature scattering 
rate is related through the upper critical magnetic field HC2 (0). Following the two square 
well analysis of Elishberg theory, Carbotte8 suggested that the strong coupling correlations 
are important and a rescaling factor (1 + λ) appears in the modified BCS results. The 
Mastubara gap function, which is related with upperand the factor critical magnetic field 
yields9. 
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mω Being the Mastubara frequency, within the standard two-square-well model is – 

mω = ωm (1 + λ) + (2τ)-1 (sgn ωm) 

λ the electron-phonon coupling strength with cut off at NC and the scattering time. In 
this approximation, NC follows – 

 NC = (1/2) [(ω/πT) + 1] …(3) 

μ* being the normalized Coulomb repulsive parameter and the factor χm appearing in 
(2) with, 
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The upper critical magnetic field is related through 

 2*
F

*
C2

* νeH
2
1=ξ  …(5) 

The physical quantities appearing in (1) – (5) involve renormalized value as – 
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and impurity scattering time. 

 
C

*

T λ)(1+= ττ  …(8) 

The above derived equation differ from the BCS limit, as the renormalizations in ξ*, 
*
Fν , *

C2H and *τ  are introduced. These expressions are valid for any impurity concentration 
described in (1) - (5) by scattering time. In the present analysis, Pauli limit has been 

neglected as an approximation9, due to relatively small value of dHC2

dT  /1 [(1 + )] λ
 in alkali metal 
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intercalated fullerenes. In principle, the above approach describes quantitatively the 
renormalization of the physical properties due to electron-phonon interaction and is therefore 
reduced by 1+λ. 

The zero temperature-limited resistivity is expressed as – 

2
p

1ω τ4πρ(0) −−•=  

From the above, it is noticed that the determination of scattering rate essentially 
needs the Coulomb repulsive parameter, electron- phonon coupling strength, Fermi velocity, 
plasma frequency and upper critical magnetic field. This allows one to estimate the zero 
temperature-limited resistivity independently. One uses earlier deduced values5 to estimate 
the zero temperature elastic scattering rate which is consistent as those derived from the 
superconducting fluctuation measurements10. It is attributed to the fact that the larger the 
electron mass, the smaller the plasma frequency and hence the zero temperature elastic 
scattering rate. 

One has earlier estimated the zero temperature mean free path, ℓ about 3.4 nm which 
is highly sensitive for carrier scattering. One further finds that the product KFℓ (~ 17), seems 
to be much larger than unity indicates the metallic characteristics. It is worth to mention that 
the product, εF τ » 1, in the test material refers to the fact that the doped fluorides fall in the 
weak scattering limit. This is however, consistent with the s wave superconductors. With 
these parameters, one estimates zero temperature limited resistivity (ρ0 = 2.4 mΩ cm) 
consistent with the single crystal result10. 

Normal state resistivity 

To formulae a specific model, one starts with the general expression for the 
temperature dependent part of the resistivity11  
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V(q) is the Fourier transform of the potential associated with one lattice site and S(q) 
being the structure factor. Following the Debye model it takes the following form - 
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f(x) being the statistical factor and to - 

 f(x) = x[ex -1]-1 [1-e-x]-1  …(11) 

Thus the resistivity expression leads to  

 
2 3

2
2 2 2

0

3( ) ( ) [ ]
( 1)(1 )

Fk

x x
F s

K T xq dqv q
e v Mv e e

βρ −≈
− −∫h

 …(12) 

vs the sound velocity. Equation (12) in terms of intermolecular phonon 
contributation yields the Bloch Gruneisen function of temperature dependence resistivity v. 
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ωh  being a constant of proportionality defined as - 
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In views of inelastic neutron scattering measurements, the phonon spectrum can be 
conveniently separated into two parts of phonon density of states12,13. It is natural to choose a 
model phonon spectrum consisting of two parts; an intermolecular phonon frequency, 
ωra(θer) and an intra molecular phonon frequency, ωra(φra). If the Matthiessen rule is obeyed, 
the resistivity may be represented as a sum ρ(T) = ρ0 + ρ e-ph (T), where ρ0  is the residual 
resistivity that does not depend on temperature. On the other hand, in case of the intra 
molecular phonon spectrum, ρra(T) may be described as follows 
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Ara is defined analogously to (14).  Finally the phonon resistivity reads - 

 ρe-ph (T) = ρer (T, θer) + ρra (T, θra) …(16) 

Henceforth, the total resistivity is now written as – 

                          ρ (T, θer, θra) = ρo + ρer (T, θer) + ρra (T, θra) 
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Though this is a purely phenomenological expression, it seems to provide a 
reasonable description of the available experimental data. 

One also studied the temperature variation of different of resistivity. 

 ρdiff = [ρexp – (ρo + ρe‐ph {ρer + ρra})] …(18) 

where ρo  – Is residual resistivity                                                                                                 

ρe-ph  – Resistivity due to electron-phonon       

ρer  – Resistivity due to intermolecular phonon 

ρra  – Resistivity due to intra molecular phonon   

The resistivity has been studied theoretically by an approximate solution to the 
Boltzmann equation for the case of electron-phonon scattering mechanism14 
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where ωp is the plasma frequency. In the above equation the transport coupling 
function can be replaced by the electron - phonon coupling for superconductivity15  

 ∑ −=
ν
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1  …(20) 

Due to the factor in the denominator in equation (19) phonon with frequency much 
larger than T do not contribute. However, they give a linear contribution in T, if their energy 
is much smaller than kβ T. 

RESULTS AND DISCUSSION 

In this paper, using the theoretical formalism developed by Pintschovicus16, we have 
presented the method of evaluation of temperature variation resistivity of alkali metal doped 
fluoride. We have evaluated temperature variation resistivity due to electron-phonon (ρe-ph), 
intermolecular phonon (ρer) and intra molecular phonon (ρra), the results shown in table T2. 
In this evaluation, we have used the value of intermolecular phonon ωre = 9K and intra 
molecular phonon frequency ωra =1455K. Our theoretical result shows that ρer increasing 
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linearly with temperature and ρra increasing exponentially with temperature. When both 
combined together then resultant resistivity ρe-ph varies exponentially at low temperature and 
linearly at high temperature. We have also calculated the total resistivity ρ (T) and compared 
our results with the experimental data. Our estimated values of ρ (T) are lower than the 
measured values. In this estimation, we have used the model parameter λ, µ*, νF, ωP, τ and 
ρ0 which could be the reason of the lower valued of ρ(T). We have also evaluated the 
temperature variation of ρdiff for K3C60 fluoride. From our evaluated results, it appears that 
ρdiff has power temperature dependence at low T and almost saturated values at high T. The 
quadratic temperature dependence at low T is an indication of conventional electron-electron 
scattering. This is similar to electron doped cuprates17. The departure from T2 dependence of 
ρdiff is due to dimensionality cross over18. Thus in this paper, we conclude that for the 
estimation of temperature dependence resistivity in K3C60. The three scales of energy ωer, ωra 
and ωc (coulomb interaction) are of in same order and these are fully utilized in a model to 
estimate ρ which is sum of ρ0, ρe-ph

 and ρe-e. Some recent19-25 studies on fluorides also reveal 
similar type of behavior. 

Table 1: Parameter used in the calculation 

Tc = 22 K 
VF = 1.91 x 107cm s-1 
ωp = 1.2 eV 
HC2(0) = 49 Tesla 

ωer = 9 K 
ωre = 1455 K 
ρo = 0.47 (mΩcm) 

Table 2: Evaluated results of temperature variation of ρe-ph, ρer and ρra for K3C60 

fluoride 

T(K) ρe-ph (mΩcm) ρer (mΩcm) ρra (mΩcm) 

0 0.0 0.0 0.0 

20 0.02 0.02 0.0 

40 0.14 0.15 0.0 

50 0.16 0.17 0.0 

100 0.22 0.25 0.0 

200 0.78 0.50 0.22 

300 2.5 0.70 1.52 
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Table 3: Evaluated results of temperature variation of total resistivity ρ(T) of K3C60 

ρ (T) (mΩcm) 
T(K) 

Theory Expt. 

0 0.0 0.0 

25 2.50 2.62 

50 2.55 2.76 

100 2.75 3.16 

200 3.00 3.90 

300 4.00 4.51 

Table 4: Evaluated results of temperature variation of ρdiff = [ρexp – ρo + ρe-ph (= ρer + 
ρra )] for alkali metal doped fluoride K3C60 

ρdiff = [ρexp – ρo + ρe-ph (= ρer + ρra)] Temp. 
T2 (104K2) Theoretical (mΩcm) Linear fit (mΩcm) 

0 0.125 0.132 

1.0 0.110 0.156 

2.0 0.268 0.295 

3.0 0.455 0.462 

4.0 0.622 0.656 

5.0 0.668 0.575 

6.0 0.585 0.853 
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