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ABSTRACT

Because of the important technological and economic impacts of wind
speed onwind power generation and the increasing asarenewable energy
source in many countries of wind power, providing accurate wind speed
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prediction algorithms has becomeincreasingly significant to the planning
of wind speed plants, the scheduling dispatchable generation and tariffs
in the day-ahead electricity market and the operation of power systems.
In this paper, a strategy, which adopts ARFIMA-EGARCH model is
presented for wind speed forecasting. The results show that ARFIMA-
EGARCH model, which combines both the long memory time series and
the conditional heteroscedastic processes, possesses higher accuracy

than the classical approach towards wind forecasting.
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INTRODUCTION

Moreaccurateforecasting of wind speed hasasig-
nificantly importanceinwind power resourcesmanage-
ment dueto the role of management and operation of
wind farms, wind energy generation, and many impor-
tant applicationsin shipping, aviation, andtheenviron-
ment. Theforecasting problem of wind speed has be-
come an attractive research and many gpproachesand
practitioners have been proposed to many methodsin
order to achieveahigh-accuracy forecasting in the past
decades. Considering the uncertainty of wind speed
makestroublesinthem, Li et d. proposed awind speed
forecasting method based on time-series adopt
EGARCH models as asymmetric specifications and
GARCH-GED for distribution assumptions.

To deal with time series heteroskedasticity, there
aretwo popular techniques, whichisautoregressive con-
ditiona heteroskedasticity (ARCH) and generdized
autoregressve conditiona heteroskedadticity (GARCH)
inprevalent[9-16]. However, the conditiona techniques
suffer somedefects.

To overcome these problems, anew time series
method combined withARFIMA and EGARCH mod-
elsisproposedinthispaper. It can not only overcome
thenonnegativity constraintson the parametersof tra-
ditionad GARCH modd, but also reflectsthe asymmet-
ric effectsof positive, negativeimpact, havegrest flex-
ibility. Further testing of theresidua sequenceusingthe
Lagrange multiplier method reveal ed the presence of
heteroscedasticity apparent. After verification,
heteroscedadticity of resdua sareavail ablethroughthe
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EGARCH-M-GED (autoregressive conditional
heteroskedagticity) modé tofit, finally established the
ARIMA - EGARCH-M-GED model. The model
solvesthe RBF neural network to all the characters
intodigital, put al reasoning into the numerica prob-
lems, avoid thelossof information, thusfurther precise
error.

BASIC PRINCIPLE OF
ARFIMA-EGARCH MODEL

Let {V:} 0., beazero-mean stochastic process

needed to be modele. Themost typical linear specifi-
cationfor conditiona mean, whichistheautoregressve

AR(p) modd andthemoving average MA(q) mode

that can bemixed to havethe ARMA( p, q) modd can
be expressed as

p q
yt:C+z¢iytfi+20jgtfj+gt , (@]
i-1 =1
or
DLy, —0) =O(L)s =0, 1, @

where y, isthetime seriesneededtobemodeled, ¢ is

aconstant term of theARMA modd, r isthenumber
of autoregressiveorders, m isthe number of moving

averageorders, ¢ is i thautoregressive coefficients,
0,is j thmoving averagecoefficientsand ¢, istheer-

ror termat timeperiod t. | isthebackward operator
suchthat

q .
() = v (L) =1-Y gL, OL)=1-D 6L
i-1 =L
®(L) and ©(L) arepolynomialswith all roots out-

sdetheunit circleand share no common factors.

Thetime series { Y, } issaid to have long-

t=0,%1,--
memory property and it may be modeled by the
ARFIMA ( p,d, q) model whose memory paramete,

d, belongs to the closed interval [V,,V,], with
-0.75<V, <V, <o, described as
O(L)A-L) (Y, ~0) =0(L)p, t =01 (3
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Generaly, a GARCH (p,q) model for the condi-

tional varianceof innovations &, canbeexpressed as

P q
2 2 2
of =k+ a0l + Y el @
i—L =1

P q
with congtraints, Zai + Zﬂj <1
=1

i=1
where
a 20(=212-,p) ,

p;20,(j=12,9) ,k>0.

Nelson and Cao found that the nonnegativity con-
graintsinthelinear GARCH modd aretoorestrictive.
It imposesthe nonnegative constraints on the param-

eters, o, and g, . But therearenorestrictionson these

parameters in the EGARCH model ([1]). In the
EGARCH modd!:

In(c;) :‘0+Zp:ai Dé‘t-ﬁl/q_i —Yiéil o —\/é}
i=1 T

p
+> B, In(c? ) )
j=1

The combination of modelsin expressions(3), (4),
and (5) yieldsto theARFIMA-EGARCH Modd.

WIND SPEED FORECASTING BASED
ONARFIMA-EGARCH MODEL

Inthispaper, the dataanaysisand processing are
completed by usng Eviews5.0. Unit root testydifferentiad
stability analysisand sequence correl aion anaysisthe
intervention ARFIMA-EGARCH mode’sfitting and
forecasting are compl eted by using Eviews6.0.

Sationarity test

Itiswell known that the application of ARFIMA
model requiresthat time seriesare stationary. But not
every measuredissuited for adimension estimate. Thus
time series hasto be stationary to decide whether the
datarequiresdifferencing. For the non-stationary time
series, unit root test often be used asadiagnostic tool
for obtaining stationary seriessnceoneof theearly mo-
tivationsfor unit root testswas precisely to help deter-
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minewhether to useforecasting modelsin differences
or levelsin particular applications (e.g., Dickey, Bell,
and Miller, 1986). In this paper, wetest the sequence
of stability by Eviews6.0. Figure ListheADFtest sta-
tisticsva ueand the corresponding critical valuewhich
areobtained usngthe Eviews6.0. From Figure 1, Itis
easy to seethat the obtained statistics datais on the
rejection region whenthe ADF test isin 1%, 5% and
10%, and the series has no root unit sequence. Thus
the seriesisastationary series.

ADF Test Statistic  -18.62377 1% Critical Value* -3.4393
5% Critical Value -2.8647
10% Cnrtical Value -2.5685

Figure 1 : Unit root test for the three order difference
sequencesof wind

M oddl identification of timeseries

AccordingtotheARMA (p, q) model schemes

which were proposed by Box and Jenkins, the
autocorrelation function of time series and partial
autocorrelation function of the actual behavior and
the theory of behavior are match. The correlation
coefficient and partial correlation coefficient isob-
tained by Eviews (see TABLE 1). Thuswe can con-

clude that p=q=1. The sequence can be used

TABLE1:
order AC PAC Q-Stat Prob
1 —0. 333 —0. 333 298. 65 0
2 —0. 016 —0. 143 299. 37 0
3 —0. 032 —0. 098 302. 09 0
4 0.032 —-0. 019 304. 88 0
5 —0. 066 —0. 078 316. 77 0
6 0. 003 —0. 056 316. 8 0
7 —0. 031 -0. 071 319.4 0
8 0.01 -0. 044 319. 67 0
9 -0. 04 -0. 073 324. 03 0
10 0.012 -0. 048 324. 44 0
11 0. 027 -0. 001 326. 39 0
12 -0. 034 -0. 045 329. 55 0
ARMA (1, 1) modd fitting.

Parameter estimation

The parameter estimation of thetimeseriesmode
isobtained by Eviews 6.0. Theresultsare shownin

Variable Coeflicient Std. Error z-Statistic Prob.

LOG(GARCH) 2.800403 0.373479 7.498160 0.0000

cC 2081287 2195947 9477854 0.0000

AR(1) 0.915097 0.006211 147.3337 0.0000

MA(1) -0.204525 0.011382 -17.96949 0.0000

Variance Equation

C(5) 0.497593 0.061283 8.119587 0.0000

CI(B) 0.417238 0.008068 5171364 0.0000

C(7) 0.943322 0.005932 159.0195 0.0000

R-squared 0.778214 Mean dependentvar 278.4922

Adjusted R-squared 0.777883 S.D. dependentvar 264.9861

S.E. of regression 1248862 Akaike info criterion 11.98856

Sum squared resid 31349090 Schwarz criterion 12.00805

Log likelihood -12065.48 Hannan-Quinn criter 11.99571

F-statistic 1175462 Durbin-Watson stat 2231800

Prob(F-statistic) 0.000000

Inverted AR Roots 82
Inverted MA Roots 20

Figure2: Theparameter estimation of ARFIMA(1,1,1)

Figure2
Asshownin Figure 3, the coefficient estimatesis
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Figure3:

¢, = 0.946695Y 0, = -0.130142. Thuswe can get thetime
seriesmodel

O(L)(A-L)* (Y, ~0) =O(L)sg, t =0,£1, -

where ¢(L )= 1-0.915097L ¥ 0(L ) = 1+ 0.204525L .
Fittingall data, wecan obtain thefollowing curves:
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