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Introduction 

The conformation and diffusion of single chains in polymer networks has been the subject of interest for decades [1-5]. The 

reptation model suggested by de Gennes was at the origin of a large number of investigations both from the experimental and 

theoretical points of view, to discuss the conditions of its validity [6]. It was considered essentially through the scaling 

behavior of relaxation times and viscosity with respect to the molecular weight. Reptation is reminiscent of high molecular 

weight polymers and describe slow relaxations over long times. For shorter polymers, chain dynamics can be described by 

classical models such as Rouse and Zimm depending on the viscosity, and whether long range hydrodynamic backflow 

effects are present or not. In recent years, a renewed interest on these questions was witnessed, which triggered the 

development of fluorescence correlation spectroscopy as a powerful tool for investigating tracer diffusion [7-9]. 

 

The interest on structure and dynamics of single chains in polymer networks steams from the variety of applications 

encompassing separation processes drug delivery and chemical synthesis of interpenetrated networks beside other 

applications. In this work, we present a theoretical formalism dedicated to the study of single chain behavior in a host 
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The dynamics of a trace amount of linear chains in a swollen network are investigated in the presence of excluded volume 

interaction and long range hydrodynamic back flow effects via Oseen tensor description. The practical interest on tracer diffusion 

has triggered the development of fluorescence correlation spectroscopy as a direct way to have access to the tracer diffusion 
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medium made of a cross-linked network of polymer either of the same monomer species or a distinct one. We consider both 

dynamic and static properties. In order to better grasp the effects of crosslinks in the host medium, we consider also the case 

of the network counterpart made of free chains [10-13]. This is the reason why we include in our analysis, the predictions of 

the celebrated blob model. 

 

The blob model 

The reptation model assumes that long chains execute a motion resembling that of reptile, in trying to avoid obstacles put by 

chains surrounding it. A theory based on scaling laws was proposed by de Gennes generating debates for many years to 

identify the conditions under which the chain dynamics can be attributed to reptation. This dynamical model does not help 

understanding static properties while the blob approach is somewhat more general and can be applied to both static and 

dynamic quantities as we illustrate below.  

 

The case of free chains 

The blob model is often used for a host medium made of free chains, and gives an illustration of it (FIG. 1). The labelled 

chain is represented as a succession of blobs which consist of spheres of diameter coresponding to the mean distance 

between neighboring chains. The cross over from good to theta solvent behavior takes place at the blob ends. 

 

 

 

FIG. 1. Schematic representation of the blob model. 

 

The case of a labeled chain in a host medium made of free identical unlabeled chains can be treated using the blob model 

suggested by de Gennes [6]. Beside the solvent quality which is assumed to be good for both A (unlabeled polymer matrix) 

and B (labeled single chain) species, there are several parameters characterizing the system. First, the blob size which is fixed 

by the concentration corresponds to the average distance between neighboring A-chains denoted , directly related to the 

number of monomers Nc. Another important parameter is the B-chain chemical length NB. In the blob model, a cross over 

takes place from good to theta solvent behavior at NB=Nc. This means that if the chemical distance n between two monomers 

on the B-chain is lower than Nc (i.e. n  Nc), one finds a single chain behavior while for n  Nc, one observes many chain 

properties and theta solvent behavior. In other words, a screening of excluded volume interactions takes place beyond Nc, and 

formally, one writes [14]. 
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Nc and  depend on the polymer concentration C according to the scaling laws 
3/43

c
1N C C



   (for =3/5), 

hence, the blob size decreases as the concentration increases. One can use this formulation to calculate the properties of 

labeled chains as a function of C, such as the radius of gyration Rg defined by, 

 

2 2
g ij2
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                     (3) 

 

Since 
2

ijr  depends on i j n   only, we can transform the double sum into a single one, and for large N, we can go to 

the continuum limit replacing discrete sums by integrals to get,  
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Substituting 
2

nr from eqns. (1) and (2), recalling
2 2 2

cξ N l , yields the ratio 
2 2
g ξR / in terms of u=Nc/N only, 
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Note that the form factor P(q) is immediately deduced from Rg since, 
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             (6) 

Where, q is the amplitude of the scattering wave vector. Another illustration of the blob model concerns the diffusion 

coefficient D, which can be calculated in the presence of hydrodynamic interaction, from the angular pre averaged Oseen 

tensor [15]. 
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From the definition of D, and ignoring the Rouse term, one writes: 
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With similar manipulations as in the case of Rg, we get, 
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Where the function  (u) is given by, 
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The hydrodynamic radius Rh can be deduced from the diffusion coefficient and the known relationship, 

 

B

hπη

k T
D
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Let us point out that, in the Rouse limit, the dynamics are governed by local frictional forces only, and the diffusion 

coefficient becomes:  

B
Rouse

k
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T
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                            (12) 

 

The monomer friction coefficient z is related to the viscosity h by Stock’s law z = 6phl”  Represents the monomer friction 

coefficient =6l. The question to be asked is whether this blob model can be extended to the case where the host medium 

is a cross-linked network noting that the blob size depends on the polymer concentration, while for a cross-linked network, it 

is fixed by the degree of cross-linking. 

 

Effects of cross-linking 

Here, we show that by considering the second derivative of the free energy for a cross-linked network in solution (i.e. the 

spinodal equation), one finds that the result has the form known for a linear polymer/solvent binary solution, with a 

renormalized degree of polymerization N depending on the cross-linking density. According to the Flory Rehner theory of 

rubber elasticity [16] the free energy of a network a swollen by solvent S is, 
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Where, as is the polymer A/solvent interaction parameter. The second derivative with respect to a is, 
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We recall that the corresponding quantity for a linear polymer/solvent system is, 
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It means that, by renormalizing the degree of polymerization Na in the following way: 
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One can go from the cross-linked network to the free chain system. This argument is however not sufficient, and does not 

allow us to validate the extension of the blob model to a cross-linked host medium. Since this extension requires a more 

refined analysis, we postpone its discussion to a future work and turn to tracer dynamics. 

 

Dynamics of linear chains in cross-linked networks 

Polymer chains swell in good solvents and shrink under poor solvent conditions. Such responses are mainly due to excluded 

volume interactions and depend on whether the solvent temperature is above (swelling) or below (deswelling) the 

characteristic theta value. Similar responses are found for strands between consecutive crosslinks in networks or gels. 

 

Swelling and deswelling processes play the key role in many applications such as drug delivery and targeting with molecules 

having active principles and specific functionalities. Such smart responses can be used to liberate molecules from a 

contracted network by solvent uptake, or sequestrate them by rejecting solvent. The partition of molecules in and outside the 

network at equilibrium depends on the chemical potential. Any discontinuity in this potential induces transfer of molecules 

across the network’s boundary via dynamical processes. If the amount of linear chains is low, their diffusion in the network 

becomes reminiscent of tracer diffusion. Therefore, in order to study the dynamics of a trace amount of polymer (i.e. single 

chain) in a cross-linked network, we introduce the random phase approximation (RPA) and start with static properties 

representing a prerequisite to dynamics.  

 

Static properties 
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In its static form, the RPA gives the matrix of partial structure factors in Fourier space S (q) in terms of the scattering wave 

vector q, its counterpart S0 (q) for non-interacting systems and the matrix of excluded volume parameters v,  

   1 1
0q q  S S ν

                                                               (17) 

 

Resolution of this equation for the ternary system network A/linear polymer B/solvent S yields the explicit forms of partial 

structure factors Sij (q) as follows: 

   
 

2
1 1 ab

aa 0a aa 1
0bb bb

ν
ν

ν
S q S q

S q

 


  


                                   (18) 

 

Sbb(q) can be obtained from this expression by interchanging indices a and b, and Sab (q) is,  

   
     
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ab ba 1 1
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ν
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The excluded volume parameters vij depend on solvent volume fraction s and interaction parameter ij as: 
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Where, v0 is a standard unit volume. To proceed further, one needs the bare structure factor S0i (q), which for the network A, 

takes the classical Ornstein Zernike form (17), 

 
1

2 2 2 2
0a a a a c1 ξ  ;   ξ    


    

 
2S q q N    (21) 

 

a being the network volume fraction. For the trace amount of linear chains B, we have, 

 

   0b b b     bS q N P q
                                  (22)

 

b being the volume fraction of B, Nb its degree of polymerization, and Pb(q) its form factor expressed in terms of the radius 

of gyration Rgb as: 
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 (23) 

Once we have characterized the static properties, we can turn to dynamics starting with the first cumulant  (q). 
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The first cumulant  

The first cumulant describes the dynamical relaxations at relatively short times before buildup of long time memory effects. 

This frequency is often found to characterize the major aspects of the dynamical behavior in the relevant space and time 

domains. It is easily accessible to modeling in terms of the system’s parameters, allowing a direct confrontation with 

experiments. :  For a multicomponent system, the matrix W(q) is proportional to the ratio of mobility and structure matrices 

M(q) and S(q), respectively,  (q) is proportional to the ratio of mobility. 

 

   2 1
Bq q k T q  M S

                                           
 (24) 

Solving this equation for the ternary mixture A/B/S yields, 

 

 2 1
aa B aa bb ab baΔ   k Tq S M S M S

                          
(25) 

 

 2 1
ab B ab aa aa abΔ   k Tq S M S M S

                            
 (26) 

 

Where S=SaaSbbSabSba, bb and ba can be inferred from eqns. (25) and (26), respectively, simply upon interchange of 

indices a and b, noting that, in general, Mab  Mba, but Sab=Sba. The mobility Mij depends on the specific hydrodynamic model 

chosen to describe frictional forces and viscous backflow effects. We discuss these differences below by examining explicitly 

the effects of long range hydrodynamic interactions. We recall that Rouse and Zimm hydrodynamic models are valid at 

relatively short times, while reptation intervenes only at very long times and necessitates the inclusion of memory effects 

which is beyond the scope of the present work. 

 

In the presence of hydrodynamic interaction, ij can be expressed as sums of two parts, one dealing with short range 

frictional forces of the Rouse type, and the other, reminiscent of the long range hydrodynamic backflow effects, described by 

the Oseen tensor Tij, 

 

ij ij ij

ij

1
I :T R R

R
   

                                         

 (27) 

Rij being the vector distance between i and j monomers. In the following results, we use the superscript R to designate Rouse 

dynamics and introduce the integrals Jij representing the long range hydrodynamic interaction, 
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bb is inferred from aa while ba from ab by a proper interchange of indices a and b. The Rouse terms in these equations 

are fixed by the static structure factors, 

 

R 2 R 2a bb a ab
aa B ab B

a a

                
Δ Δ

S S
q k T q k T ,

S S

 
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 
                             (30) 

 

While the integral Jij may be written as: 
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0
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q x x
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    (31) 

 

We shall assume, without loss of generality, that the friction coefficients are equal za = zb = z”, that the friction coefficients 

a and b are equal and related to the viscosity by Stock’s law a=a==6l. 

 

Fast and slow modes 

Within linear response theory, the generalized Langevin equation for  (q,t), the matrix of dynamical scattering functions is 

given by, 

         
0

t

q,t q q,t du q,t u q,t
t
   


  

  

                    (32) 

The RHS expresses the effects of memory at long times and will be disregarded here, which means that the solution has a 

simple exponential form:  

 

     exp 0q,t t q,t                         (33) 

 

Solving this equation for the ternary mixture A/B/S, yields the four elements of the dynamic scattering matrix aa (q, t), bb 

(q, t), ab (q, t) and ba (q, t). The first one aa (q, t) characterizes the host medium, it describes how host chains modify the 

network relaxations inhibiting its swelling behavior. Motion of the trace amount of polymer B can be extracted from the four 

’s and in particular from bb (q, t). Resolution of eqn. (33) yields: 

  sf
aa f sΣ , e e

t t
q t a a

 
   (34) 
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t t
q t b b
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The subscripts f and s refer to fast and slow modes, respectively; ’s are the Eigen values of  (q), while a’s and b’s are the 

mode amplitudes and satisfy the conditions af+as=aa (q, t=0)=Saa (q), bf+bs=bb (q, t=0)=Sbb (q). The two Eigen values of the 

first cumulant matrix are,  

f,s aa bb aa bb ab bbΓ δ;  ;   δ =
2 4

 
         

2

 (36) 

One can proceed further by calculating the frequencies and amplitudes of the modes under specified conditions of the system 

given its parameter values. In the case of a trace amount of the probe B, the volume fraction B must be chosen small 

meaning that the ratio bab must be much less than 1. In this case, one can deduce useful information about the 

modes and in particular the tracer diffusion coefficient. Recall that the fast mode is essentially influenced by the network 

dynamics reflecting the total polymer concentration fluctuations, while the slow mode is reminiscent of the probe diffusion 

throughout the obstacles set by the network. It is this one which gives the tracer diffusion when the volume fraction B is 

small. We will content ourselves with few numerical applications, hoping to report a more detailed analysis in the near future. 

 

In FIG. 2a, we represent the normalized diffusion coefficient for the slow mode as a function of the polymer volume fraction. 

The curves show a slowing down of the diffusion when Nb increases above NC. For short chains and Nb<NC, this tendency is 

reversed and the slow mode speeds up as the polymer concentration increases. It is interesting to note that the fast mode 

exhibits the reverse trend since the corresponding diffusion coefficient goes up with a higher concentration of the medium as 

shown in FIG. 2b.
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FIG. 2. Normalized diffusion coefficient of the slow mode Ds (q)/D0 versus  a) for different values of Nb from bottom 

up Nb=30, 20, 10 (b/=0.3, ab=0.1). b) Ds (q)/D0 and Df (q)/D0 versus as indicated on the figure. (D0=kBT/). 

 

On the other hand, when the incompatibility of the two polymer species increases with a higher value of ab, the slow process 

slows down further following enhanced fluctuations, especially for  sufficiently high (FIG. 3a). This behavior is reminiscent 

of the critical slowing down known for interdiffusive relaxation. However, the fast mode speeds up in response to a higher 

AB interaction as one can see from FIG. 3b shows opposite trends for fast and slow diffusion as a function of polymer 

volume fraction f”  
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FIG. 3. Normalized diffusion coefficient of the slow mode Ds (q)/D0 versus  a) for different values of interaction 

parameter ab from bottom up ab=0.2, 0.15, 0.1 (Nb=20, b/=0.3). b) Ds (q)/D0 and Df (q)/D0 versus  as indicated on 

the figure. In plotting these curves, we used ab=0.15, 0=0.2, as=bs=0.5, NC=20, Nb=30. 

 

As pointed out earlier, we content ourselves with those applications of the proposed model leaving a more detailed 

quantitative analysis for the near future. 

 

Result, Discussion and Conclusion 

The dynamics of single chains in a polymer matrix has received a renewed interest under the terminology of tracer diffusion 

after the emergence of new applications in Nano sciences and nanotechnologies. Clearly, the knowledge of the properties of a 

single chain in a polymer medium made either of identical unlabeled chains, slightly different, or entirely distinct matrices is 

of primary importance for understanding the properties of guest/host systems in general. For a single labeled chain in a sea of 

identical unlabeled chains, the blob model describes the behavior from small scales (i.e within the blob) to larger ones (for 

monomers far apart located at a distance higher than the blob size). The blob marks the transition from single to many chains 

behavior and its size decreases with increasing concentration. This model is reasonable for semi dilute and concentrated 

solutions but it was applied so far only for labeled chains, in a matrix of identical unlabeled free chains. In the present work, 

we suggest extending it to tracer diffusion in a cross-linked network. Here, one deals with two distinct species even in the 

case where monomer units are similar. The dynamics of the linear chain and the cross-linked network correspond to different 
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mechanisms and may fall on different time scales. This is why the two-mode approach was proposed based on the random 

phase approximation. 

 

The general theory based on this approximation is given in matrix form including static and dynamic considerations. In the 

case of three component systems, cross-linked network A/linear chain B/solvent S, one finds a combination of fast and slow 

processes which we identified according to their frequencies and amplitudes. We presumed that tracer dynamics can be 

extracted from the slow process provided that parameter values are chosen adequately. The proper choice must be made for 

contrast factors (i.e. which signal to be probed), degree of crosslinking, the size of the linear chain compared to that of the 

network strand (i.e. confinement ratio Rg (chain)/(network)), the interaction parameters (i.e. excluded volumes) and the 

amount of linear chains (i.e. volume fraction). In the Rouse limit, the dynamics depend essentially on static structure factors 

and the monomer friction coefficient. If long range hydrodynamic interactions and backflow effects are present, then a model 

developed by Zimm based on the Oseen tensor can be adopted. Substantial changes from the Rouse limit are found but need 

to be evaluated numerically with a reasonable choice of the system parameters. This choice is often dictated by the 

experimental conditions and the measured quantities and we hope to report in the future, a detailed numerical analysis of the 

predictions of the formalism, along with a confrontation with experiments. 
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