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ABSTRACT KEYWORDS
Thermal instability in ahorizontal layer of nanofluid saturated by anisotro- Thermal instability;
pic porous medium is investigated for realistic boundary conditions. The Nanofluid;
flux of volume fraction of nanoparticlesis taken to be zero on the isother- Anisotropic porous medium;
mal boundaries. The modified Darcy equation that includes the time de- Rayleigh number;
rivativeterm used to model the momentum equation. A linear stability analy- Gderkin method.

sis based upon normal mode technique is used to study the onset of insta-
bilities of nanofluid saturated by anisotropic porous medium. Rayliegh
number on the onset of stationary convection has been derived using
Galerkin method and graphs have been plotted for case of stationary con-
vection to study the effects of the thermal anisotropy parameter, mechani-
cal anisotropy parameter, Lewisnumber, modified diffusivity ratio porosity
and nanoparticles Rayleigh number on stationary convection. Oscillatory
convection has been ruled under certain condtion.
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INTRODUCTION

Thesubject of thermd ingtability in porousmedium
has been studied extensively in recent years. Thereare
many real world applicationsof thermal instability in
porous medium for instance, in geophysics, food pro-
ng, il reservoir modding, petroleumindustry, bio-
mechanics, building of therma insulations, nuclear re-
actorsand many other areas. Theoretical and experi-
menta resultsonthestability of cellular convectionof a
fluid layer in nonporous medium have been given by
Chandrasekhar (1961). Lapwood*® has studied the

convectiveflow in aporous medium using linearized
stability theory. The Rayleighinstability of athermal
boundary layer in flow through aporous medium has
been considered by Wooding'®. A good account of
convection problemsin aporous mediumisgiven by
Vafa and Hadim and Nield and Bgjan*".. In geo-
thermal system with aground structure composed of
many strataof different permeabilities, theoverdl hori-
zontal permeability may beuptotentimesaslargeas
thevertical component. Processes such as sedimenta-
tion, compaction, frost action, and reorientation of the
solid matrix areresponsiblefor the creation of aniso-
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tropic natural porous media. Anisotropy canasobea
characteristic of artificial porousmeaterid likepelleting
used in chemical engineering process and fiber materi-
asusedininsulaing purposes.

Nanofluidisthemixtureof basefluid such aswater
or ethyleneglycol and other coolants, oil and other lu-
bricants, bio-fluids, polymer solutionsetc. withavery
small amount of nanoparticles or nanofibressuch as
metasor metallic oxides (Cu, CuO,Al,O,), meta car-
bides(SIC), nitrides(AIN, SIN) or metas(Al, Cu) etc.
having dimensionsfrom 1 to 100 nm. It was Choi*2
whofirst proposed thisterm “nanofluid.” The convec-
tion of nanofluidsbased on mode of Buongiorno@ has
been studied by Nield and Kuznetsov!*®, Nield and
Kuznetsov*3141921 - K yznetsov and Nield*>1519.20
Chand and Rand>"%, Chand et a.3489, Chand®4
and Ranaet al.**# whileAgarwal et al.¥ studied the
effect of anisotropy ontheonset of convectioninapo-
rous layer of nanofluid. All these study based upon
Buongiorno model, whichincorporatesthe effects of
Brownian motion and thermophoresis. The choice of
the boundary conditionsimposed in these studieson
nanoparticlesvolumefractionissomewhat arbitrary, it
could be argued that zero-flux for nanoparticlesvol-
ume fraction is more realistic. Recently Nield and
Kuznetsovi? studied thethermd ingtability of nanofluid
inaporousmedium by taking normal component of the
nanoparticleflux zero at boundary whichismorephysi-
cdly redigtic. Zero-flux for nenoparticlesmeanonecould
control the value of the nanoparticle fraction at the
boundary inthesame way asthetemperturetherecould
be controlled.

In this paper an attempt has been made to study
thethermd instability inahorizontal layer of nanofluid
in an anisotropic porous medium by imposing
nanoparticlesflux zero at boundaries.

MATHEMATICAL FORMULATIONSOF
THE PROBLEM

Congder aninfinitehorizonta layer of nanofluid of
thickness ‘d’ bounded by planes z=0 and z=d, heated
from bel ow in an anisotropic porous medium of me-
dium permesbility K and porosity € asshownin Figure
1. Fluid layer isacted upon by gravity forceg (0, O, -
g). Thenorma component of thenanoparticlesflux has
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to vanish at an impermeable boundary and the tem-
perature T istakentobeT atz=0and T az=d, (T,
> T,). The reference scale for temperature and
nanoparticlesfractionistakentobe T, and ¢, respec-
tively For smplicity, Darcy’s Law is assumed to be hold
and the Oberbeck-Boussinesgisemployed. Themath-
ematical equationsdescribing the physical modd are
based upon thefollowing assumptions.

o
L 4

Heated from below
Figurel: Geometrical configuration of theproblem

Assumptions

1) Nanoparticlesareconsidered spherical inshape,

2) Nochemical reactioninahorizonta layer of fluid,

3) Sizeof nanoparticlesaresmal ascompared to pore
marix,

4) Nanoparticlesaresphericd;

5) Theporousmedium isassumed to be possessing
isotropy inthe horizontd isotropy,

6) Thefluid phaseand nano particlesareinthermal
equilibrium sate,

7) Radiation heat transfer betweenthesidesof wall is
negligiblewhen compared with other modesof the
heet transfer,

8) Nanoparticlesarebeingsuspendedinthenanofiuid
using either surfactant or surface chargetechnol-
ogy, preventing the agglomeration and deposition
of these on the porous matrix.

Governing equations

According totheworks of Chandrasekhar (1961),
Nield and Kuznetsovi?? and Agarwal et al.[¥, thegov-
erning equationsin anisotropic porousmedium are

v-a=o M
0=-Vp+iop, +(1-0p(1-a(T-T,)jg-pK a, (2

e i Pl ——————
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whereq (u, v, w) isthe Darcy velocity vector, p the
density of nanofluid, Py density of nanoparticles, pthe
hydrostatic pressure, ¢ the volume fraction of the
nanoparticles, o isthe coefficient of therma expansion,
wisviscosity and K (= K ;(if + Jj)+ K ;*(kk )) theaniso-
tropic permeability tensor; whereK , denotesthe per-
meability inx- direction and K, permeability in z- di-
rection.
Theenergy equation for nanofluidisgiven by

(po), %T+ (pc) q-VT =k, V2T +£(pc)p[DBV(p-VT +%VT -VTJ ©)

where(pc)  isheat capacity of fluidin porousmedium,
(pc) A isheat capacity of nanoparticlesandk _isthermal
conductivity.

Theequation of continuity for thenanoparticlesis

aa(tp+1q -Vo=D_ Vo + TlT V7T, @)
where D, isthe Brownian diffusion coefficient, given
by Einstein-Stokes equation, D_ isthethermoporetic
diffusion coefficient of the nanoparticlesand s isporos-
ity inhorizonta plane.

We assume that the temperature is constant and
nanoparticlesflux iszero ontheboundaries. Thusbound-
ary conditions? are

ép D, aT
w=0, T=T, D,—+——=0at z=0
* "foz T, oz and
w=0, T=T, D6q> D, aT_O at z=d. (g
"oz T, oz

Weintroduce non-dimensional variablesas

y'7)) = ( )(u w',)=(“’v’w)d, LY
K, od’

r_ PK4, ’ ((P_(Po) ’ (T_Tl)
= , = ’ T = y
P HK z ¢ P, (To _T1)
k.
where K+ _W iseffectivethermd diffusivity of the
fluid.

Thereafter dropping the dashes (“) for simplicity.
Equations(1) - (5) innon-dimensiona form canbe
writtenas
V.q=0, (6)

0=-Vp-q,-Rmé, + RaT&, — Rngé, (7)

—= Fyl] Paper

oT o° N N,N
—+qVT =V + T+—-LVeVT+—2-LVT.VT,
o A (11 " 6zzj Le '’ Le 8)

1 1 N
6(|)+ qVq)=—V o+

T,
o Ot LeV ©)

Ky o . 1 1
where L€ = 5™ isLewisnumber; d.= (gu z WJ

B

K
isanisotropic modified velocity vector; &=~ isme-

chanical anisotropy parameter; N= 1 is therma

KTZ

. pgadKzTo_Tl .
anisotropy parameter; Ra=+ is

(0, +p(-¢,)gdK ,

HKTZ

a0 —posok d <

i,

Rayleigh Number; Rm = isden-

sity Rayleigh number;

. . DT (To 'Tl) .
nanoparticles Rayleigh number; N. =W IS

modified diffusivity ratio, Ns = ismodified

particle-dengity increment.
Thedimensionlessboundary conditionsare

w=0, T=1, a(')+N T _oat 2=0 and
oz "oz
oo aT

w=0, T=0, —+N,—=0at z=1.
oz oz (10)

Basic solutios

Thebas c statewasassumed to bequiescent andis
givenby
u=sv=w=0, p=p@), T=T,2 o=9,(2.

Equations (6) — (9) using boundary condition (10)
gve
T,=1-2 ¢,=0¢,+N,z (1)
where ¢, isreference va uefor nanoparticlesvolume
fraction.

Thebasicisidentical with solutions obtained by
Nield and Kuznetsov??while basic solution for the
nanoparticlesvolumefractionisdifferent than Agarwa
etal.lw,
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Perturbation solutions

To study the stability of the system, we superim-
posadinfinitesmd perturbationsonthebascsae which
areof theforms
a(uv,w)=0+q (uv,w),T=T, +T 0=0, +¢,p=p,+p,
withT, =1-z,9, =¢, +N,Z

Thereafter dropping the dashes (*) for simplicity.

Using theequation (11) in the equations(6) - (9),
we obtain thelineari zed perturbation (neglecting the
product of the prime quantities) equationsas

(12)

0=-Vp-q,+RaTé,—Rneé,, (14)
or , O ar o8¢) 2NN, oT
—w=| Vi [T+ N, =T |-

a " (" +azZ)T+ ( " oz az) Le az' 19
1a(P 1 2 NA 2

SroW=To V +—AVT

oot ¢ ¢ Le (16)

It will be noted that the parameter R _isnot in-
volved in theseand subsequent equations. Itisjust a
measure of thebasic static pressure gradient.

Eliminating ‘p’ from equation (14), we have
., 10
(V +E e (17)
Where V2, istwo-dimensiona Laplacian operator on
horizontd plane.

)w= Rav:T-RnV.e,

NORMAL MODESAND STABILITY
ANALYSIS

Andyzing thedisturbancesinto thenorma modes
and assuming that the perturbed quantities are of the
form

[w,T,0]=[W(2),0(2),®@explik x+ik y+nt), (18)
wherek ky are wave numbersin x and y directions
respectlvely and nisgrowth rateof disturbances.

Using equation (18), equations (17), (15) — (16)
become

(%Dz—az)w+azRa®—aan®=0' (19)

N, N 2N, N N
2 2 A'YB _ A'YB _ B —
W+(D -na —n+7l_e D TLe D]@ LeD(I)—O,(zo)

B or-ado-( G0 Ne=0.

e Le
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Bboundary conditionsare
op oT

a—+NA—=0 at
VA

w=0, T=0,
0z

z2=0,1. (22)

_d — (|2 2ia di ;
Where D = = and a=,/k; +kj is dimensionless

horizonta resultant wavenumber.
METHOD OF SOLUTION

The Gaerkinweighted residua smethodisused to
obtai n an approximate sol ution to the system of equa-
tions(19) —(21) with boundary conditions (22). In this
method, thetest functionsarethe sameasthebase (trid)
functions. Accordingly W, ® and ® aretaken as

W=YAW 0=)B0,0=)C0, . 23)
WhereAp, B, and Cp areunknown coefficients, p=1,
2, 3,...N and the base functions Wp, @p and CDp are

assumedinthefollowingform

Wp:@p:z”—z”‘l,(I)1=NA(zz—z) and

1y 2
(] =§NA2 p=234.. (24)

such that W, 6, and (DP satisfy the corresponding
boundary conditions. Usi ng expressionfor W, ® and
®inequations(19)— (21) and multiplying first equation
by W, second equation by 0, and third by D, and
[ ntegratl nginthelimitsfrom zero to unity, we obtal na
st of 3N linear homogeneousequationsin 3N unknown
A, B, andC p=1,23,...N. For existing of nontrivia

ol Ut on thevanish ng of thedeterminant of coefficients
producesthe characteristics equation of thesystemin
term of Rayleigh number Ra.

STABILITYANALYSS

We confine ourselvesto the one- term Galerkin
gpproximation. Thuseigenva ueequationisgiven by

a?Ra[(a2+1o)+%)+aan[N (a*+10)+ = - =Z(na? +10+n))
—(az +l€0]((a2 + 10)+ %J(na2 +10+ n)= 0.

For neutra stability thereal partsof theniszero.
Henceon puttingn =iw, (wherew isreal and dimen-
sionlessquantity) inequation (25), wehave

(25)
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aZR{(a2 +1d+ lal e)+a€R {NA (& +1()+L;e(na2 +10+io)))

o
{az +1£?I(a2 +1()+mj;e}na2 +10+ico)= 0

Sationary convection

(26)

For stationary convection o = 0 with one- term
Galerkin approximation, equation (25) reducesto
(a2 +1(jNA +('qa2 +1C)L—e

i 2 @ 2 € 27
Ra= = (a + g}na +1() l@+19 Rn (27)

Itisclear fromequation (27) that stationary Rayleigh
number Raisafunction of dimens onlesswave number
a, thermal anisotropy parameter n, mechanical anisot-
ropy parameter &, Lewisnumber Le, modified diffusivity
ratioN, porosity £ and nanoparticles Rayleigh number
Rnindependent of modified particle-dengity increment
parameter N,,. Thusinstability ispurely phenomenadue
to buoyancy coupled with conservation of nanoparticles.
Thus average contribution of nanoparticlesflux inthe
thermal energy equationiszero.

Thecriticd cdl sizeat the onset of instability isob-

oRa _0
tained from the condition { 55 aca * which

gves
, 100Y/, ) .Le
(nac —?J(a +10f —(10n-10)a’ S Rn=0. (29

Thus critical wave number a, depends upon ther-
mal anisotropy parameter ), mechanical anisotropy
parameter &, Lewisnumber Le, modified diffusivity ra-
tioN,,, porosity £ and nanoparticles Rayleigh number
Rn and independent of modified particle-density in-
crement parameter N .. Theinterweaving behaviors’ of
Brownian motion and thermoporesi sof nanoparticles
evidently doesnot changethecritica szeof theBénard
cdl a theonset of ingtability. Assuch, thecriticd sizeis
not afunction of any thermo physical properties of
nenofluid.

In the absence nanoparticles[Rn=Le=N, = 0]
i.e. for ordinary fluid, critica wave number isgiven by

10
a, = \/% and the corresponding critical Rayleigh

—= Ful] Paper

Y, n A J
isQi Ra, =10 —+1+—+ =
number isgiven by ~a. { £ e 5 )
For isotropic porousmediumi.e.if £=n=1, the
critical wavenumber 5 —./10 and corresponding criti-
ca Raylegh number Ra, = 40.
Thusin the absence of nanoparticles|[Rn=Le=
N, = Q] for the case of isotropic porous medium
[ & =n=1]thecriticd Rayleighnumberisgivenby Ra
=40, which dightly greater than critica Rayleigh num-
ber Ra, = 4n?, result obtained by Lapwood (1948) for
regular fluid.

Oscillatory convection

For oscillatory convectionwehave o #0, thuson
equating thereal and imaginary partsof equation (26),
we have

aZRa(a2 + 10)+ aan[(a2 + 10)NA + (11 a’+ 10)5) =
€
2 E 2 2 _ C\)ZLe
(a +3 )[(na +10)a* +10) - J
and

2ral®. a2rnl 2, 100 (.2 2 L
m[a Raf+a Rn e—[a +EJ((a +10)+ (na +10)f]]=0. (30)

€

/(29)

In order for o tobereal it isnecessary that
aZRa(a2 + 10)+ aan[(a2 + 10)NA + (11512 + 10)5’) <
€

[az + %)((n a’ +10)a’ +10))

Aswe havenoted that for typica nanofluid Leisof
order 10°--10°and N, isnot greater than 10, Rn are of
order 10-10?and ¢, £ and n are of the order 102 - 10
1, Under these approximationsinequality (31) doesnot
holdif

(31)

azRa(a2 + 10)+ aan[(a2 + 10)NA + (11::12 + 10)%) p

[az + %)((n a’+ 10)(::12 +10))

hencew isnot real.
Thusoscillatory convection hasbeen ruled out if

and

a’Ra(a’ +10)+ aan((a2 +10)N, + (pa® + IO)EJ >
&
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(az +?J((rld2 +10)a? +10))

To study theinfluence of thermal anisotropy pa-
rameter ), mechanical anisotropy parameter &, Lewis
number Le, modified diffusivity ratioN, andporosity
on the stationary convection for the case of bottom-
heavy distribution of nanoparticles[negative vaue of

0JRa O0Ra ¢Ra

Rn], weexaminethebehaviour of Ton ' 9t ale’

JRa oRa .
N, a’ldg andyticaly.

Fromequation (27), we have

(@2 + 10N, +(na’ + 10)%
(a®+10)

1 10

Ra= g(az + gj(naz +10)- Rn.

2

oRa , 10 a Le

1) W=(a +€J—MTR”' Aswehave
noted that for typica nanofluid Leisof order 10%-
103 ¢, £ and n are of the order 103 - 10t and Rn
<0 [for a bottom-heavy distribution of

nanoparticles]. Under these approximations

oR .
Ea > 0, thusthermal anisotropy parameter ) has

gtabilizing effect on the stationary convection.

oR
2) a—; < 0, thus mechanical anisotropy parameter &
destabilizethe stationary convection.

3) % <0, thus porosity destabilizesthe stationary

convection.

R , - ,
4) % > 0, thusLewisnumber stabilizethe station-

ary convection.

oR
5) aNf >0, which meanthat modified diffusivity ratio

gtabilizethe stationary convection.
RESULTSAND DISCUSSION

The thermal instability in a horizontal layer of

flano Soienoe and flano Teohnology

nanofluidisinvestigated. Theexpressionfor the sta-
tionary Rayleigh number isgiven by equation (27). The
graphical representation of the effects of anisotropic
parameters on stationary convections for abottom-
heavy distribution of nanoparticles|[negative vaue of
Rn] aresgivenin Figures2- 6.

Figure 2indicatesthe effect of thermal anisotropy
parameter n, on the stationary convection for thefixed
valueof Le=500,£=0.6,6=0.4,N,=5Rn=-1
anditisfoundthat thecritica Rayleigh number increases
withincreaseinthevdueof therma anisotropy param-
eter n, indicating that the effect of thermal anisotropy
parameter i) istoinhibit the onset of convection.

Figure 3indicatesthe effect of mechanica anisot-
ropy parameter & on the stationary convection for the
fixedvalueof Le=500,1=0.8,£=0.4,N,=5,Rn=
- 1anditisfound that the stationary Rayleigh number
decreases with increase in the value of mechanical
anisotropy parameter &, thus mechanical anisotropy
parameter & isto advancethe onset of stationary con-
vection.

Figure4 showsthe variation of Rayleigh number
with wave number for thefixed vaueof Le=500,n =
0.7,6=0.4,N,=5, Rn=-1and different valueof the
porosity and it isfound that the Rayl eigh number de-
creaseswithincreaseinthevaue of porosity thuspo-
rosity destabilizethe stationary convection. Thisisgood
agrement of the result obtained by Chand and Rand®.

Figure5 showsthevariation of stationary Rayleigh
number Rawith wave number afor for thefixed value

700

Le=500,5=0.6.

650 £=04,Nj=5SRn=-1 ,n=0.8

P 4
y,
600 ) P
\
. 550 \ v
z \ &
s ",‘\ P _~ n=0.6
% 500 ""‘.\‘ / P
= \ _ g
g 450 L/")//
= \ e
) X
P 400 \;
SR n=0.4

350

300

250

0] 5 10 15 20
Wave Number

Figure2: Variation of gationary Rayleigh number with wave
number for different valuesof ther mal anisotr opy parameter

n
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600 - Le=500.N,=5,
Rn=-1.e=041 =08

550

wv
[=]
o

Rayleigh Number
Py
w
o

400

350

. 10
Wave Number

Figure3: Variation of gationary Rayleigh number with wave
number for different valuesof mechanical anisotr opy param-

eter §

3000

Le=500.=04,
N=0.7,NA=35,

2500 Rn=-1

N
o
[=]
o

=

i
w
o
o

Ravleigh Number

500

20

Wave Number

Figure4: Variation of gationary Rayleigh number with wave

number for different valuesof porosity €

ofn=07¢&=04,¢=05N,=5Rn=-1and
different values of Lewisnumber. It isfound that the
Rayleigh number Raincreases asvauesof Lewisnum-
ber inceases. Thus, Lewisnumber stabilizesthe sta-
tionary convection. Thisisgood agrement of theresult

obtained by Chand and Rana (2012a).

Figure6 showsthevariation of stationary Rayleigh
number Rawith wave number afor fixed valueof n =
0.7,£=0.4,£=0.5Le=500, Rn=- 1 and different
valuesof modifieddiffusivity ratioN . Itisfound that
the Rayleigh number Raincreases asva ues of modi-
fied diffugivity ratioinceases. Thus, modified diffusivity
ratio stabilizesthe stationary convection. Thisisgood
agrement of the result obtained by Chand and Rana®.
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NOMENCLATURE

wavenumber

depth of fluid layer
diffusoncoefficient

thermophoretic diffusion coefficient
gravity force

Permeability tensor
permesbility inx- direction
permesbility in z- direction
Lewisnumber

growthrateof disturbances
modified diffusvity ratio

modified particle-density increment
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pressure
Darcy velocity vector

anisotropic modified vel ocity vector

thermal Rayleigh Darcy number
critica Rayleigh Darcy number
density Rayleigh number
concentration Rayleigh number
time

temperature

(u,v,w) velocity components
(X,¥,2) spaceco-ordinates

Greek symbols

o therma expansion coefficient

u viscogty

€ porosity dong horizonta plane

o heat capacity ratio

p densty of thenanofluid

P, dengity of nano particlesand

(pc),,  heat capacity in porous medium

(pc)p heat capacity of nano particles

[0) volumefraction of thenanoparticles

&, mechanical anisotropy parameter

n thermal ani sotropy parameter

k;  thermd diffusivity tensor

® frequency of oscillation

Vv,  two-dimensiona Laplacianoperator

Superscripts

‘ non-dimensiond variables

Subscripts

p patice

f flud

b basicsolution

h horizonta plane
CONCLUSIONS

Thermd ingtability inahorizonta layer of nanofluid
anin anisotropic porousmediumisinvestigated. The
influences of anisotropic parameters and other param-
eterson the stationary have been investigated both ana-

Iytically and graphicaly.
Themanconclusonsare:

1) Basicsolutionforthenanoparticesvolumefraction
is changed with zero-flux of volume fraction of

flano Soienoe and flano Teohnology

2)

4)

5)

6)

[1]

[2]
(3]
[4]

[5]

[6]

[7]

8]

nanoparticles

Presence of nanoparticlesdecreasesthe stability of
Sysem.

Oscillatory convection hasbeenruled out if

a Ra(a2 + 10)+ a Rn((a2 + 10)N At ('qa2 + 10)":e) p2

(a2+1—§)((na2+10)(a2+10))

The presence of the nanoparticleslowersthevaue
of thecritica Rayleigh number by usually by sub-
gantid amount. Thusnanofluidislessstableascom-
paredtoregular fluid.

Thermal anisotropy parameter, Lewisnumber and
modified diffusivity ratio stabilizethe sationary con-
vection for the case of bottom-heavy distribution
of nanoparticles[negativevaueof Rn|.

Porosity and mechanica anisotropy parameter de-
stabilizesthe stationary convection for the case of
bottom-heavy distribution of nanoparticles[nega-
tivevaueof Rn].
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