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ABSTRACT 
 
This paper focuses on the absolute stability of a new class of Takagi-Sugeno (T-S) fuzzy
Lurie control systems with time-delay and time-variant uncertainties in the state as well as
the nonlinearity function. Based on Lyapunov-Krasovskii functional (LKF) together with
linear matrix inequality (LMI) approach, a novel delay-dependent absolute stability
criterion for such new uncertain T-S fuzzy Lurie control systems with time-delay is
derived. In the end, a numerical example and its simulation results are presented to
illustrate feasibility and effectiveness of the proposed result. 
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INTRODUCTION 
 

As we all know that lurie control system with time-delay is an important nonlinear system, as the time-delay 
phenomenon is frequently encountered in various of engineering systems such as chemical process, biological systems, 
medical systems, mechanical systems, economic systems, long transmission lines and so on. Since the existence of time-
delay is often the main source of instability and poor performance, some stability criteria of Lurie systems with time-delay 
have also been derived over the past years[1]. But the stability conditions mentioned above are all delay-independent, which 
are often conservative when time-delay is small. Based on this, a considerable number of delay-dependent absolute stability 
conditions have been proposed[2]. Moreover, since Lurie direct type control systems include a class of plants without any 
practicality in engineering practice, some delay-dependent stability conditions have also been proposed[3,4] for uncertain Lurie 
indirect systems. 

On the other hand, the Takagi-Sugeno (T-S) fuzzy models described[5] for the first time are powerful tools, which can 
provide an effective representation for complex nonlinear systems. Therefore, the stability analysis and control synthesis of 
T-S fuzzy systems have attracted great attention from numerous researchers. In recent years, by using the LMI-based 
approach, several stability conditions for uncertain T-S fuzzy systems were derived[6,7]. 

However, to the authors' knowledge, the absolute stability of T-S fuzzy Lurie control systems with time delay and time-
variant uncertainties has not been addressed up to now, which motivates the present study. In this paper, a new class of T-S 
fuzzy Lurie control systems with time-delay and time-variant uncertainties in the state and the nonlinearities are investigated. 
By utilizing Lyapunov-Krasovskii functional (LKF) together with the free weighting matrix technique, a novel delay-
dependent absolute stability criterion for such new uncertain T-S fuzzy Lurie control systems with time-delay is derived in 
the form of LMIs. Finally, a simulation example will be provided to demonstrate feasibility and effectiveness of the proposed 
result. 
 

PROBLEM FORMULATION 
 

In this section, we consider a class of uncertain T-S fuzzy Lurie control systems with time-delay, which is described by 
a Takagi-Sugeno (T-S) fuzzy model composed of a set of fuzzy implication. Each implication is expressed by a nonlinear 
time-delay Lurie control system and the i th rule of the T-S fuzzy model for each 1, 2,i r   is represented as follows: 

Plant Rule :i  If  1s t  is 1i  and  2s t  is 2i     and  gs t  is ig  THEN 
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where ij is the fuzzy set and r is the number of IF -THEN rules;   nx t R denotes the sate vector;   qu t R is the 

control input; ,nc R R  ; 0  is the time-delay; , ,i i iA B C and iD are known real constant matrices;  iA t ,

 iB t ,  iC t  and  iD t are real-valued unknown matrices representing time-varying parameter uncertainties, and 

are assumed to be of the form: 
 

  (2) 
 

where 1 2 3 4, , , ,i i i i iM E E E E  are known real constant matrices of appropriate dimensions and   1 2: l l
iF � � �  is 

an unknown time-varying matrix function satisfying 
 

    , 1, 2 .T
i iF t F t I i r     (3) 

 

And     ,0 , nC R    is a continuous vector valued initial function; the nonlinearity function  f   satisfy the 

following sector condition: 
 

           0, | 0 0, 0 , 0 .f K f f f t           
 

          1 2 3 4 1, 2i i i i i i i i i iA t B t C t D t M F t E E E E i r        
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By using a center-average defuzzifier, product fuzzy interference, and singleton fuzzifier, the dynamic fuzzy model can 

be represented in following form: 
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Here we define: 
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with      , , , , , ,i i i i i i iA B C D A t B t C t   and  iD t are the same as the corresponding items in (1). The fuzzy basis 

functions are described by: 
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Where              1 2
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and   ij js t  is the grade of membership of  js t  in ij . Then, it can be seen that 
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In this paper, a state feedback T-S fuzzy-model-based controller will be designed for the stabilization of the T-S fuzzy 

system (4). The i th controller rule is 

Control rule i : If  1s t is 1i  and  2s t  is 2i   and  gs t  is ig  THEN 

 

    1, 2,iu t K x t i r   , 

 

where iK ( 1, 2,i r  ) are the local control gains. Then, the overall fuzzy sate feedback controller is given by 

     
1

( ) 1, 2,
r

i i
i

u t h s t K x t i r


   . 

In order to verify the main results of this paper, we shall use the following lemmas: 

Lemma1 (see[8].) Given , , , ,A D S W  and F  be real matrices with appropriate dimensions such that 0W   and 
TF F I . Then we have the following: 

For any scalar 0  and vector x and y of appropriate dimensions. 

 
12 T T T T Tx DFSy x DD x y S Sy   . 

 

For any scalar 0  such that 0TW DD  and 
 

      11 1T T T TA DFS W A DFS A W DD A S S 
      . 
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Lemma2 (see[9].)For any constant symmetric matrix , 0,n nM R M   scalar 0h  . Vector function 

    , 0 , nx h R  �  such that the integrations in the following are well defined, then  

 

         0 0 0

Th h hTh x s M x s ds x s ds M x s ds      . 

 

Lemma3 (see[10].) Suppose that matrices   1

r N M
i i

M R 

 and a semi-positive -definite matrix 

N NP R  are given, then 
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   , Where ih  1, 2i r   are fuzzy basis function defined by (5). 

 
MAIN RESULTS 

 
Theorem1. The system described by (4) is absolutely stable if there exist symmetric positive definite matrices , , ,P Z Q

and matrices ,iK scalars 1 20, 0,ij ij    such that the following LMIS hold for all 1, 2 , 1, 2,i r j r     . 
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Where   denotes the elements below the main diagonal of a symmetric block matrix, 
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 2 1 3 2 ,
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Proof. According to the Lyapunov stable theory, we define the Lyapunov functional candidate :  
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Then, the time derivative of V (t) along the trajectory of system (4) is given by 

 

         1 2 3 4 ,V t V t V t V t V t          (8) 
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Use Lemma 1(1), there holds 
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Now, using lemma 2, it can be shown that  
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By lemma3 and lemma 1(2), it can be also verified that 
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It then follows from (10),(12),(13) and (16) that  
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where   12 1 1
2

T T T
ij ij ij ij i i ij ij ij ijW A Z M M A E E  

      . 

If 0ijW  , by the schur complement formular, it provides that 
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So, according to the schur complement formula again, we have 
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That is
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where         1
1 3 1 3 1

T T T
i i i j i i j ij i i j i i j i ij iP A C K A C K P Z Q E E K E E K PM M P             . 

By using schur complement formula again, the LMI (6) and (7) in Theorem1 can be verified. From (6) and (7), we have 

that     2
V t x t   for   0x t  , which shows that the uncertain T-S fuzzy Lurie system with time-delay described by 

(4) is absolutely stable. This completes the proof. 
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SIMULATION EXAMPLE 
 

In this section, a simulation example will be provided to illustrate the theoretical result developed in this paper. The 
uncertain T-S fuzzy Lurie system with time-delay considered in this example is with two rules for 2,i  , ( ) 0i j u t  and

     1,2 , 0.75f t t i     , 0.6  . The fuzzy basis functions for Rule 1 and Rule 2 are 

   2
1 1 1( ) sin ( )h s t s t and    2

2 1 1( ) cos ( )h s t s t . 

And we let 1 2 1 2
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Using the MATLAB LMI Toolbox to solve the LMI, we obtained a set of feasible solutions as 

follows:
0.4798 0.3159 0.0357 0.0023 0.4633 0.2739

0.3159 0.8592 0.00

        
, , ,

  23 0.1141 0.2739 0       .2631    
P Q Z

  

     

       
      

 

 

11 21 12 22,  ,0.2533 0.0486 0.407 ,4 0.0431        

 
By using the MATLAB Simulink Toolbox, the state response of the system (4) is shown in Figure 1. The numerical and 

simulated results have shown that all the conditions of Theorem 1 are satisfied.  
 

 
 

Figure 1: Response of the state x (t) with uncertainties. 
 

CONCLUSION 
 

In this paper, the problem of absolute stability for a class of uncertain T-S fuzzy Lurie control systems with time-delay 
is considered. A new system model is created, and appropriate Lyapunov functional candidate have been defined, which is 
different from existing ones. And a new delay-dependent condition for such system is obtained and described in the form of 
LMIs by using Lyapunov-Krasovskii functional (LKF) together with linear matrix inequality (LMI) approach. Finally, the 
results of a simulation example have shown that the proposed result is feasible and effective. 
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